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With the thermo-hydro-mechanical coupling process considered, this paper derives a set of analytical porothermoelastic solutions
to field variables including the stress, displacement, and pore pressure fields to evaluate the wellbore stability around a vertical
borehole drilled through an isotropic porous rock. The thermal effect on the wellbore stability of the low-permeability saturated
rock also introduces the thermal osmosis term. The wellbore problem is decomposed into axisymmetric and deviatoric loading
cases considering the borehole subjected to a nonhydrostatic stress field. It obtains the time-dependent distributions of field
variables by performing the inversion technique for Laplace transforms to the porothermoelastic solutions in the Laplace
domain. The results suggest that the thermal osmosis effect should not be neglected on the premise that a lower permeability
porous rock is characterized by the substantially large thermal osmotic coefficient and the small thermal diffusivity values. The
case that the thermal osmosis effect reduces the undrained loading effect leads to the decrease of the mean shear stress that is
determined by the effective maximum and minimum stress around a borehole, since, and accordingly contributes to the
wellbore stability to resist the shear failure.

1. Introduction

When the deep-water and unconventional oil and gas
resources are drilled in the high-temperature and high-
pressure (HTHP) block, drilling a borehole experiences a
large temperature difference between the drilling mud and
formation fluid. The coupled thermo-hydraulic-mechanical
(THM) effect of fluid-saturated porous media inevitably
implicates time-dependent wellbore instability issues, since
the thermal loading progressively reestablishes the induced
stresses and pore pressure around a wellbore [1–23]. More-
over, the poroelastic effect associated with undrained loading
[24, 25] also contributes to the remodifications of field vari-
ables after instantaneously drilling a borehole, especially for
low-permeability porous medium.

Detournay and Cheng [24] adopted the field variables
including displacement, stress, and pore pressure around a
borehole to discuss the coupled hydromechanical effect.
Three different modes are used to obtain the complete solu-

tion of field variables. Mode 1 is a classical elastic case and
not related to the coupled issue. The content of mode 2 is
purely pressure radial (or axisymmetric) diffusion around a
borehole and is attributed to the partially coupled process.
It means that the pore pressure induces the occurrence of
stresses and displacement whereas the opposite process does
not take place. Mode 3 is a fully coupled process. The pore
pressure perturbation leads to the induced stresses and solid
displacements; accordingly, the stress perturbation also
induces a pore pressure built-up regime near the borehole
wall due to the undrained loading. The undrained loading
gives rise to the occurrence of the excess pore pressure case
for low-permeability porous rock. This is because that the
pore fluid is not allowed to have enough time to escape the
current pore space delimited by the solid pore wall, when
the undrained loading is quickly applied to the porous rock.
The pore fluid naturally suffers the undrained loading effect
and causes an excess pore pressure to generate in the pore-
space. It refers the excess pore pressure case to as an
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undrained state subjected by the low-permeability porous
rock. This phenomenon exactly explains the poroelastic
effect to embody the coupled solid deformation and fluid
flow in the porous medium.

The thermal effect introduced by the coupled THM pro-
cess is embodied in the radial diffusion problem and induces
pore pressure and stresses around a wellbore. That is to say,
the thermal effect alone appears in a developed mode 2 that
differs from the aforementioned study of Detournay and
Cheng [24] and renders the pore pressure diffusion to
depend on the temperature variation [1–23]. Besides, the
thermal osmosis effect is observed by conducting the exper-
iment [26–31] or discussed in studies [6–8, 19–23].

Thermal osmosis effect accounts for the contribution
of temperature gradient on the fluid flux and becomes sig-
nificant for expected temperature gradients in the case of
the clay barriers of waste disposal with extremely low
hydraulic conductivity (10-10 and 10-14m/s) [6, 29]. The
thermal osmosis effect resembles the Sorêt effect in a
chemical solution that causes a chemical flux proportional
to the temperature gradient [2]. Besides, the indirect ther-
mal osmosis flow may significantly contribute to mass
transfer induced in semi-impermeable clays compared to
the direct Darcian flow [28]. The studies [19–23] further
support the viewpoint of Ghassemi and Diek [8]. Namely,
a case associated with a substantially large thermoosmotic
coefficient and a larger temperature gradient significantly
facilitates the thermal osmosis effect to modify the change
in pore pressure near a borehole. Both positive and nega-
tive values of the thermal osmosis coefficient KT are pos-
sibly observed in rocks [26]. In the case of KT < 0, the
osmotic flow direction is from warmer to cooler, while
in the case of KT > 0, the flow is from cooler to warmer
[31]. Nevertheless, the flow in both directions in labora-
tory tests is using compacted clays [27]. The absolute
value of thermal osmotic coefficient KT ranges from
10−14 to 10−10m2/(s·K) for different porous media [30].

Several relevant studies [2, 6, 7, 9, 10, 15, 16] neglected
the nonlinear convective heat transfer term that couples
temperature with pore pressure to obtain the engineering-
oriented analytical linear-porothermoelastic solutions.
However, this partially decoupled operation alone holds for
low-permeability rocks [9]. Besides, the abovementioned
porothermoelastic analytical solutions neglect the thermal
osmosis effect [3–5, 10–16].

The present paper newly formulates coupled porother-
moelastic solution with thermal osmosis for a vertical bore-
hole in a nonhydrostatic stress field. Accordingly, the results
from this paper could provide theoretical guidance for effec-
tively dealing with the complicated issues during drilling
through the low permeability and low porosity formation.

2. General Formulations

The governing equations in the present model are presented
as follows.

2.1. Constitutive Equations. Introducing the thermal effect
into the work of Detournay and Cheng [32] or extending

the study of Zimmerman [33], the constitutive Equations
(1) and (2) take the following forms to accurately show the
coupled thermo-hydro-mechanical behavior when the iso-
tropic fluid saturated porous medium deforms in the elastic
state. Besides, the constitutive Equations (1) and (2) are writ-
ten as that the positive stress denotes compression in line
with the rock mechanics convention.

σij = 2Gεij + λε + αpδij + βsTδij, ð1Þ

ζ = −αε +
p
M

− βf sT: ð2Þ

The abovementioned equations include total stresses
tensor σij, pore pressure p, temperature variations T ,
strain tensor for the solid rock εij, volumetric strain ε =
εii, and the variation of fluid content per unit reference
volume ζ. The material constants include drained Pois-
son’s ratio v, rock shear modulus G, and the Lame con-
stant λ defined by λ = 2Gv/ð1 − 2vÞ. δij is the Kronecker
delta. Besides, Biot coefficient α and modulus M are writ-
ten as follows:

α = 1 −
K
Ks

,
1
M

=
α − ϕ

Ks
+

ϕ

K f
, ð3Þ

where the rock bulk modulus K is defined by 3K = 2Gð1
+ vÞ/ð1 − 2vÞ. Ks and Kf are the bulk modulus of solid
grain and fluid, respectively. ϕ is rock intrinsic porosity.

The thermic coefficients related to solid skeleton βs and
solid-fluid βf s are read as follows [11]:

βs = 3Kαs,

βf s = 3ααs + ϕ αf − 3αs
� �

,
ð4Þ

where the symbols αs and αf are the linear expansion coeffi-
cient for solid matrix and volumetric expansion coefficient
for fluid, respectively.

2.2. Field Equations. In the case of the infinitely long bore-
hole and constant boundary condition along the borehole
axis direction, both fluid and heat flux components will dis-
appear along the direction of the borehole axis [11]. With
Equation (2) and thermal osmosis term considered into fluid
flux [8], the fluid diffusive equation for weakly compressive
and thermally expansible fluid reads as follows:

1
M

∂p
∂t

− α
∂ε
∂t

− βf s ∂T
∂t

− κ∇2p + KT∇2T = 0, ð5Þ

where the permeability coefficient κ is expressed as κ = k/μ in
which k is the intrinsic permeability tensor and μ is the fluid
viscosity. KT denotes the thermal osmosis coefficient. The
linear differential operator ∇2 is written as follows:
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∇2 =
1
r
∂
∂r

r
∂
∂r

� �
+

∂2

r2∂θ2
: ð6Þ

Provided that the assumption of instantaneous local
temperature equilibrium holds, the heat diffusive field equa-
tion takes the form of Wang and Papamichos [4]:

ρmcm
∂T
∂t

− kT∇2T = 0, ð7Þ

where ρm and cm, respectively, denote the total mass density
and specific heat capacity, and kT is the thermal conductivity
of porous rock. It holds that the effect of the strain and pore
pressure on the temperature is commonly ignored [23, 33]
considering the strain and coupled parameters with much
smaller values. Gao et al. [19] concluded that the thermal fil-
tration effect depending on the pressure gradient Equation
(6) has a weak influence on the temperature diffusion, such
that it is also ignored.

3. Borehole Problem Description and
the Solution

3.1. Borehole Problem Description. A circular vertical bore-
hole is drilled in a porous rock formation subjected to a non-
hydrostatic horizontal in situ stress field; see Figure 1. It is
assumed that one of the three in situ principal stresses is par-
allel to the borehole axis, and x - and y -axes correspond to
the directions of two other in situ principal stresses.

It follows that the total stresses acting on a circular
boundary are given by the following:

σr = σm + σd cos 2θ,

σθ = σm − σd cos 2θ,

τrθ = −σd sin 2θ,

ð8Þ

with the mean stress σm and shear stress σd are, respectively,
defined by σm = ðσH + σhÞ/2 and σd = ðσH − σhÞ/2, in which
the symbols σH and σh, respectively, are the maximum and
minimum horizontal in situ stress.

The generalized plane strain assumption may be appro-
priate to extrapolate the solutions under a two-dimensional
case to a general three-dimensional one, assuming that the
geomechanics is characterized by geometries in which
boundary conditions are constant along the direction of
the infinitely long borehole axis [11]. In line with the loading
decomposition scheme proposed by Abousleiman and Cui
[34], this problem is disassembled into two separate resolved
subproblems, since the antiplane shear stresses disappear in
a vertical borehole. Two subproblems include a modified
poroelastic plane strain problem (Problem I) and an elastic
unaxial problem (Problem II). Finally, the principle of
superposition to consider the linearity problem is employed
to obtain the complete solutions.

3.2. Solution to Modified Poroelastic Plane Stain Problem.
The boundary conditions including stress components, pore

pressure, and temperature acting at borehole wall after
instant drilling are described as for Problem I:

Δσrjr=rw = pw − σm + σd cos 2θ½ �, ð9aÞ

Δτrθjr=rw = σd sin 2θ, ð9bÞ

Δpjr=rw = pw − p0, ð9cÞ

ΔTjr=rw = Tw − T0, ð9dÞ

where pw is the wellbore pressure. Tw and T0, respectively,
are the wellbore fluid temperature and the formation
temperature.

Furthermore, two separate boundary conditions at the
borehole wall for each of the loading modes may be defined
as follows, respectively.

(i) Axisymmetric loading:

Δσ að Þ
r

���
r=rw

= pw − σm, ð10aÞ

Δτ
að Þ
rθ

���
r=rw

= 0, ð10bÞ

Δp að Þ
���
r=rw

= pw − p0, ð10cÞ

ΔTjr=rw = Tw − T0: ð10dÞ

(ii) Deviatoric loading:

Δσ dð Þ
r

���
r=rw

= −σd cos 2θ, ð11aÞ

Δτ
dð Þ
rθ

���
r=rw

= σd sin 2θ, ð11bÞ

Δp dð Þ
���
r=rw

= 0: ð11cÞ

The boundary conditions of this problem imposed at the
far field, i.e., r⟶∞, are expressed as follows:

𝜎𝜃

𝜎r

𝜎x =�𝜎m – 𝜎d

𝜎y�=�𝜎m�+�𝜎d

𝜏r𝜃

y

x

𝜃 = 0°

𝜃 = 90°

Figure 1: Schematic of borehole stress analysis.
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σr = σm + σd cos 2θ,

τrθ = −σd sin 2θ,

σz = 2vσm + 1 − 2vð Þ αp0 + βsT0ð Þ,
p = p0,

T = T0:

ð12Þ

Introducing the rotation of displacement field ω, the
equilibrium equation (σij′j = 0, i, j ∈ ðr, θÞ) is written in
terms of volumetric strain ε(ε = εr + εθ), variation of fluid
content ζ, and temperature T :

λ + 2G + α2M
À Á ∂ε

∂r
− G

1
r
∂ω
∂θ

+ αM
∂ζ
∂r

+ βs + αMβsf
� � ∂T

∂r
= 0,

ð13Þ

λ + 2G + α2M
À Á 1

r
∂ε
∂θ

+G
∂ω
∂r

+ αM
1
r
∂ζ
∂θ

+ βs + αMβsf
� � 1

r
∂T
∂θ

= 0,
ð14Þ

where ε and ω, respectively, are defined by the following:

ε =
1
r
∂
∂r

rurð Þ + ∂uθ
r∂θ

, ð15Þ

ω = −
1
r
∂ur
∂θ

+ ∂
r∂r

ruθð Þ: ð16Þ

Furthermore, the diffusive equation in terms of the vari-
ation of fluid content ζ is written as an alternative form,
through combining Equations (2) and (5) with the trans-
forms to Equations (13) and (14).

∂ζ
∂t

− c∗∇2 ζ + �c∗ −
KT

c∗

� �
T

� �
= 0, ð17Þ

where

c∗ =
κM λ + 2Gð Þ

α2M + λ + 2Gð Þ ,

�c∗ = βf s −
αβs

λ + 2G
:

ð18Þ

The boundary conditions in Equations ((10a)), ((10b)),
((10c)), and ((10d)) and ((11a)), ((11b)), and ((11c)) suggest
the dependence of the displacement, stress, pore pressure,
and temperature upon the polar angle could be sought of
which has the following form [35]:

~ζ, ~ε, ~ur , ~σr , ~σθ, ~p, ~T
� �

= ~Z, ~Ξ, ~Ur , ~Sr , ~Sθ, ~P, ~Η
� �

cos mθ,

ð19aÞ

~ω, ~uθ, ~τrθð Þ = ~W, ~Uθ, ~Srθ
� �

sin mθ, ð19bÞ

with m = 0 for axisymmetric loading and m = 2 for deviato-
ric loading. ~Z, ~Ξ, ~Ur , ~Uθ, ~Sr , ~Sθ, ~Srθ, ~P, ~W, and ~Η are the
functions of time t and radial distance r only. Besides, the
sign“~” represents the Laplace integral transforms with
respect to t and is defined by the following:

~f r, sð Þ =
ð∞
0
f r, tð Þ e−stdt, ð20Þ

where s is a parameter for the Laplace transform.

3.2.1. Solutions to Axisymmetric Loading

(1) Solution for Temperature. Under axis-symmetric thermal
loading, Equation (8) is solved by the following initial and
boundary conditions in the Laplace transformed forms:

~T
að Þ

rw, tð Þ
Tm − T0

=
1
s
 

~T
að Þ

r, 0ð Þ
Tm − T0

= 0 
~T

að Þ ∞,tð Þ
Tm − T0

= 0, ð21Þ

and therefore reads as follows:

~T
að Þ =m0 sð Þ K0 ξTð Þ

K0 βTð Þ , ð22Þ

where

m0 sð Þ = Tm − T0
s

,

βT = rw

ffiffiffiffiffiffi
s
ch
,

r

ξT = r
ffiffiffiffi
s
ch

r
,

ch =
kT

ρmcm
:

ð23Þ

KnðxrÞ is the modified Bessel function of the second kind of
order “n”.

(2) Solutions for Pore Pressure, Radial Displacement, and
Stresses. Taking into consideration of Equation (2), a simpli-
fied uncoupled pore pressure diffusion expression could be
written as Equation (24) when the assumption that displace-
ment field is irrotational in semi-infinite domain holds the
following:

∂p
∂t

− c∗ ∇2
r p +

1
κ

�c∗
∂T
∂t

− KT∇2
r T

� �� �
= 0, ð24Þ

in which

∇2
r =

1
r
∂
∂r

r
∂
∂r

� �
: ð25Þ
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Equation (24) may be solved by the following Laplace
transformed initial and boundary conditions:

~p rw, tð Þ
pw − p0

=
1
s
 

~p r, 0ð Þ
pw − p0

= 0 
~p ∞,tð Þ
pw − p0

= 0, ð26Þ

and thus, the solution of the pore pressure in the Laplace
domain reads under axis-symmetric loading

~P
að Þ =

pw − p0
s

K0 ξð Þ
K0 βð Þ −

c∗

κ

�
�c∗cT − KT

cT − c∗
m0 sð Þ

Á K0 ξð Þ
K0 βð Þ −

K0 ξTð Þ
K0 βTð Þ

� ��
,

ð27Þ

where

ξ = r

ffiffiffiffiffiffi
s
c∗

,
r

β = rw

ffiffiffiffi
s
c∗

r
:

ð28Þ

One combines Equation (1) with Equation (15) and
takes into consideration the Laplace transformed boundary
condition (Equation (10a)), and thus, the radial displace-
ment and stresses for axisymmetric loading are given as fol-
lows:

2G~u að Þ
r

rw
=
1 − 2v
1 − v

�
n0 sð Þ K1 ξð Þ

βK0 βð Þ −
rw
r

K1 βð Þ
βK0 βð Þ

� �

+ n1 sð Þ K1 ξTð Þ
βTK0 βTð Þ −

rw
r

K1 βTð Þ
βTK0 βTð Þ

� ��

−
pw − σm

s
rw
r
,

ð29aÞ

~σ að Þ
r = −

1 − 2v
1 − v

�
n0 sð Þ rw

r
K1 ξð Þ
βK0 βð Þ −

r2w
r2

K1 βð Þ
βK0 βð Þ

� �

+ n1 sð Þ rw
r

K1 ξTð Þ
βTK0 βTð Þ −

r2w
r2

K1 βTð Þ
βTK0 βTð Þ

� ��

+
pw − σm

s
r2w
r2

,

ð29bÞ

~σ
að Þ
θ =

1 − 2v
1 − v

�
n0 sð Þ rw

r
K1 ξð Þ
βK0 βð Þ −

r2w
r2

K1 βð Þ
βK0 βð Þ +

K0 ξð Þ
K0 βð Þ

� �

+ n1 sð Þ rw
r

K1 ξTð Þ
βTK0 βTð Þ −

r2w
r2

K1 βTð Þ
βTK0 βTð Þ +

K0 ξTð Þ
K0 βTð Þ

� ��

−
pw − σm

s
r2w
r2

,

ð29cÞ
where

n0 sð Þ = α
pw − p0

s
−
c∗

κ

�c∗cT − KT

cT − c∗
m0 sð Þ

� �
, ð30aÞ

n1 sð Þ =m0 sð Þ c∗

κ

�c∗cT − KT

cT − c∗
α + βs

� �
: ð30bÞ

3.2.2. Solutions for Pore Pressure, Stresses, and Displacements
under Deviatoric Loading. Considering Equation (18), the
transforms to Equations (13), (14), and (17) while omitting
the terms related to thermal effect result in the following
equations in the Laplace transform domain:

χ
~Ξ

r
−
1
4
d ~W
dr

+
αM
2G

~Z
r
= 0, ð31aÞ

r2
d2

dr2
+ r

d
dr

− 4
 !

~W = 0, ð31bÞ

r2
d2

dr2
+ r

d
dr

−
s
c∗
r2 + 4

� �" #
~Z = 0, ð31cÞ

in which χ = ð1/2GÞðλ + 2G + α2MÞ. Meanwhile, Equations
(15) and (16) can degenerate to a nonhomogeneous linear
differential equation set of order 2 with respect to constant
coefficient.

d
rdr

r ~U
dð Þ
r

� �
+ 2

~U
dð Þ
θ

r
= ~Ξ, ð32Þ

d
rdr

r ~U
dð Þ
θ

� �
+ 2

~U
dð Þ
r

r
= ~W: ð33Þ

Noted that the solution regarding Equations (31a), (31b),
and (31c)–(33) should remain to be bounded for vanishing
~Z, ~W, ~U

ðdÞ
r , and ~U

ðdÞ
θ at infinite boundaries.

After some manipulation, the solutions to displacement
components, pore pressure, and stresses for deviatoric load-
ing may be deduced from Equations (31a), (31b), and
(31c)–(33) while considering the Laplace transformed
boundary condition Equations (11a)–(11c).

2Gs~U dð Þ
r

σdrw
=
C1
β

K1 ξð Þ + 2
ξ
K2 ξð Þ

� �
− C2

rw
2r

− C3
rw
r

� �3
ð34aÞ

2Gs~U dð Þ
θ

σdrw
= 2C1

β2
rw
r
K2 ξð Þ + C2

1
2χ

rw
2r

− C3
rw
r

� �3 ð34bÞ

−
s~P

dð Þ

σd
=

1 − v
1 − 2v

C1K2 ξð Þ + αM
4Gχ

C2
rw
r

� �2 ð34cÞ

s~S
dð Þ
r

σd
= C1

1
ξ
K1 ξð Þ + 6

ξ2
K2 ξð Þ

� �

−
1

2 1 − ψð ÞC2
rw
r

� �2
− 3C3

rw
r

� �4 ð34dÞ
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s~S
dð Þ
θ

σd
= −C1

1
ξ
K1 ξð Þ + 1 +

6
ξ2

� �
K2 ξð Þ

� �
+ 3C3

rw
r

� �4 ð34eÞ

s~S
dð Þ
rθ

σd
= 2C1

1
ξ
K1 ξð Þ + 3

ξ2
K2 ξð Þ

� �
−

1
4 1 − ψð ÞC2

rw
r

� �2
− C3

rw
r

� �4
ð34fÞ

where

C1 = −
4β ψ − vð Þ
D2 −D1ð Þ ð35aÞ

C2 =
8 1 − ψð ÞD2
D2 −D1

, ð35bÞ

C3 = −
β D2 +D1ð Þ + 8 ψ − vð ÞK2 βð Þ

β D2 −D1ð Þ ð35cÞ

D1 = 2 ψ − vð ÞK1 βð Þ ð35dÞ

D2 = β 1 − vð ÞK2 βð Þ ð35eÞ

with ξ3 = r
ffiffiffiffiffiffiffiffi
s/c∗

p
, β3 = rw

ffiffiffiffiffiffiffiffi
s/c∗

p
, and ψ = ð1 − χÞ/ð1 − 2χÞ:

When the relationship between shear strain and displace-
ment defined by γrθ = ð1/rÞðð∂ur/∂θÞ + ð∂uθ/∂rÞ − ðuθ/rÞÞ
and ω = ð−1/rÞðð∂ur/∂θÞ + ð∂/r∂rÞðruθÞÞ is adopted, it could
be observed that the field variables in Equations ((29a)),
((29b)), ((29c)), ((34a)), ((34b)), ((34c)), ((34d)), ((34e)), and
((34f)) and the introduced transition variables in Equations
(35a), (35b), (35c), (35d), and (35e) share the same fundamen-
tal expressions, excluding the negative sign appearing in the
expressions of pore pressure compared to the one in the study
of Detournay and Cheng [22]. The latter prescribes that the
tension is positive. That is to say, the approach that Cui et al.
[36] dealt with the whole variables with the negative sign to
the corresponding formulas [37] is not appropriate.

The stress components in the time domain could be
completed in favor of the numerical algorithm associated
with the inversion technique for Laplace transforms offered
by Stehfest [38], which has been adopted extensively in
petroleum engineering.

Thus, the axial stress reads under plane strain condition

~σIz = v 2
σm
s

+ ~σ að Þ
r + ~σ dð Þ

r + ~σ
að Þ
θ + ~σ

dð Þ
θ

� �
+ 1 − 2vð Þ α

p0
s
+ ~p að Þ + ~p dð Þ

� �
+ βs T0

s
+ ~T

að Þ
� �� �

:

ð36Þ

3.3. Solution to the Elastic Uniaxial Stress Problem. This
problem is purely elastic, and no time-dependent pore pres-
sure and stresses are generated [35], and hence, the solution
is only related to axial stress and reads as follows:

σIIz = σv − 2vσm − 1 − 2vð Þ αp0 + βsT0ð Þ: ð37Þ

Ultimately, the complete porothermoelastic solutions for
stresses, pore pressure, and temperature around a pressur-
ized vertical borehole are obtained on the condition that
positive stress denotes compression

σr = σm + σd cos 2θ + σ að Þ
r + σ dð Þ

r , ð38aÞ

σθ = σm − σd cos 2θ + σ
að Þ
θ + σ

dð Þ
θ , ð38bÞ

σz = σIzz + σIIzz , ð38cÞ

τrθ = −σd sin 2θ + σ
dð Þ
rθ , ð38dÞ

p = p0 + p að Þ + p dð Þ, ð38eÞ

T = T0 + T að Þ: ð38fÞ

4. Numerical Results and Discussions

The input parameters for modeling results are listed in
Table 1. Assign the temperature difference between mud
Tm and formation T0 to ΔT = 25 ° C (heating) and ΔT = −
25 ° C (cooling), respectively.

4.1. Sensitivity Analysis. This subsection conducts the sensi-
tivity analysis of remarkable influencing factors including
thermal osmosis coefficient KT, thermal diffusivity ch, and
permeability coefficient κ on induced pore pressure.

Figures 2 and 3 show the induced pore pressure distribu-
tions where porothermoelastic osmosis solution, porother-
moelastic, and pure poroelastic models occur at 10-4day.

The undrained loading effect reflects the short-term
behavior of low-permeability rock and is induced by devia-
toric stress [24, 25]. For the pure poroelastic model [24]
(see Figure 3(c)), the undrained loading effect does increase
the pore pressure in regions near the wellbore wall.

As shown from Figure 2(a), in line with the common
porothermoelastic (THM) model [11], heating the wellbore
generates an increased pore pressure in regions near the
borehole wall for smaller time intervals t = 10−4day, since
the thermal expansion of fluid is higher than that of the solid
skeleton but the extremely low permeability of rock restricts
the excess pore pressure to immediately dissipate. However,
the present results suggest that heating (negative tempera-
ture gradient ΔT < 0) does not always further guarantee a
pore pressure building up. The reduced pore pressure asso-
ciated with porothermoelastic osmosis (THMO) solution is
attributed to the weakened phenomenon of the undrained
loading effect by the thermal osmosis effect. This weaken
phenomenon occurs where the thermal osmotic coefficient
KT is significantly large, and signs of KT and temperature
gradient ΔT share the opposite form, for example, KT > 0
and ΔT < 0. This special case produces a backflow to pull
the fluid out of formation and even exceedingly dehydrates
rock [8]. Naturally, the lower pore pressure fortifies the
effective stresses and then increases the rock strength to
failure and therefore culminates in better condition to
stabilize wellbore.
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Table 1: List of input data ([8, 11, 39]).

Parameters Value Units

In situ conditions

Overburden stress (σv) 29 kPa/m

Maximum horizontal in situ stress (σH) 25 kPa/m

Minimum horizontal in situ stress (σh) 20 kPa/m

Formation pore pressure (p0) 9.8 kPa/m

Wellbore conditions

Well depth (true vertical depth) 1000 m

Wellbore radius (rw) 0.1 m

Formation pore pressure (pw) 12 kPa/m

Material parameters

Elastic modulus (E) 9.474 GPa

Possion’s ratio (v) 0.24

Grain bulk modulus (Ks) 27.5 GPa

Grain bulk modulus (Kf ) 2.15 GPa

Permeability coefficient (κ) 5:0 × 10‐9, 5:0 × 10‐10, 5:0 × 10‐11 m2/ MPa ⋅ sð Þ
Reference porosity (ϕ) 0.14

Linear expansion coefficient for solid skeleton (αs) 6:0 × 10‐6 1/K

Volumetric expansion coefficient for pore fluid (αf ) 3:0 × 10‐4 1/K

Thermal diffusivity (ch) 7:15 × 10‐7/1:6 × 10‐6 m2/s

Thermal osmotic coefficient (KT ) 1 × 10‐10, 1 × 10‐11, 1 × 10‐12, 1 × 10‐13 m2/ s ⋅ Kð Þ
Cohesion of rock (C) 10 MPa

Internal friction angle (φ) 20 Degree
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Figure 2: Induced pore pressure varying with r/rw at θ = 90 ° wherein different conditions are prescribed.
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The intensifying case (see Figure 2(b)) is stipulated as the
same sign for cooling (positive temperature gradient ΔT > 0)
and the significantly large thermal osmosis coefficient KT > 0.
The intensifying case causes drilling fluid water in mud to
flow into the formation. The increased pore pressure associ-
ated with this intensifying case reduces effective stresses and
thus decreases the rock strength to failure. It deteriorates the
wellbore stability. The previous investigator, i.e., Ghassemi
and Diek [8], likewise testified the similar view that the ther-
mal osmosis effect enhances or reduces the chemical osmosis
effect that rests upon the sign between thermal osmotic coeffi-
cient and temperature gradient, and the magnitude of thermal
osmotic coefficient as well. Besides, in the case of a consider-
ably small thermal osmosis coefficient, the induced pore
pressures share the approximatively identical significance
compared THMO model with the THM one. Therefore, it is
appropriate for neglecting the thermal osmosis effect.

When the same thermal osmotic coefficient is pre-
scribed, the thermal osmosis effect enhancing the undrained
loading effect is more significant for the rock characterized
by the less value that of thermal diffusivity ch (see
Figure 2(c)). Also, the case of larger value that of thermal
diffusivity and lower thermal osmotic coefficient would turn
to the reduction of the undrained loading effect and further
decrease pore pressure. Moreover, the thermal osmosis effect
with a larger thermal osmotic coefficient is more vulnerable
to undertake the role to enhance the undrained loading
effect, when the same thermal diffusivity is stipulated.

With the THMO model considering the cooling effect,
the total pore pressure as presented in Figure 3(a) equals
the superposition of the original formation pore pressure
and axisymmetric loading effect (see Figure 3(b)) and devia-
toric loading (see Figure 3(c)). The thermal osmosis effect on
the pore pressure is reduced in the case of a larger
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Figure 3: Induced pore pressure varying with r/rw at θ = 90 ° wherein different permeability coefficients are prescribed.
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permeability coefficient κ. On the contrary, the cases of
lower magnitudes of permeability coefficient intensify the
thermal osmosis effect to generate the more distinct back-
flow phenomenon, so that the undrained loading effect is
reduced and consequently the pore pressure drops.

4.2. Time Dependence of the Induced Pore Pressure and
Effective Total Stresses. Figure 4 evaluates the induced pore
pressure and effective stress profiles at different times when
the THMO model and THM case where cooling and the
pure poroelastic one are examined.

Figure 4 describes the induced pore pressure and effec-
tive total stresses including radial and tangential profiles

(porothermoelastic osmosis solution, ch = 7:15 ∗ 10−7, KT =
1 ∗ 10−10; porothermoelastic model, ch = 7:15 × 10−7) and
pure poroelastic model when wellbore is subjected to cooling
or isothermal condition, respectively, at different times.

When the thermal osmosis effect intensifies the
undrained loading effect, the thermally induced pore pres-
sure and effective stresses including radial and tangential
stresses of THMO model behave the opposite variation
compared to the common THM one. Higher pore pressure
leads to effective tensile radial stress and consequently
produces the probability for borehole spalling inside the
formation (or outburst) [40, 41] at smaller time interval
after drilling a borehole (see Figure 4(b)). However, the
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Figure 4: Induced pore pressure and effective stresses varying with r/rw at θ = 90 ° wherein different conditions are prescribed.
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Figure 5: The time-dependent shear failure potentials against different models including porothermoelastic osmosis (THMO),
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values of pore pressure gradually shift inward the formation
with diminishing magnitudes as time progress. This case
also reduces effective stresses, and the shear failure zones
are displaced into formation in nature. The more compres-
sive effective radial stress which the regions of tensile
spalling failure disappear can be observed at a later time.
The cooling effect naturally reduces the stress as presented
in the constitutive Equation (1); therefore, Figure 4(c)
shows the pure poroelastic (HM) model has larger effective
tangential stress than that of THMO and THM ones, espe-
cially the regions at or very close to the borehole wall. But,
the increased pore pressure due to the thermal osmosis
effect further reduces the magnitude of tangential stress
near the borehole wall.

As time elapses, the common THM one indicates that
the reduction and less minimum magnitude of pore pressure
is a reverse analogy to that of the THMO solution and pure
poroelastic model near the borehole wall region. Finally, the
reduced shear stress in the form of a difference between
effective tangential stress and effective radial stress stabilizes
the wellbore with regard to shear failure in regions near the
wellbore wall.

4.3. Time-Dependent Potential of Borehole Collapse. One
illustrates the potential of borehole collapse for vertical bore-
hole against different models in this subsection.

Mohr-Coulomb strength criterion is used to study the
borehole stability. It is commonly expressed in terms of the
shear stress ðσ1′ − σ3′Þ/2 and mean effective stress ðσ1′ + σ3′Þ/
2 (the effective stress is defined by σij′ = σij − αpδij) to predict
the failure of a geotechnical material [42].

σ1′ − σ3′
2

 !
= C cos φ +

σ1′ + σ3′
2

 !
sin φ, ð39Þ

where C and φ, respectively, correspond to the intrinsic cohe-
sive strength and internal friction angle of the rock. Besides, the
abovementioned maximum and minimum principal stresses
σ1′ and σ3′ correspond to the eigenvalues σn of the matrix of
the effective stress tensor (σij′ , i, j ∈ ðr, θ, zÞ in Equations
(34a)–(34f) around the borehole. One obtains the two princi-
pal stresses by solving the following characteristic equation:

σr′− σn τrθ τrz

τrθ σθ
′ − σn τθz

τrz τθz σzz′ − σn

��������

��������
= 0: ð40Þ

Note that a profile above the failure envelope implies failure.
On the whole, Figure 5 shows the borehole collapse related

to the three aforementioned models is time-dependent. The
locations of borehole collapse occur inside the formation (or
next to the borehole wall) at an earlier time but are displaced
at the borehole wall at a later time. The combination of
effective compressive tangential stress and effective tensile
radial stress renders the maximum magnitude of the shear
stress ðσ1′ − σ3′Þ/2 to occur inside the formation. Noted that

the shear stress τrθ of a vertical borehole appropriately has
zero magnitudes at the borehole wall or the formation; thus,
the effective maximum or minimum principal stress σ1′ and
σ3′ can practically equal to the effective tangential stress and
effective radial stress. The potential of borehole collapse occur-
ring at the borehole wall increases with increasing time; this is
because maximum effective tangential stress occurs at the
borehole at a later time.

With the cooling cases considered, Figure 5(a) shows
that the obvious thermal osmosis effect further enhances
the undrained effect for lower permeability rock at a given
thermal diffusion coefficient, and thus, the risk of borehole
collapse increases and the failure location occurs inside the
formation. Similarly, the strengthening effect of the thermal
osmosis effect on the undrained effect for lower permeability
rock corresponds to the rock with a smaller thermal diffusion
coefficient at a given permeability coefficient. The cooling
effect reduces the effective tangential stress, and thus, themean
effective stresses of the cooling cases are smaller than those of
the heating cases. The potential of borehole collapse firstly
occurs at the borehole wall for heating cases of the THMO
model in Figure 5(a), but the location of borehole collapse
could appear inside the formation for the THM model at a
given earlier time. This is because the thermal osmosis effect
reduces the undrained effect and renders the pore pressure
to decrease, and thus, the effective compressive radial stress
along the radial distance eliminates the possibility of the max-
imum shear stress occurring inside the formation.

With the case of the thermal osmosis effect strengthen-
ing the undrained effect considered, Figure 5(b) again con-
firms the view that the locations of borehole collapse occur
inside the formation at an earlier time when the drilling
mud cools the formation. However, Figure 5(c) indicates
the aforementioned phenomenon corresponds to the heat-
ing borehole. The heat effect further increases the risk of
borehole collapse compared to Figures 5(c) and 5(d). Also,
Figure 5(d) shows the time-dependent effect disappears with
increasing time and approaches the elastic case.

This study presents the effect of thermal osmosis effect on
wellbore stability and can also be introduced to the discussion
of thermal osmosis effect on hydraulic fracturing [43, 44].

5. Conclusions

Under plane strain condition, the present paper formulates a
set of porothermoelastic analytical solutions of the vertical
wellbore drilled through an isotropic porous rock formation
subjected to thermal osmosis effect and nonhydrostatic
remote stress.

(1) When a lower permeability rock is characterized by
the substantially large thermal osmotic coefficient
and the smaller thermal diffusivity, the thermal osmo-
sis effect more significantly intensifies or weakens the
undrained loading effect (poroelastic effect), and it is
not appropriate for neglecting this effect

(2) In the case of the positive magnitude of the product
of the significantly large thermal osmotic coefficient
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and temperature gradient, the thermal osmosis effect
intensifies the undrained loading effect and leads to a
build-up of pore pressure. Accordingly, lower effec-
tive stresses increase the mean shear stress and tend
to deteriorate wellbore stability. The weakening
cases, on the contrary, can stabilize wellbore with
respect to shear failure

(3) The predrilling mud-weight design is suggested to
consider the time-dependent locations of borehole
collapse since the locations firstly occur inside the
formation, whereas it is displaced at the borehole
wall
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