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In the process of reservoir exploitation, the range of rock stress field changes is much larger than the reservoir area where the
seepage occurs; so the amount of calculation of the existing seepage stress full coupling method is often very huge. Based on
the theory of seepage mechanics and rock mechanics, a coupling analysis model of reservoir multiphase seepage and stress is
established, and a numerical solution is established by using finite element and finite difference methods. The evolution law of
the seepage field and stress field and the change of rock mechanics parameters can be studied, with emphasis on the
readjustment of rock stress distribution and its deformation characteristics under the influence of the seepage field. At the
same time, to improve the calculation efficiency of numerical simulation, considering the difference between the seepage
calculation area and stress calculation area, the finite element method is improved. The percolation area of the reservoir is
calculated with a fine grid to obtain a more accurate distribution of underground fluid. The coarse grid is used to calculate the
stress calculation area and to reduce the calculation time. The mechanical equilibrium equation in the fully coupled theory is
discretized on the coarse grid by the finite element method. The mass conservation equation is discretized on the fine grid by
the finite volume method. The numerical simulation of Terzaghi’s one-dimensional consolidation problem and Mandel’s
two-dimensional consolidation problem shows that the calculation results of this method are in good agreement with the
analytical solution. Through the numerical calculation of a two-dimensional single-phase flow single well production
problem and a three-dimensional two-phase flow five-point well pattern production problem, the influence of the seepage
stress coupling effect in reservoir numerical simulation is analyzed.

1. Introduction

The thermal fluid-solid coupling theory of geotechnical
media is the product of the mutual penetration and intersec-
tion of seepage mechanics, rock mechanics, and heat trans-
fer. The research in this field has involved the fields of
seepage and control of water conservancy and hydropower
projects, reservoir-induced earthquakes, deep burial treat-
ment of nuclear waste, coal and gas outbursts, stability of
rock slopes and dam foundations, development of oil and
natural gas and heat energy, utilization of groundwater
resources, and so on [1, 2].

In the process of oil and gas production, with the contin-
uous production of oil and gas, the pore pressure of the

reservoir is reduced and the solid stress is redistributed,
which leads to the deformation of the rock framework of
the reservoir and changes the physical parameters of the
reservoir, especially the porosity, permeability, and pore
compressibility, which in turn affect the flow of reservoir
fluid in the pore space. Therefore, the porosity, permeability,
and rock deformation ability of oil and gas reservoirs are
directly related to oil and gas recovery, which should be
studied. In the process of drilling, oil and gas wells are
soaked by fluids inside and outside the well, which directly
affects the stability of the good wall. Similarly, in the mining
process, due to the flow and erosion of fluid, the properties
and stress of the rock skeleton around the shaft wall will
change, destroying the skeleton, which leads to a large
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amount of sand production. Therefore, the coupling
between fluid and rock must be considered in the wellbore
stability analysis and sand production analysis. In the
process of reservoir exploitation, due to the extraction of a
large number of fluids (oil, gas, and water), the pressure of
the oil (gas and water) layer is reduced, resulting in the
deformation, compaction, and settlement of the overlying
strata, which will bring serious consequences, such as bore-
hole collapse, casing deformation, and damage, which is
particularly important for inclined wells. In the process of
water injection or polymer injection displacement produc-
tion, the high pressure of the displacement fluid not only
provides the driving force for the flow of oil and gas but also
expands the pore space and improves the permeability of the
reservoir to achieve the purpose of increasing production.
Therefore, studying the fluid-solid coupling in the process
of displacement is a problem that must be solved to improve
oil and gas recovery [3].

As for the coupling problem of seepage stress in porous
media, a more systematic and comprehensive theoretical
and numerical calculation method has been established in
the field of geotechnical engineering. Terzaghi [4] first
introduced the concept of effective stress and proposed a
one-dimensional consolidation model of rock and soil. Biot
[5, 6] established a perfect three-dimensional consolidation
theory and wave propagation theory with solid-liquid corre-
sponding force balance equation and continuity equation as
the main governing equations. In terms of numerical calcu-
lation, the seepage stress coupling problem of porous media
is mostly studied by finite element method [7–15], such as
the discrete u-p method and u-UWmethod of the Biot equa-
tion finite element method proposed by Liu et al. [16]. The
field of geotechnical engineering pays more attention to the
accurate calculation of mesh geotechnical stress and defor-
mation. The finite element method is very suitable for the
seepage stress coupling problem. The field of oil and gas
reservoir engineering focuses more on the accurate calcula-
tion of the velocity and flow of oil-gas-water fluid between
reservoir grids. Because the finite volume method is not lim-
ited by the orthogonal grid of the finite difference method in
terms of geometric flexibility, at the same time, its physical
meaning is clear, it has strict local conservation, and it can
easily and accurately deal with the discontinuity of flow, so
at present, the finite volume method is mostly used for
numerical simulation of oil and gas reservoirs [17–20]. Akai
and Tamura [21] proposed a mixed finite element finite dif-
ference method to solve the Biot equation of porous media.
Subsequently, this method was developed and extended to
the numerical calculation of geotechnical consolidation and
saturated soil liquefaction [21–31]. On this basis, Yuan and
Xiaowei [26] proposed and studied a mixed finite element
finite volume method for seepage stress coupling problems.

However, different from ordinary geotechnical engineer-
ing problems, the spatial scale and time scale of reservoir
numerical simulation are often large, and the seepage calcu-
lation area and stress calculation area do not coincide in the
seepage stress coupling study [27]. In the actual reservoir
exploitation, the underground fluid seepage occurs in the
reservoir range, and the reservoir area can be selected as

the seepage calculation and stress calculation area. The
change of reservoir rock stress field in the production process
is not limited to the scope of the reservoir but also affects the
upper overburden and lower stratum of the reservoir. There-
fore, the stress calculation area should generally be much
larger than the reservoir range where the seepage calculation
area is located. If the stress calculation area is limited to the
reservoir seepage calculation area, the result of the seepage
stress coupling calculation will produce a certain error
[28–31]. Because reservoir numerical simulation pays more
attention to the accuracy of seepage flow velocity and flow
calculation, the grid in the reservoir should ensure a certain
degree of fineness. In the original finite element finite volume
hybrid method, the samemesh is used when the finite element
method discretizes the stress balance equation and the finite
volume method discretizes the mass conservation equation
[26]. Applying it to the reservoir seepage stress coupling calcu-
lation will result in a very large number of grids. To improve
the calculation efficiency of the reservoir seepage stress full
coupling problem, this paper proposes an improved finite ele-
ment finite volume hybrid method. This method uses the
finite element method to discretize the stress balance equation
on the coarse grid and the finite volume method to discretize
the mass conservation equation on the fine grid, which not
only ensures the calculation accuracy of the reservoir seepage
field but also reduces the calculation burden caused by the
solution of the stress field.

Therefore, the geological body is regarded as the aggre-
gation of solid skeleton and pore fluid. The distribution
characteristics and laws of oil and gas show that the migra-
tion and storage of pore fluid in porous media are closely
related to the structure of the solid skeleton and rock prop-
erties. Therefore, the relationship between the solid skeleton
system and the pore fluid system has become an important
research content. Because the structure of a solid skeleton
is controlled by tectonic stress, the study of the correlation
between oil and gas migration and the stress field during
tectonic activity provides a new perspective for the study of
reservoir forming theory.

2. Basic Model of Porous Media

2.1. Displacement Mechanism of Tectonic Stress Field.
According to the concept principle of effective stress (1),
the tensor expression of effective stress in porous media is

σij′ = σij − δijp: ð1Þ

Similarly, for the effective average stress in the fluid-solid
system, there can also be the following relationship

σe′ = σe − p,

σe = σ11 + σ22 + σ33ð Þ/3:
ð2Þ

The formula shows that the effective stress is inversely
proportional to the fluid pressure without changing the total
stress. The stress of pore fluid and solid skeleton depends on
the characteristics of the medium itself, such as porosity,
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density, and plugging conditions. Assuming that the pore
fluid is incompressible, under the condition of water perme-
ability, the medium is squeezed by tectonic forces, and the
skeleton deforms, resulting in a change of porosity. The pore
fluid is squeezed out, and the skeleton flows to the area with
low tectonic pressure or good permeability conditions. At
this time, the stress borne by the skeleton is relatively larger.
Under the condition of complete impermeability, the pore
fluid is blocked in the medium, which increases the pore fluid
pressure, and the tectonic stress will be mainly borne by the
pore fluid. Therefore, the pore fluid pressure in porous media
caused by tectonic stress can be expressed as [14]

p = cσe,

c = 1 − σe′
σe

:
ð3Þ

c can be given according to medium parameters such as
porosity and density. In addition to the average tectonic
stress, the magnitude and direction of the maximum princi-
pal pressure stress will also affect the migration of pore fluid.
It will make faults or fractures in the same direction in a
relatively stretched state and make the vertical direction
become a flow channel or make faults or structures in the
vertical direction close, blocking the migration of oil and
gas along the direction of the maximum principal pressure.
At the same time, the flow intensity depends on the differ-
ence between the maximum principal pressure and the min-
imum principal pressure.

When the external structural force acts on the geological
body, due to the uneven distribution of large and small
structures and lithological differences in the rock mass, the
differential distribution of structural stress leads to the
deformation of the geological body, which changes the
porosity and pore hydraulic pressure of rock masses with
different lithology, resulting in the average stress difference,
principal stress difference, or potential difference, driving
the migration of oil and gas from high potential areas to
low potential areas. When encountering suitable traps, it is
possible to accumulate and form reservoirs.

2.2. Fluid-Solid Coupling Analysis of Porous Media. Under
the condition of plane strain, the equilibrium equations of
porous media under external force are

∂σyy
∂y

+
∂τyz
∂z

−
∂p
∂y

+ f y = 0,

∂σzz

∂z
+
∂τzy
∂y

−
∂p
∂z

+ f z = 0:
ð4Þ

Among them,

p = − σxx + σyy + σzz
À Á

/3,

f z = 1 − ϕð Þρs + ϕρo½ �g:
ð5Þ

According to the energy principle, the fluid potential can
be simply expressed as

Φ = gz + p
ρo

: ð6Þ

The strength of the force field driving oil and gas migra-
tion can be obtained from the fluid potential gradient

E = − grad Φ: ð7Þ

The fluid migration velocity can be calculated by Darcy’s
law

vy = −ky∂p/∂y,

vz = −kz∂p/∂z ,
ð8Þ

where ky = Kyρsg/μ ; kz = Kzρsg/μ.
The above formula shows that the seepage velocity of

fluid is directly proportional to the pore pressure gradient.
Through the fluid potential equation and Darcy’s law, the
fluid potential field and seepage velocity of porous media
caused by tectonic pressure can be obtained, and the
dominant orientation and enrichment area of oil and gas
migration can be analyzed.

3. Application of Fluid-Solid Coupling
Theory in Reservoir

3.1. Reservoir Multiphase Fluid Seepage Equation

(1) Reservoir gas composition equation is

∇·
Kkrg
Bgμg

∇Pg − ρgg∇D
� �" #

+ ϕ
∂
∂t

Sg
Bg

 !

+
Sg 1 − ϕ0ð Þ
Bg 1 + εvð Þ2 · ∂εv

∂t
+

qg
ρgs

= 0
ð9Þ

(2) Reservoir oil composition equation is

∇· Kkr0
B0μ0

∇P0 − ρ0g∇Dð Þ
� �

+ ϕ
∂
∂t

S0
B0

� �

+ S0 1 − ϕ0ð Þ
B0 1 + εvð Þ2 · ∂εv

∂t
+ q0
ρ0s

= 0
ð10Þ

(3) Reservoir water component equation is

∇· Kkrw
Bwμw

∇Pw − ρwg∇Dð Þ
� �

+ ϕ
∂
∂t

Sw
Bw

� �

+ Sw 1 − ϕ0ð Þ
Bw 1 + εvð Þ2 · ∂εv

∂t
+ qw
ρws

= 0
ð11Þ

where qi represents the mass of oil (steam and water)
produced or injected into the formation per unit
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volume per unit time, kg/m3•s. S0, Sg, Sw are oil, gas,
and water saturation, dimensionless. D is the reser-
voir depth, m. K is the absolute permeability. krg,
kr0, and krw are the relative permeability of gas, oil,
and water. Bg, B0, and Bw are volume coefficient of
underground gas, oil, and water, dimensionless.

3.2. Deformation Field Equation of Reservoir Rock Mass. Due
to the complexity of the specific geological environment, the
selection of the constitutive model of reservoir rock mass is
very complex, especially in the process of finite element cal-
culation, the selection of different models may cause great
differences. A large number of documents have compared
the calculation results under different models. In this paper,
the commonly used elastic-plastic model and the Drucker
Prager yield criterion are used to obtain the mathematical
equation of the deformation field of the reservoir rock mass.
Equilibrium differential equation considering effective stress

σij,j′ + αpδij
À Á

,j + f i = 0: ð12Þ

Geometric equation of rock mass deformation

εij =
1
2 ui,j + uj:i

À Á
: ð13Þ

Elastoplastic constitutive equation

dσij′
n o

= Dep

Â Ã
dεij
È É

: ð14Þ

In Drucker Prager yield criterion F = αI1 +
ffiffiffiffi
J2

p
− K f , I1

is the first invariant of the stress tensor, and I2 is the second
invariant of the stress tensor,

α = sin φ

9 + 3 sin2φ
À Á1/2 ,

Kf =
3C cos φ

9 + 3 sin2φ
À Á1/2 :

ð15Þ

φ is the internal friction angle, and C is the cohesion.
Then, there are

Dep
Â Ã

= D½ � − D½ � ∂F/∂σf g ∂F/∂σf gT
A½ � + ∂F/∂σf gT D½ � ∂F/∂σf g

: ð16Þ

fFg is the yield function vector, using the correlation
flow rule.

3.3. Coupling Relationship between Fluid and Reservoir Rock
Mass. Fluid not only has the mechanical effect of pore pres-
sure on rock mass but also changes the original constitutive
relationship of rock mass and changes the physical and
mechanical properties of a rock mass. At the same time,
due to the effect of external stress, the deformation of rock
mass is caused, which changes the parameters of the seepage
field, such as porosity and permeability of rock mass, and

will inevitably lead to the corresponding change of seepage
field.

The influence of the stress field on the seepage field is
mainly reflected by porosity and permeability. A large
number of experiments show that the relationship between
porosity and permeability and effective pressure can be
expressed in the following form:

ϕ = ϕ0e
−ασ′ ,

k = k0e
−βσ′ ,

ð17Þ

where ϕ0is the porosity under the reference pressure. k is the
permeability under the reference pressure, μm2. α and β,
they are the experimental parameters corresponding to the
calculation of rock mass.

The influence of fluid seepage on the mechanical proper-
ties of rock mass can be expressed by the following formulas:

σc = σc0e
−α1p,

σr = σr0e
−α2p,

E = E0e
−α3p,

ð18Þ

where σcis the peak strength of rock mass, MPa. σr is the
residual strength of rock mass, MPa. α1, α2, and α3 are the
corresponding coefficient, dimensionless. σc0, σr0, and E0
are the peak strength, residual strength, and elastic modulus
under reference pressure, MPa.

1
2

34

5 6

78

Figure 1: improved mesh algorithm considering fluid-structure
coupling.

10 m

5 m

Figure 2: Terzaghi one-dimensional consolidation numerical
calculation model.
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4. Analysis of Seepage Field

4.1. Definite Solution Condition of Seepage Field

(1) Constant pressure boundary means that the pressure
at every point on the casing at the reservoir bound-
ary is known or the bottom hole pressure of the well
is known

PG = f p x, y, z, tð Þ ð19Þ

The above formula represents the given function f p
ðx, y, zÞ of pressure p at a point ðx, y, zÞ on the outer
boundary G at time t.

(2) Constant flow boundary this boundary condition is
the boundary value of the derivative of the given
unknown quantity, that is, the derivative of the
unknown quantity at the reservoir boundary or the
well production is known

∂P
∂n

����
G

= f q x, y, z, tð Þ ð20Þ

where ∂P/∂n is the derivative of the pressure with
respect to the outer normal direction of the bound-
ary, and n is the normal direction. f qðx, y, z, tÞ is a
known function on the specified boundary.

4.2. Initial Condition. To solve the unsteady seepage prob-
lem, we also need to give the pressure and saturation dis-
tribution in the reservoir at the initial time, which is
expressed as

p x, y, z, 0ð Þ = p0 x, y, zð Þ,
S x, y, z, 0ð Þ = S0 x, y, zð Þ:

ð21Þ

4.3. Definite Solution Conditions of Rock Mass Deformation
Field. The calculated deformation is mostly the first kind
of boundary condition, that is, the surface force of rock
and soil skeleton is known

σijLj = si x, y, zð Þ, ð22Þ

where Ljis the directional derivative of the boundary. siis
the distribution function of surface force.

4.4. Seepage Stress Coupling Solution. The governing equa-
tions of the seepage stress coupling problem are composed
of the equilibrium equation of geotechnical materials and
the seepage equation of pore fluid. For the element body of
the seepage stress coupling problem, the differential equilib-
rium equations of solid skeleton and pore fluid can be estab-
lished, respectively, and the overall equilibrium equation can
be obtained by adding the two equilibrium equations

pμst =
∂σij
∂xj

+ ρbi, ð23Þ

where ρ = ð1 − ϕÞρs + ϕρf is the average density of porous
media. Superscript “s” refers to the solid skeleton and “f”
refers to pore fluid. ϕ is porosity. μst is the displacement of

solid skeleton; bi is the volume force; σij = σsij + σf
ij is the

total stress of the unit body, which σs
ij = σij′ − ð1 − ϕÞpδij,

σf
ij = −pϕδij. The stress of solid skeleton and pore fluid,

respectively. σij′ is the effective stress. p is pore fluid pres-
sure. δij is Kronecker symbol.

According to Terzaghi’s effective stress principle, when
the Biot coefficient is taken as 1, there is the following rela-
tionship:

σij′ = σij + pδij: ð24Þ

Figure 3: Comparison of coarse and fine mesh improved algorithms.
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The seepage equation can be established according to the
mass conservation equation of the pore fluid of the unit
body

∂ _ωi

∂xi
+ _εsij + ϕ

_ρf

ρf
+ 1 − ϕð Þ _ρ

s

ρs
= 0, ð25Þ

where _ωi = ϕð _μf
i − _μsiÞ is the relative velocity of pore fluid rel-

ative to a solid skeleton. εsii is the strain of a solid skeleton.
Assuming that the acceleration of the fluid relative to the

solid skeleton is very small [16], that is _μf
i = _μsi + €ωi/ϕ ≈ _μsi ,

the relative velocity of the fluid relative to the solid skeleton
can be expressed as

_ωi = −
k
μ

∂p
∂xi

+ ρf €μsi − ρf bi

� �
, ð26Þ

where k is permeability and μ is liquid viscosity.
The above formula can be regarded as Darcy’s law

expression considering the deformation of solid skeleton.
Compared with the original expression v! = −k/μð∇p −
ρg∇DÞ of Darcy’s law, the above formula adds a coupling

term ρf €μsi . The existence of this term makes the equilibrium
equation and seepage equation have to be solved simulta-
neously, that is, a fully coupled calculation method is
required.

5. Improvement of Finite Element Method

For reservoir exploitation, the influence range of the stress
field is different from that of the seepage field. The solution
of the seepage equation is limited to the reservoir area, and
the calculation of the equilibrium equation should be carried
out in a larger area including the whole reservoir, upper
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Table 1: One-dimensional consolidation calculation parameters.

Modulus of
elasticity, E/GPa

Poisson’s
ratio, v

Void
ratio, e

Permeability,
k/Darcy

Density of
solid materials,
ρ/103kg•m-3

Fluid density,
ρf/103kg•m-3

Fluid viscosity,
μ/10-3 pa•s

Load,
T/MPa

20 0.25 0.5 0.1 1.69 1.0 1.0 20
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overburden, and lower stratum [27, 28]. In order to meet the
requirements of numerical simulation of reservoir seepage
stress problem, in view of the different characteristics of
the calculation areas for the solution of equilibrium equation
and seepage equation, the finite element method grid of dis-
crete equilibrium equation and the finite volume method
grid of discrete seepage equation is divided into grids with
different degrees of fineness in the scope of the reservoir.
As shown in Figure 1, Mesh 5-6-7-8 is a fine mesh element
of the finite volume method. Mesh 1-2-3-4 is a coarse mesh
element of the finite element method, and the finite volume
method element is obtained by further subdividing the finite
element method element. In order to facilitate the imple-
mentation, the fine mesh of the finite volume method can
be automatically divided by connecting the M bisectors on
the opposite sides of the finite element method mesh. Thus,
one finite element coarse mesh contains M2 finite volume
fine meshes.

According to the improved finite element method [26],
for the balance equation (23), the finite element method is
used to discretize the space domain on the coarse grid, and
the following can be obtained:

K½ � ΔμNf g − Kvf gPavg = Fdf g − Rdf g, ð27Þ

where fΔμNg is the node displacement increment of coarse
mesh element. ½K� is the stiffness matrix. fKvg is the volume
strain stiffness matrix,

Pavg =
1
m2 · 〠

m2

j=1
Pd,j ð28Þ

is the average excess pore pressure of coarse mesh
elements, where Pd is the excess pore pressure of fine mesh
elements. fFdg is the load item, fRdg =

Ð
V ½B�

Tðfσ′gt −
fσ′gt=0ÞdV is the increment of effective stress relative to
the initial state.
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Table 2: Two-dimensional consolidation calculation parameters.

Modulus of
elasticity, E/GPa

Poisson’s
ratio, v

Void
ratio, e

Permeability,
k/Darcy

Fluid
density,

ρf/103kg•m-3

Fluid
viscosity,
μ/10-3 pa•s

Uniformly
distributed
load, T/MPa

Calculation
area

length, L/m

Calculation
area

height, H/m

20 0.25 0.5 0.1 1.0 1.0 20 10 4
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For the seepage equation, the finite volume method is
used to discretize the space domain on the fine grid, and
the following can be obtained:

KVf gT N½ � _μNf g + A _pd − αpd + 〠
4

i=1
αipdi = 0, ð29Þ

where ½N� is a matrix composed of finite element normal
shape function and the node displacement vector of fine
mesh is obtained by interpolating the node displacement
vector of coarse mesh.

A =
ð
V
ϕCdV ð30Þ

is a coupling term.

αi =
�k
μ

byisxi + bxisyi
s2i

� �
ð31Þ

is the flow terms related to the cell shape, where bxi and byi
are the projection length of the adjacent edges of two adja-
cent cells in the horizontal and vertical directions, the pro-
jection length of the centroid line of two adjacent cells in
the horizontal and vertical directions, sxi and syi are the
length of the centroid line of two adjacent cells, and Si is
the harmonic average of the permeability of two adjacent
cells.

�k = 2
1/k1ð Þ + 1/k2ð Þ ð32Þ

is the excess pore pressure of the former unit,

α = 〠
4

i=1
αi: ð33Þ

pdi is the excess pore pressure of adjacent element i.

6. Simulation Case Analysis

6.1. Terzaghi One-Dimensional Consolidation Problem. The
improved coupling method is used to calculate Terzaghi’s
one-dimensional elastic consolidation problem to verify the

accuracy of this algorithm. The calculation model used is
shown in Figure 2. The width of the calculation model is
5m, and the height is 10m. The top of the model is a drain-
age boundary; the other boundaries are not drained; the
bottom is a zero displacement boundary; and the side dis-
placement is constrained in the horizontal direction. When
the vertically uniformly distributed load is applied on the
top of the model, excess pore pressure will be generated
inside the model. With the gradual dissipation of the excess
pore pressure in the soil, the effective stress and vertical set-
tlement displacement in the whole calculation area will grad-
ually increase. When the excess pore pressure is completely
dissipated, the settlement will reach the maximum.

For this one-dimensional consolidation problem, this
method adopts different fineness densities for the finite
element mesh of stress balance calculation and the finite vol-
ume mesh of pore fluid seepage calculation, as shown in
Figure 3. The coarse mesh on the left is the mesh used for
finite element method discretization, and the fine mesh on
the right is the mesh used for finite volume method discreti-
zation. The parameters used in the calculation example are
shown in Table 1.

Figures 4 and 5 , respectively, show the comparison
between the numerical results and theoretical solutions of
vertical displacement and pore pressure. It can be seen that
the scattered data can be well-fitted with the theoretical solu-
tion, and the numerical value and change trend are relatively
consistent. The calculation results of this method are in good
agreement with the theoretical solution of Terzaghi’s one-
dimensional consolidation problem, which verifies the accu-
racy of this algorithm.

6.2. Mandel’s Two-Dimensional Consolidation Problem.
Mandel’s two-dimensional consolidation problem considers
the porous medium sandwiched between two smooth (non-
frictional resistance), impermeable, and infinite rigid plates.
Both sides are permeable boundaries, and the rest are
impermeable boundaries. Apply 2F load on two plates,
respectively, and consider the settlement of porous media.
As shown in Figure 6, due to the symmetry of the model
and the symmetry of the boundary conditions, only 1/4 of
the model needs to be taken as the calculation area for
research, and the calculation parameters used are shown in
Table 2. Figures 7 and 8 show the numerical results and
theoretical solutions of vertical and horizontal displacement
of Mandel’s two-dimensional problem. It can be seen that

Table 3: Calculation parameters of two-dimensional uncoupled single-phase fluid well.

Stratum
Modulus of

elasticity, E/GPa
Poisson’s
ratio, v

Void
ratio, e

Permeability,
k/Darcy

The density of
solid materials,
ρ/103kg•m-3

Fluid viscosity,
μ/10-3 pa•s

Fluid density,
ρ/103kg•m-3

Storage layer 1 10 0.32 0.25 0.005 1.69 10 0.92

Nonstorage layer 2 48 0.30 2.25 0 2.02

Nonstorage layer 3 44 0.26 0.25 0 2.12

Nonstorage layer 4 40 0.26 0.25 0 2.02

Nonstorage layer 5 26 0.30 0.25 0 1.66

Nonstorage layer 6 22 0.30 0.25 0 1.66
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although there are some errors between the numerical calcu-
lation results and the theoretical solution at the moment of
applying the load, with the advance of time, the numerical
calculation results are in good agreement with the theoret-
ical solution, which further verifies the accuracy of this
algorithm.

6.3. Calculation of Two-Dimensional Uncoupled Single-Phase
Fluid Well. The model of the two-dimensional uncoupled
single-phase fluid well calculation problem is shown in
Figure 9. The calculation area is 2000m long and 1500m
deep and is divided into six layers of rock strata from the
surface down. The reservoir is located 1000m underground
with a thickness of 50m, belonging to an anticline trap.
The production well is located in the middle of the reservoir
and is exploited at constant pressure with a bottom hole
pressure of 3.5MPa. Because the fluid flow in the nonreser-
voir area is not considered, only the finite element mesh is
given, and the finer finite volume method mesh is used for
the reservoir area. The specific parameters of each layer in
the model are shown in Table 3.

The model used in the calculation is shown in Figure 10.
Figures 11 and 12 show the numerical simulation results of
daily production and cumulative production of production
wells, respectively. In the figures, q is the daily output, Q is
the cumulative output as of that day, and Q800 is the cumu-
lative output of the 800th day without considering the seep-
age stress coupling. It can be seen that after considering the
seepage stress coupling effect, the daily output of the reser-
voir will decline faster in the early stage of production than
when the seepage stress coupling effect is not considered
and will enter the stable production stage earlier. The cumu-
lative production curve is also significantly lower than that
without considering the seepage stress coupling effect.

6.4. Fluid Density Calculation of Three-Dimensional Two-
Phase Coupled Five-Point Well Pattern. Using the improved
finite element method in this paper, the seepage stress
coupling numerical simulation of a three-dimensional two-
phase flow five-point well pattern production problem is
carried out. Due to the symmetry of the five-point well pat-
tern production problem model, only 1/4 of its area needs to
be modeled and calculated. The whole calculation area is
1000m long, 1000m wide, and 1200m deep. The stratum
is divided into four layers, of which the reservoir is 800m
underground and 100m thick. The initial porosity of the res-
ervoir rock is 0.2, the initial permeability is 0.3 Darcy, the
initial pore pressure is 12MPa, and the initial oil saturation
is 0.8. The 1/4 area of the five-point well pattern problem is
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Figure 11: Influence of coupling effect on numerical calculation
results of daily output.
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Figure 12: Influence of coupling effect on numerical calculation
results of cumulative production.
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Figure 10: Three-dimensional two-phase coupled five-point well
pattern calculation model.
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exploited in the way of one injection and one production.
Injection wells and production wells are arranged at two
diagonally opposite corners of the reservoir area. The injec-
tion wells are injected at a constant pressure of 12MPa, and
the production wells are produced at a constant pressure of
9MPa. A total of 20,000 days of production simulation has
been carried out.

The influence of the seepage stress coupling effect on the
calculation results of the oil production rate and water
production rate is shown in Figure 11. Figure 12 shows the
influence of the seepage stress coupling effect on the calcula-
tion results of cumulative oil production and cumulative

water production. After considering the seepage stress cou-
pling effect, the daily production and cumulative production
of oil and water in production wells are significantly lower
than that without seepage stress coupling. It can be seen that
after considering the seepage stress coupling effect, the reser-
voir grid permeability decreases slightly near the injection
well but greatly near the production well. At 20000 days of
production, the permeability near the reservoir injection well
decreases to 95% of the initial value, and the permeability
near the production well decreases to 86% of the initial
value. With the progress of production, the unit permeability
in the whole reservoir is gradually decreasing, which is the
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Figure 13: Effect of seepage stress coupling on oil production rate and water production rate.
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reason why the daily production and cumulative production
ratio in Figures 13 and 14 are significantly reduced when the
seepage stress coupling effect is not considered.

7. Conclusion

Based on the theory of seepage mechanics and rock mechan-
ics, this paper establishes a coupling analysis model of mul-
tiphase seepage and stress in the reservoir and uses finite
element and finite difference methods to establish a numer-
ical solution, which can study the evolution law of seepage
field and stress field and the change of rock mechanics
parameters and focuses on the readjustment of rock stress
distribution and its deformation characteristics under the
influence of seepage field.

(1) Based on the theory of continuum mechanics, the
mechanism of tectonic stress displacement is ana-
lyzed, and the rationality of taking the average stress
in porous media as the coupling between the solid
skeleton and pore fluid is expounded

(2) The accuracy and effectiveness of this method are ver-
ified by using the finite element numerical simulation
method. Examples of the Terzaghi one-dimensional
consolidation problem and Mandel two-dimensional
consolidation problemwith theoretical analytical solu-
tions are calculated, respectively, and the numerical
results are in good agreement with the analytical
solutions

(3) The calculation of two-dimensional single-phase
flow single well constant pressure production and
three-dimensional two-phase flow five-point well
pattern production shows that the daily production
and cumulative production of production wells with
seepage stress coupling are significantly lower than
those without coupling. When considering the cou-
pling of seepage and stress, the unit permeability in
the whole reservoir is gradually decreasing with the
progress of production. The permeability decreases
slightly near the injection well and greatly near the
production well
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