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Organic-rich continental shale, widespread in the Sichuan Basin during the deposition of the Jurassic Dongyuemiao Member
(J1d), is considered the next shale hydrocarbon exploration target in southern China. To identify a shale gas sweetspot and
reduce exploration risk, it is of great significance to determine the organic matter (OM) enrichment mechanism of J1d
shale. In this study, based on sedimentological characteristics and organic matter content, high-resolution major and trace
elements were systematically analyzed to demonstrate terrigenous influx, paleoredox, paleosalinity, paleoproductivity, and
paleoclimate. The 1st section interval of the J1d 1st submember is dominated by shallow lake subfacies, while the other
intervals have the characteristic of semideep to deep lake subfacies. The 1st submember interval of J1d lacustrine shale is
characterized by the warmest-humid paleoclimate, strongest weathering degree, highest terrigenous input, moderate
paleoproductivity, and paleoredox condition. Within the Dongyuemiao 1st submember, the 4th section interval has the
highest paleoproductivity and the most oxygen-deficient condition in bottom water. During the deposition period of the
2nd submember, the sedimentary environment turned to a cold-dry paleoclimate, weak weathering degree, low terrigenous
input, low paleosalinity, and high paleoproductivity. Under the background of semideep and deep lake, the terrigenous
OM input plays the most critical role in controlling OM enrichment. Moreover, the high primary productivity of lake
surface water and the suboxic condition of lake bottom water contribute to the formation of relatively higher TOC
lacustrine shale interval in the 4th section of 1st submember.

1. Introduction

Organic-rich shales are widely deposited under the following
sedimentary environments: deep shelf, semideep and deep
lacustrine, estuary bay, and lagoon environment [1–4]. In
North America, the huge commercial success has been
achieved in marine shale exploration [5–8]. In China, several
trillion cubic meters-scale shale gas fields, such as Fuling,
Weirong, and Zhaotong, have been successively built around
the Sichuan Basin [9, 10]. However, these successful shale

hydrocarbon exploration cases are limited to the marine
organic-rich shale [11–13].

Previous studies have revealed that lacustrine shale in
China has great exploration potential, and corresponding
mechanismic investigations have been carried out in the
Jurassic strata of the Sichuan Basin, Triassic Yanchang
Fm. in Ordos Basin, Shahejie Fm. of Bohai Bay Basin,
Cretaceous Shahai and Jiufotang Fm. in Fuxin Basin, and
the Cretaceous Qingshankou Fm. of Songliao Basin
[14–16]. The Jurassic continental shale strata in the
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Sichuan Basin are considered the most realistic alternative
exploration target [16, 17]. In order to achieve efficient
exploration and development, it is first necessary to iden-
tify the “sweetspots” of lacustrine organic-rich shale. Nev-
ertheless, the sedimentary characteristics and organic
matter accumulation mechanism have yet to be unified.

Elemental proxies have been applied very often to reveal
environmental effect including terrigenous input, paleore-
dox condition, paleosalinity, and paleoproductivity on the
accumulation of organic matter in fine-grained sedimentary
rocks [3, 4]. Based on the division of Dongyuemiao Member
in the Sichuan Basin, sedimentary facies marker, petrological
characterization, and high-resolution elemental analyses are
integrated to determine environmental conditions of differ-
ent intervals in Dongyuemiao lacustrine shale. This study
is aimed at deepening understanding of origin of Dongyue-
miao lacustrine organic-rich shale and provide guidance
for shale gas development.

2. Geological Background

The Sichuan Basin is a typical craton basin at the western
Upper Yangtze Block (Figure 1(a)), and the basin area is
about 260,000 km2. The study area is located in the Eastern

Sichuan Basin (Figure 1(a)), dominated by lacustrine envi-
ronment during the Early to Middle Jurassic. The Dabashan,
Longmenshan, and Micangshan on the periphery of the
basin constitute the provenance areas of the Jurassic sedi-
mentary period [17–19]. Four times lake transgressions were
identified during Jurassic system. From the bottom to the
top, four continental shale strata are identified: Zhenzhu-
chong Member (J1z), Dongyuemiao Member (J1d), Da’anz-
hai Member (J1dn), and Lianggaoshan Fm. (J1l),
respectively. OM is thought to accumulate in semideep
lacustrine to deep lacustrine environment controlled by
anoxic condition [18, 19]. The lithology of J1d is mainly
shale, followed by shale limestone and argillaceous lime-
stone. Three submembers can be identified based on lithol-
ogy: 1st submember, 2nd submember, and 3rd submember.
The 1st submember can be subdivided into four sections:
1st, 2nd, 3rd, and 4th sections (Figure 1(b)). Except for the
2nd submember, the other intervals mainly constitute shale.
The total organic carbon (TOC) value of J1d shale is between
0.5% and 2.0%, and the average value is greater than 1%
[20]. The OM type is mainly type II and locally developed
type III, and the vitrinite reflectance (Ro) exceeds 1.2%.
Thus, it has entered the stage of high-maturity evolution
and is during gas generation stage.

BeijingSichuan
Basin

Chongqing

Strata Lithology Depth
(m)

Zhenzhuchong
Member

2nd
Submember 

3rd
Submember 

Siltstone

Shale

Studied well

Cities

Argillaceous limestone

Limestone

Basin boundary 

Shell limestone

Fan delta

Semi-deep lake

Shell shoal

Deep lake

Delta

Shallow lake

Well A

Well B

Well C

Well D

Longmenshan fo
ld belt

Micangshan
Uplift

Wangcang

Mianyang

Chengdu

Chongqing

Xuefe
ngshan fo

ld belt

200 km0 100

N

Dabashan
fold belt

Em
ei-

Li
an

gs
ha

n

fo
ld

 be
lt

2486

2488

2490

2492

2494

2496

2498

2500

2502

2504

2506

2508

2510

2512

2514

2516

2518

2520

(a) (b)

zi
liu

jin
g

Fo
rm

at
io

n

D
on

gy
ue

m
ia

o
M

em
be

r

1s
t S

ec
tio

n

1s
t

Su
bm

em
be

r

2n
d 

Se
ct

io
n

3r
d 

Se
ct

io
n

4t
h 

Se
ct

io
n

Figure 1: (a) Sedimentary facies during the Jurassic Dongyuemiao member (J1d) deposition, Sichuan Basin (modified from [21]). (b)
Generalized stratigraphy of the Jurassic Dongyuemiao member (J1d) in Eastern Sichuan Basin (well B).
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3. Samples and Methods

3.1. Macroscopic and Microscopic Sedimentological
Characteristics. The four wells shown in Figure 1(a) were
continuously cored in the J1d. First, the macroscopic sedi-
mentological characteristics of cores were observed. In order
to observe the microscopic sedimentological characteristics,
200 thin sections from core samples were observed by the
Carl Zeiss Imager 2 microscope.

3.2. OM Content. TOCweremeasured by the Exploration and
Development Research Institute of CNPC, using Leco carbon/
sulfur analyzer with ±0.5% in experimental error. Firstly, 150
samples were grind into powder, and then carbonate compo-
nents were removed by 10% hydrochloric acid. The remaining
samples were washed with pure water to neutral and then
dried at 70°C-90°C. In order to realize the organic carbon com-
bustion, dried powders were added to the cosolvent and suffi-
ciently burned in high-temperature oxygen flow. Carbon
dioxide formed by combustion was detected by infrared detec-
tor to obtain the TOC value.

3.3. Major and Trace Element Concentration. The major and
trace element concentrations were acquired by X-ray fluo-
rescence spectroscopy. Fifty-six core samples were grind into
powder and then shaped to a suitable fused glass beads to fit
the XRF spectrometer. The XRF intensity of major and trace
elements were determined. Based on the calibration curve or
equation, the interference effect between elements was cor-
rected, and the element content was obtained. The test accu-
racy of major element content is less than 1%.

4. Results

4.1. Sedimentological Characterization

4.1.1. Shallow Lacustrine Subfacies. Shallow lacustrine subfa-
cies refer to the zone between lakeside and wave base.
According to the difference of sediment and hydrodynamic
conditions, it can be subdivided into two microfacies: shell
shoal and intershoal mud. The matrix of shallow lacustrine
sediments is composed of terrigenous clay minerals
(Figure 2(a)). Shell fragments can be identified on the core sur-
face with volumetric content over 50% (Figures 2(b) and 2(c)).
Within intershoal mud microfacies (Figure 2(d)), it has
characteristics of ripple bedding and parallel bedding
(Figure 2(e)), and reflecting large fluctuation energy of lake
water (Figure 2(f)). Silt laminae consist of silts or silt-size clasts
derived from lakeshore environment (Figure 2(g)). The 1st
section of J1d shale belongs to shallow lacustrine subfacies
(Figure 3).

4.1.2. Semideep Lacustrine Subfacies. The semideep lacus-
trine subfacies are located below the wave-base level and
above-the-storm-wave base level. Within subfacies, sedi-
ments are mainly affected by lake currents, not by waves.
The rock types of semideep lacustrine subfacies are mainly
gray-black shale (Figure 4(a)). Under the influence of slope
and gravity, abundant sedimentary characteristics of gravity
flow origin can be observed in semideep lacustrine subfacies

(Figure 4(b)), including cohesive debris flow (CDF) and low-
density turbidity current (LTC) (Figure 4(c)). Different from
the normally stacked shell fragments in the shell shoal, the
shell fragments inside the CDF are tightly squeezed to form
massive bedding (Figure 4(e)). LTC is typically characterized
by graded bedding, and multiple graded beddings overlay
upward in the vertical direction (Figure 4(c)). Occasionally,
erosional surfaces can be observed at the bottom of each
graded bedding (Figure 4(f)). In addition to CDF and LTC,
transitional flow deposits associated with LTC and CDF
can also be identified [22–24]. The transitional flow deposits
internally exhibit frequent interbedding of discontinuous
lenticular siltstone (or shell fragments) and matrix shale
(Figure 4(g)).

4.1.3. Deep Lacustrine Subfacies. Deep lacustrine subfacies
refer to the deepest part of lake. Wave can hardly affect this
subfacies, so the sedimentary water is quiet, and the stratifi-
cation of the water body forms an dysoxic-suboxic environ-
ment of the bottom water. Benthos cannot survive in this
environment, so no shell fragments are observed on core
surface (Figure 5(a)). The rock type of this subfacies is
gray-black shale (Figure 5(b)). The laminae inside the shale
are not obvious and the boundaries of each laminae
(Figure 5(c)). The terrigenous influx in the deep lacustrine
subfacies is very small (Figure 5(d)). The terrigenous debris
is mainly composed of silt-size quartz particles
(Figure 5(e)), which are dispersed in the shale (Figure 5(f)),
and the bedding and orientation are poor (Figure 5(g)). Since
the extremely low terrigenous influx weakens the dilution
effect of terrigenous debris on organic matter, organic matter
can be well enriched.

4.2. TOC Content. Results suggest that the content of the 1st
section lacustrine shale has a wide range, from 0.93% to
2.27% (Figure 3), averaging 1.57% (n = 8). For the 2nd sec-
tion lacustrine shale, the range of TOC is 1.05%-2.37%, with
an average of 1.74% (n = 13). In the 3rd section lacustrine
shale, the range of TOC is 1.20%-2.51%, averaging 1.70%
(n = 10). The TOC range of lacustrine shale for the 4th sec-
tion is relatively higher than the other sections, ranging from
1.25% to 4.03%; the average value is 2.25% (n = 10). The
TOC of the 2nd submember argillaceous limestone and cal-
careous mudstone varies narrowly, from 0.52% to 1.44%, aver-
aging 1.07% (n = 12). For the 3rd submember lacustrine shale,
the range of TOC is 0.98%-1.45%, averaging 1.21% (n = 3).

4.3. Major Element Concentration. As shown in Figure 6, the
Ca concentration of the 1st section lacustrine shale varies
widely, from 0.36% to 19.09%, averaging of 5.02% (n = 8).
For the 2nd section lacustrine shale, the content of Ca is
between 0.20% and 21.80%, averaging 5.12% (n = 13). The
Ca concentration of the 3rd section lacustrine shale varies
narrowly, ranging from 0.24% to 4.62%, averaging 1.60%
(n = 10). The Ca content of 4th section lacustrine shale var-
ies widely, ranging from 0.12% to 22.08%, with an average of
5.73% (n = 10). The content of Ca for 1st submember is close
to the upper continental crust.
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The content of Ca for 2nd submember argillaceous lime-
stone and calcareous mudstone is higher than the other sec-
tions and the upper continental crust, ranging from 2.92% to
25.54%, with average value of 15.10% (n = 12). The Ca con-
centration of 3rd Submember lacustrine shale varies nar-
rowly (n = 3), from 4.25% to 6.85%, averaging 5.83%.

The Al content and Si content of the 1st submember
lacustrine shale are relatively higher (Figure 6). The average
concentration of Al and Si is 10.19% (3.51%-12.20%, n = 41)
and 22.54% (9.74%-27.86%, n = 41), respectively. The con-
tent of Al is higher than that of the upper continental crust,
while Si is lower than that of the upper continental crust.
The average concentration of Al and Si in 2nd submember
lacustrine shale is 6.59% (3.16%-11.82%, n = 12) and
14.92% (8.37%-23.18%, n = 12), respectively. The average
concentration of Al and Si for 3rd submember lacustrine
shale is 9.13% (8.52%-10.32%, n = 3) and 23.42% (22.58%-
24.16%, n = 3), respectively.

The average concentration of Ti and Zr in the 1st sub-
member lacustrine shale is 4765 ppm (1793 ppm-6138 ppm,
n = 41) and 144 ppm (47ppm-1997 ppm, n = 41), respec-
tively. The average concentration of Ti and Zr for 2nd sub-
member lacustrine shale is 2380 ppm (1067 ppm-4691 ppm,
n = 12) and 81 ppm (38ppm-138 ppm, n = 12), respectively.
The average concentration of Ti and Zr for 3rd submember
lacustrine shale is 3831ppm (3491-4126 ppm, n = 3) and
137 ppm (128 ppm-153 ppm, n = 3), respectively.

4.4. Trace Element Concentration. The variation of
environment-sensitive trace elements and elemental indica-
tors is shown in Figures 7 and 8. Compared to the other
two submembers, the CIA∗ for 1st submember lacustrine
shale is higher, ranging from 18.83 to 85.20, averaging
70.64 (n = 41). The CIA∗ of the 2nd submember lacustrine
shale is the lowest (16.74-76.57), averaging 36.77 (n = 12).
The CIA∗ for 3rd submember lacustrine shale ranges from
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Figure 2: Macroscopic and microscopic sedimentary characteristics of shallow lacustrine subfacies for J1d from well A. (a) Core photograph
of shallow lacustrine subfacies showing shell shoal and ripple bedding, 1 section, 2518.29m-2518.50m. (b) Normal stack of shell fragments,
2518.49m. (c) Normal stack of shell fragments exhibiting wave fluctuation, 2518.39m. (d) Silt laminae showing discontinuous planar
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57.60 to 69.68, with an average of 62.11 (n = 3). The range of
PIA∗ is close to the CIA∗.

The variation trend for V/Sc is contrary to that of the
CIA∗ value (Figure 8). Specifically, the V/Sc for 1st submem-
ber lacustrine shale is relatively lower, ranging from 4.36 to
9.87, averaging 7.56 (n = 41). For the 2nd submember, the
V/Sc is the highest, ranging between 6.42 and 9.83, averaging
8.28 (n = 12). The V/Sc of the 3rd submember lacustrine shale
ranges from 7.48 to 8.05, averaging 7.85 (n = 3).

The variation of B/Ga is opposite to that of V/Sc
(Figure 8). The B/Ga of the 1st submember lacustrine shale
is the highest, ranging from 1.57 to 3.57, and the average
value is 2.33 (n = 41). The B/Ga of the 2nd submember is
relatively low, ranging between 1.35 and 2.52, averaging

1.90 (n = 12). The B/Ga for 3rd submember lacustrine shale
ranges from 2.03 to 2.44, with an average of 2.19 (n = 3).

5. Discussion

5.1. Terrigenous Influx. The concentrations of Zr, Ti, and Al
in fine-grained sedimentary rocks are hardly affected by
weathering or diagenesis, thus these elements are used to eval-
uate terrestrial input [27, 28]. Al only exists in the clay min-
erals of fine-grained sedimentary rocks, while Ti and Zr are
mainly assigned to clay, sand, and silt particles composed of
ilmenite, rutile, and augite [29, 30]. The terrigenous input
proxies represented by Al, Ti, and Zr has gradually decreasing
trend in the 1st submember (Figure 6). Terrigenous input
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Figure 3: Integrated sedimentary column of J1d from the well B in the Eastern Sichuan Basin (the lake-level curves is modified from [19]).
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reaches lowest level in the 2nd submember. Into the 3rd sub-
member, terrigenous input gradually increased. Zr/Al and
Ti/Al ratios are thought to closely relate to the coarser part
of sediments [29, 31]. The clear Ti-Al correlation suggests that
Ti comes from the lattice of clay minerals or stable terrigenous
clastic materials [3, 4]. The 1st-4th sections are characterized
by clear Ti-Al correlation (Figure 9(a)), suggesting that the
detrital influx is relatively stable. Zr usually exists in clay min-
erals or heavy minerals of silt size (e.g., zircons) [32]. The cor-
relation of Al and Zr is clear in 1st-4th sections (Figure 9(b)).
The results suggest that terrigenous influx for 1st-4th sections
is relatively stable.

5.2. Paleoclimate Conditions. The warm-humid climate can
contribute to the atmospheric water cycle by raising chemi-
cal weathering intensity. Under this environmental condi-
tion, nutrients are continuously transported to seawater or

lake water, which helps to improve the primary productivity
of surface water.

Chemical index of alteration (CIA) has been applied to
determine paleoclimatic conditions. The specific calculation
method is [33–35]

CIA∗ = 100 ×
Al2O3

Al2O3 + Na2O + K2O
: ð1Þ

The enrichment factor (EF) of environment-sensitive
trace elements has been widely applied to reveal environ-
mental conditions.

The specific formula is as follows:

XEF =
X/Alð Þsample

X/Alð ÞCC
: ð2Þ
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Note: X represents the element X concentration, and
(ðX/AlÞCC means the X/Al ratio in the continental crust
[36–38].

Moreover, the excess value of element was another sensi-
tive proxy reflecting environment condition [39]. The calcu-
lation formula is as follows:

XXS = Xtotal − Titotal ×
X
Ti

� �
PAAS

ð3Þ

Note: Xtotal represents the element X concentration, and
X/TiPAAS means the X/Ti ratio in the Australian postarchean
average shale (PAAS) [39].

Previous studies suggest that high CIA∗ values reflect
warm, humid paleoclimate, and strong chemical weather-
ing. And low CIA∗ values represent dry and cold condi-

tions, and chemical weathering is weak [33, 40]. CIA∗

values ranging from 50 to 65 reflect cold-dry paleoclimate
and low chemical weathering degree [40]. CIA∗ values
ranging from 65 to 85 reflect the warm-humid paleocli-
mate and moderate chemical weathering. The CIA∗ values
ranging from 85 to d 100 represent the hot and humid
paleoclimatic condition with strong chemical weathering.
The CIA∗ for the 1st submember is the highest, represent-
ing warm-humid climate. The CIA∗ for the 2nd submem-
ber is the lowest, reflecting relatively cold-dry climatic
condition with low chemical weathering. The CIA∗ values
of the 3rd submember are close to 1st submember, reflect-
ing warm-humid climatic condition. The PIA∗ values for
1st submember are between 17 and 99, and the PIA∗

values for 2nd submember are between 15 and 50. The
variation trend of the PIA∗ is similar to the CIA∗, reflect-
ing the same climate change (Figure 8).
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5.3. Paleosalinity. Paleosalinity is a critical proxy when
restoring environmental condition. B and Ga were proposed
to be two salinity-sensitive elements [41, 42]. Generally, the

content of B and Ga in seawater is high, and the enrichment
degree of B in seawater is linearly correlated with salinity.
The solubility of minerals containing Ga is generally low,
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and it is generally cleaned by particles in seawater, result-
ing in the concentration of Ga in seawater that is generally
much lower than that in freshwater system. Therefore, the
content of Ga in marine sediments is generally lower than
that in continental sediments [42, 43]. Therefore, B/Ga
and B contents are often used to distinguish sedimentary
environments. The results suggest that the paleosalinity

during deposition of 1st submember is in the range of brackish
water and has a gradual decreasing trend. The paleosalinity of
the 2nd submember is very similar to freshwater. The paleosa-
linity of the water body during the deposition of the 3rd sub-
member was converted to brackish water.

Na and K are highly active elements in alkali metals.
Usually Na and K are evenly distributed in water, and their
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levels can be used to directly reflect salinity [44]. The varia-
tion trend of the (K+Na) curve is similar to that of B/Ga,
suggesting the same paleosalinity variation characteristics.

5.4. Paleoredox Conditions. Trace element proxies including
Uau, V/Sc, UEF, and MoEF were widely used to determine
redox conditions for paleowater, and the smaller of these
proxies reflect the higher oxidation degree, and the larger
the ratio reflects the stronger reduction degree [45–47].
Authigenic Mo, authigenic U enrichment, and Mo-U covar-
iant models have been applied to determine redox condi-
tions and water mass limitation [36, 37, 48]. In general, the
oxic condition showed little or no enrichment of authigenic
U and Mo, while the anoxic conditions showed strong
enrichment of authigenic U and Mo [36, 37]. The data
points of each section are all located within the dysoxic zone
of the unrestricted marine trend (Figure 10), and only a few
data points near the suboxic zone. The variation trend of Uau
and V/Sc suggests that the bottom water is dominated by
suboxic condition during the deposition period of the 4th
section and 2nd submember of J1d. The other sections are
dominated by dysoxic lake bottom water (Figure 8).

5.5. Paleoproductivity Proxies. The primary productivity is
proposed to be a critical factor controlling organic matter
accumulation in shale [3, 4]. The strong enrichment of Ba,
Cu, and Zn suggests that there was a high content of organic
matter that brought it to the sediments. Subsequently, Ba,
Cu, and Zn in the sediments were preserved under reducing
conditions [50]. Therefore, they can be used as alternative
indicators of paleoproductivity level. The results show that
the 4th section and 2 submember of J1d have the largest Baxs,
Cuxs, and Znxs, reflecting the highest level of
paleoproductivity.

5.5.1. Organic Matter (OM) Accumulation Mechanism. Dur-
ing the J1d deposition, a complete transgressive-regressive
sedimentary cycle was developed within the study area
[19]. The 1st section deposition represents to the early stage
of the J1d deposition. The eastern study area is dominated by
shallow lacustrine facies (Figure 11(a)), and the lake is rela-
tively small. The shell shoals composed of a large number of
benthos can be observed on the core intervals. The water
body is in oxic-dysoxic condition, which is not favorable
for the preservation of OM.

During the 2nd section deposition, it experienced a
strong transgressive action, and the lake area expanded sig-
nificantly. The study area has the characteristics of semideep
and deep lacustrine environment. Sediments of the shell
shoal can trigger large-scale slumping, forming shell inter-
layers of gravity flow origin within semideep lacustrine envi-
ronment (Figure 11(b)). During this period, the water body
is relatively stable and conducive to algae and other lower
aquatic organisms multiply, reflecting significantly increased
primary productivity. At the same time, appropriate terrige-
nous influx does not cause a strong dilution effect of OM but
provides more terrigenous OM. In addition, the dysoxic
conditions of water bodies will also be favorable for the pres-
ervation of OM, which is favorable for OM enrichment.

During the 3rd section deposition, the decrease in lake
level leads to a decrease in the distribution range of deep lake
areas. The water turbulence was not of benefit to phyto-
plankton reproduction (Figure 11(c)), and the primary pro-
ductivity was at low level. During the 4th section deposition,
it experienced strong lake transgression again, and the lake
area reached the maximum. Meanwhile, the bottom water
body of the lake was relatively stable, which was beneficial
to the reproduction of aquatic phytoplankton, including
algae, which was reflected in the significant increase in pro-
ductivity indicators (Figure 11(d)). At the same time, appro-
priate terrigenous influx does not cause a strong dilution
effect of OM but provides more terrigenous OM. In addi-
tion, the suboxic conditions of water body will contribute
to the OM preservation and enrichment.

During the 2nd submember deposition, the study area
has been restored to a semideep lacustrine environment,
and gravity flow deposits were frequently developed. How-
ever, since the paleoclimate of this period converted to
cold-dry climate, terrigenous influx almost stagnated, and
the water body gradually changed to fresh water
(Figure 11(e)). Meanwhile, the bottom water is dominated by
suboxic condition. These conditions are beneficial to the repro-
duction and preservation of phytoplankton, by raising primary
productivity. However, due to the lack of terrigenous organic
matter input, the TOC content has not increased significantly.
During the deposition period of the 3rd submember, the lake
level gradually decreased, the lake basin shrank greatly, and
the distribution range of the deep lake area gradually returned
to the 1st submember deposition period. However, due to the
turbulent water body and the large input of terrigenous debris
(Figure 11(f)), these conditions were unfavourable for phyto-
plankton reproduction and the preservation of OM.
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6. Conclusions

(1) In 1st submember, the 1st section interval of the
Jurassic Dongyuemiao Member was dominated by
shallow lacustrine subfacies, while the other sections
have the characteristics of semideep and deep lacus-
trine environment. The 2nd and 3rd submembers
also have the characteristics of semideep and deep
lacustrine environment

(2) The 1st submember interval of the Jurassic Don-
gyuemiao Member was characterized by the most
warm-humid condition, strongest weathering
degree, largest terrigenous influx, moderate paleo-
productivity, and moderate paleoredox condition.
Within this submember, the 4th section interval
had the highest paleoproductivity, and the most
oxygen-deficient condition in bottom water. During
the period of the 2nd submember interval, the sedi-
mentary environment turned to cold-dry climatic
conditions, weak weathering degree, low terrigenous
input, low paleosalinity, and high paleoproductivity

(3) Under semideep lacustrine and deep lacustrine back-
ground, terrigenous OM input played a key role in
controlling OM enrichment of Dongyuemiao lacus-
trine shale. Moreover, the high primary productivity
of lake surface water and suboxic condition of lake
bottom water are also beneficial for the formation of
high TOC interval in the 4th section of 1st submember
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