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Stress sensitivity and the elastic outer boundary (EOB) condition have a great effect on the analysis of the characteristics of the fluid
flow in a reservoir. When researchers analyzed the characteristics of the fluid flow, they have considered the stress sensitivity and the
EOB condition separately but have not considered them simultaneously. Therefore, errors are inevitable during the analysis of well
testing. The main object of this work is to present a well-testing model for stress-sensitivity dual-porosity reservoir (DPR) with
EOB to improve the accuracy of the analysis of well-testing data. To this end, in this paper, we established a well-testing model for
the DPR, considering the stress sensitivity and the EOB simultaneously, and presented its semianalytical solution. On the basis of
the consideration of the EOB condition and stress sensitivity of permeability (SSP), a seepage model for the DPR with the EOB is
built using the continuity equation, motion equation, state equation, and interporosity flow equation between matrix and fracture,
which considers the stress sensitivity, wellbore storage, and skin. To solve this model, a nonlinear partial differential equation is
changed into a linear form of a partial differential equation by introducing an effective well radius and applying Pedrosa’s
transformation and perturbation transformation. Applying the Laplace transformation, an analytical solution in the Laplace space
is obtained, and curves of pressure and pressure derivative (PPD) are drawn by numerically inverting them. The model is verified
by comparing it with the EOB without consideration of SSP and using case data. The sensitivity of parameters on the curves of
PPD is analyzed. This workmay be significant for evaluating more accurately the parameters of wells and reservoirs using well testing.

1. Introduction

During the development of oil and gas reservoirs, pressure
drops and effective stress increases, so their permeability
changes. Stress sensitivity has an effect on accurately evaluat-
ing the characteristics of wells and reservoirs.

Many researchers have researched the stress sensitivity
of reservoirs and established models considering it. Experi-
mental researches on oil reservoirs and coalbed methane res-
ervoirs were also carried out [1–10]. Their experiments
determined the effect of the formation stress on the perme-
ability and its relationship. In order to study the relationship

between the compressibility of the pore-fracture system and
its effective stress, Zhang et al. [11] conducted an experiment
with the nuclear magnetic resonance technique, calculated
the stress sensitivity of the pore and fracture, and discussed
the variation of its heterogeneity. Based on many compac-
tion researches of rocks, Chilingar et al. [12] argued that well
testing could be wrong due to the plastic deformation that
increases the effective stress in undercompacted overpres-
sured reservoirs, and thus, many erroneously condemned
overpressured reservoirs should be reexamined and reevalu-
ated, and techniques should be developed to recover the oil
and gas from these stress-sensitivity reservoirs. Guo et al.
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[13] and Meng et al. [14] presented semianalytical models to
evaluate production features in the stress-sensitivity carbon-
ate gas reservoirs, which were considered triple-porosity
media composed of matrix, fractures, and vugs. Aguilera
[15] proposed a material-balance equation considering the
effective compressibility of fractures and matrix, and Wang
et al. [16, 17], Luo et al. [18], and Mo et al. [19] established
the fluid flow model for the stress-sensitivity fracture reser-
voirs. Zhang et al. [20] suggested the well-testing model for
the stress-sensitivity DPR, where its thickness and fluid
property vary in the radial direction, and Tian et al. [21]
presented the well-testing model for a multiregion radially
composite reservoir considering the stress sensitivity. Ren
and Guo [22] researched the general method for analyzing
nonsteady flow, and Jelmert and Toverud [23] obtained
the approximate analytical solution for stress-sensitivity
deformable reservoirs and drew the corresponding type
curve. Xia et al. [24] established the numerical model, consid-
ering nonlinear filter features, wellbore storage, and skin, and
proposed the general method for evaluating the effect of
fracture on the volume strain of a vertical well based on the
well-testing and production data. Zhu and Liang [25] derived
the production equation considering stress sensitivity and
analyzed the effect of stress sensitivity on production. Moradi
et al. [26] studied three-dimensional transient pressure fea-
tures and pressure drop in the stress-sensitivity reservoirs
during the production of hydrocarbons, and Zhu et al. [27]
proposed the analytical model for stress-sensitivity coalbed
methane reservoirs to study the permeability evolution dur-
ing production. Based on a combination of geomechanics
and flow characteristics, Li et al. [28] presented the produc-
tion model for triple-porosity media, taking the adsorption
and desorption of gas, slip flow, Knudsen, interfacial diffu-
sions, and stress sensitivity into account. Chen et al. [29]
established the mathematical model for tight gas reservoirs
considering threshold pressure gradient, gas slipping, and
stress sensitivity, and Xue et al. [30] conducted research on
tight sandstone gas reservoirs with water produced and
showed that strong stress sensitivity appeared as a result
and increased with the water production. Zhao et al. [31],
Jabbari et al. [32], Samaniego and Villalobos [33], and Zhang
et al. [34] carried out research on the stress-sensitivity of frac-
ture reservoirs, and Wang and Wang [35] proposed the
mathematical model considering the effect of slipping and
stress sensitivity in fractured gas reservoirs. Huang et al.
[36] presented the transient flow model for horizontal wells
in stress-sensitivity composite reservoirs, and Li et al. [37]
presented the dual-porosity media model for horizontal wells
in fractured tight gas reservoirs with stress sensitivity. Yuan
et al. [38] suggested a general solution for oil flow, taking
multiphase flow, the properties of stress-sensitivity reser-
voirs, and the changes in operation conditions into consider-
ation. Li et al. [39] and Wang et al. [40] researched the
characteristics of fluid flow in a stress-sensitivity tight reser-
voir, where they considered the reservoir as an outer unsti-
mulated reservoir volume region and an inner stimulated
reservoir volume region. Jiang and Yang [41] presented the
fully coupled fluid flow and geomechanics model in fractured
shale gas reservoirs, which characterized stress-sensitivity

productivity, and Guo et al. [42] proposed transient pressure
and decline rate analysis in shale gas reservoir, considering
multiflowmechanics including desorption, diffusion, Darcy’s
flow, and stress sensitivity. Wu et al. [43], Xu et al. [44],
Zhang and Yang [45, 46], and Zongxiao et al. [47] presented
well-testing models for multifractured horizontal stress-
sensitivity reservoirs. Wu et al. [48], Ji et al. [49], Huang
et al. [50], and Wu et al. [51] established the well-testing
models for the multifractured horizontal well in the stress-
sensitivity tight reservoirs. Wang et al. [52], Liu et al. [53],
and Du et al. [54] presented the well-testing models for the
multifractured horizontal wells in the stress-sensitivity shale
gas, and Chen et al. [55] and Wang et al. [56] presented the
mathematical model of the transient pressure features in
the stress-sensitivity coalbed methane reservoirs. Liu [57]
discussed the well-testing model for multifractured horizon-
tal wells, considering the effect of stress sensitivity and the
threshold pressure gradient in a low-permeable reservoir.
Zhang et al. [58] built the analytical well-testing model for
a low-permeable reservoir with consideration of anisotropy,
heterogeneity, stress sensitivity, wellbore storage, and skin,
and Wang et al. [59] presented the analytical model for
multilateral horizontal wells considering the combination of
multiple branches and stress sensitivity in low-permeability
natural fracture reservoirs. Cao et al. [60] and Yan et al.
[61] researched the transient pressure behavior of wells, con-
sidering the effects of sand production and stress sensitivity
simultaneously. Zhang and Tong [62] studied the transient
pressure response of fractal media in stress-sensitive low-
permeability reservoirs. Gao et al. [63] established a well-
testing model of pressure buildup considering stress sensitivity
and the hysteresis effect in deep-water composite reservoirs
with high temperature and pressure. Shovkun and Espinoza
[64] conducted the coupled fluid flow and geomechanics sim-
ulation for the coal and shale reservoirs with consideration of
the impact of desorption-induced stress, shear failure, and
fines migration. The well-testing models relevant to the stress
sensitivity mentioned above have been considered only for
reservoirs with ideal outer boundaries. However, there are
few ideal outer boundaries in reality. Therefore, when the
outer boundary is considered the ideal boundary, the reser-
voirs cannot be described objectively, and errors are inevitable.

SSP makes its heterogeneity stronger in heterogeneous
reservoirs. Although such strong heterogeneity gives for
detailed characterization of different aspects of the reservoir,
it may be tedious and time-consuming in real application. In
order to simply describe the stress-sensitivity reservoir,
many researchers have introduced a conception of the per-
meability modulus to ensure the robustness of the analytical
solution [20, 36, 40, 47, 48, 52, 58, 59].

Several researchers studied the fluid flow characteristics
of the reservoirs with the EOB. Li et al. [65] studied the
seepage model for the homogeneous reservoir by introduc-
ing the EOB, and Li et al. [66] discussed an elastic boundary
value problem of the extended modified Bessel equation
introducing the elastic boundary value condition, established
the seepage model for fractal homogeneous reservoirs with
the EOB, and obtained its solution. Kim et al. [67] built
the well-testing model for the DPRs with the EOB
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considering skin and wellbore storage and introducing effec-
tive well radius, and Zheng et al. [68] established the dual-
porosity media seepage model for shale reservoirs with the
EOB taking the adsorption and desorption processes into
account. Zhao and Min [69] presented the non-Newtonian
power-law fluid percolation model with the EOB. The stress
sensitivity of the reservoir is not considered in the models
with the EOB mentioned above.

Both stress sensitivity and the EOB condition signifi-
cantly affect the characteristics of fluid flow in reservoirs,
but stress sensitivity and the elastic boundary condition were
not considered simultaneously in previous researches. The
precedent researchers have considered either fluid flow in
the stress-sensitivity reservoirs with the ideal boundary con-
ditions or the elasticity of the boundary in the reservoirs
without considering stress sensitivity. This affects the analy-
sis of well-testing data and results in considerable errors.

In this paper, the well-testing model for DPR is estab-
lished considering the stress sensitivity and EOB condition
simultaneously, and its solution is obtained to improve the
accuracy of the analysis of well-testing data. On the basis
of the consideration of the EOB condition and SSP, the
seepage model for the DPR with the EOB is built using the
continuity equation, motion equation, state equation, and
interporosity flow equation between matrix and fracture.
By applying effective well radius, Pedrosa’s transformation,
perturbation transformation, and the Laplace transforma-
tion, an analytical solution in the Laplace space is obtained,
and curves of PPD are drawn by numerically inverting them.

This work may be significant for evaluating more accu-
rately the parameters of wells and reservoirs using well testing.

2. EOB Condition

Li et al. [65] defined an elastic coefficient of the reservoir as
follows:

εPr = εPr r, t = ∂ ln P
∂ ln r

= r
P
∂P
∂r

, 1

P = pi − p, 2

where εPr is the rate of the relative change of the pressure dif-
ference P with respect to r. p is the function of time (t) and
position (x, y, and z).

p = p x, y, z, t , 3

The farther the distance from a well is, the lower the
pressure difference is. Thus, the change direction of pressure
difference is opposite to the change direction of the position.

Therefore, the elastic coefficient of the outer boundary in
a cylinder reservoir can be defined as follows [67]:

εPΓ = εPD
Γ = εPD

R = εPD
RD

= −
∂ ln P
∂ ln r r=R

= −
∂ ln PD

∂ ln rD rD=RD

4

From Eq. (4), the EOB condition may be obtained as
follows:

εPΓP + r
∂P
∂r r=R

= 0, 5

or

εPD
Γ PD + rD

∂PD

∂rD rD=RD

= 0 6

Equations (5) or (6) are elastic outer conditions.

3. Methodology

3.1. Physical Model

(1) Reservoir consists of the natural fracture and matrix,
and fluid flows through both the natural fracture and
matrix system. That is, the reservoir has dual poros-
ity and dual permeability characteristics

(2) The permeability of the natural fracture system is
considered stress sensitivity

(3) Reservoir has a uniform thickness of h

(4) Isotropic fluid flow in a single phase is assumed

(5) The effects of gravity and capillary are negligible

This physical model is suitable for matrix-fracture dual-
porosity reservoirs, including naturally fractured carbonate
reservoirs. This requires that the reservoir with a uniform
thickness be on a horizontal plane.

3.2. Mathematical Model. Using the state equation, motion
equation, interporosity flow equation, and continuity equa-
tion, a seepage differential equation for dual porosity reservoir
considering the stress sensitivity is obtained. For convenience,
the seepage model is nondimensionalized using dimensionless
variables. The detailed derivation of themathematical model is
provided in Appendix A.

The seepage differential equation for the matrix system
in the natural fracture reservoir is as follows.

∂2pm
∂r2

+ 1
r
∂pm
∂r

= φmiμCmt

km

∂pm
∂t

+ α pm − pf 7

The seepage differential equation for the natural fracture
system in the natural fracture reservoir is as follows.

∂2pf
∂r2

+ 1
r

∂pf
∂r

+ γ
∂pf
∂r

2
= e−γ pf −pi

φf iμCft
kf i

∂pf
∂t

−
αkm
kf i

pm − pf

8

The initial condition is as follows:

pf r, t
t=0

= pm r, t t=0 = pi 9
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The inner boundary condition is as follows:

C
dpw
dt

−
2πrhkf ieγ pf −pi

μ

∂pf
∂r

+ 2πrhkm
μ

∂pm
∂r

r=rw

= −qB,

10

pw = pf − Sr
∂pf
∂r r=rw

= pm − Sr
∂pm
∂r r=rw

11

The outer boundary condition is as follows:

ε
Pf

Γ pf + r
∂pf
∂r r=R

= ε
Pf

Γ pm + r
∂pm
∂r r=R

= 0 12

Introducing the dimensionless variables, Eqs. (7)~(12)
are nondimensionalized, and these equations are arranged
using rDe = rDe

S and TD = tD/CD.
The dimensionless seepage differential equation for the

natural fracture system in the natural fracture reservoir is
as follows.

∂2pfD
∂r2De

+ 1
rDe

∂pfD
∂rDe

− γD
∂pfD
∂rDe

2

= eγDpfD
ω

KCDe2S
∂pfD
∂TD

+ λe−2S

K
pfD − pmD

13

The dimensionless seepage differential equation for the
matrix system in the natural fracture reservoir is as follows.

∂2pmD

∂r2De
+ 1
rDe

∂pmD

∂rDe
= 1 − ω

1 − K CDe2S
∂pmD

∂TD
+ λe−2S

1 − K
pmD − pfD

14

The dimensionless initial condition is as follows:

pfD rDe, TD
TD=0

= pmD rDe, TD TD=0
= 0 15

The dimensionless inner boundary condition is as fol-
lows:

dpwD
dTD

− KrDee
γDpfD

∂pfD
∂rDe

+ 1 − K rDe
∂pmD

∂rDe rDe=1
= 1,

16

pwD = pfD 1, TD = pmD 1, TD 17

The dimensionless outer boundary condition is as
follows:

ε
PfD

Γ pfD + rDe
∂pfD
∂rDe rDe=RDe

= ε
PfD

Γ pmD + rDe
∂pmD

∂rDe rDe=RDe

= 0

18

3.3. Solution of Model. The seepage differential equation
(Eq. (13)) for fracture system and inner boundary condi-
tion (Eq. (15)) have strong nonlinearity. Therefore, Pedrosa’s
transformation and perturbation transformation are applied
so as to linearize these equations. Laplace transformation is
applied to obtain its solution in the Laplace domain. The
detailed derivation process is provided in Appendix B.

Applying Pedrosa’s transformation, perturbation trans-
formation, and the Laplace transformation, the following
equations are obtained.

The seepage differential equation for natural fracture
system is as follows:

∂2ξf D0
∂r2De

+ 1
rDe

∂ξf D0
∂rDe

+ A1ξf D + A2pmD = 0 19

The seepage differential equation for matrix system is as
follows:

∂2pmD

∂r2De
+ 1
rDe

∂pmD

∂rDe
+ A3pmD + A4ξf D0 = 0 20

The inner boundary condition is as follows:

zξf D0 1, TD − KrDe
∂ξf D0
∂rDe

+ 1 − K rDe
∂pmD

∂rDe
rDe=1

= 1
z
,

21

ξwD0 = ξf D0 1, TD 22

The outer boundary condition is as follows:

ε
PfD

Γ ξf D0 + rDe
∂ξf D0
∂rDe rDe=RDe

= 0 23

The special solutions to Eqs. (19) and (20) are obtained,
and based on the special solutions, a general solution to Eqs.
(19) and (20) is obtained. From the special solutions, the
general solution to Eqs. (19) and (20) may be expressed as
follows.

ξf D0 = Af K0 σrDe + Bf I0 σrDe , 24

where

σ =
− A1 + A3 ‐ A1 − A3

2 + 4A2A3

2 25

Substituting the general solution Eq. (24) into the inner
boundary condition (21) and outer boundary condition
(23), the following equations are obtained.

C1Af + C2Bf =
1
z
, 26
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d1Af + d2Bf = 0, 27

where

C1 = zK0 σ + K + 1 − K −
σ + A1
A2

σK1 σ ,

28

C2 = zI0 σ − K + 1 − K −
σ + A1
A2

σI1 σ ,

29

d1 = ε
PfD

Γ K0 σRDe − R σK1 σRDe , 30

d2 = ε
PfD

Γ I0 σRDe + R σI1 σRDe 31

From Eqs. (26) to (27), Af and Bf are obtained as fol-
lows.

Af =
−d2

z −c1d2 + c2d1
, 32

Bf =
d1

z −c1d2 + c2d1
33

From Eq. (22),

ξwD0 = ξf D0 1, TD = Af K0 σ + Bf I0 σ 34

ξwD0 is obtained by numerically inverting the Laplace
transformation (Eq. (34)). Many papers related to the well-
testing model have used the Stehfest algorithm because of
its simplicity and high accuracy. The algorithm proposed
by Kim et al. [70] has lower numerical oscillation and higher
accuracy than the Stehfest algorithm, and thus, this paper
uses the algorithm proposed by Kim et al. [70], where
n = 25, a = 6 5, k = 2, and σ = 0.

Bottom-hole PPD is calculated with the following
equations.

pwD = pfD 1, TD = −
1
γD

ln 1 − γDξwD0 , 35

TD
∂pwD
∂TD

= −TD
∂ξwD0
∂TD

/ γDξwD0 − 1 36

4. Results and Discussion

4.1. Verification of Model

4.1.1. Comparison Verification. To verify our model, it is
compared to the model for the DPR with EOB without con-
sideration of the stress sensitivity. When stress sensitivity is
not considered in this model, as there is permeability modu-
lus γD in the denominator of Eq. (35) and it converges into
infinity, γD ≈ 0(here, γD = 10‐10). Other parameters are as
follows: CD = 100, S = 1, ω = 10−5, and λ = 10−4. RDe = 2 000,

K = 0 999, and εPD
Γ = 0, 0 1, 1 000. Figure 1 shows the result

of comparison of the two models. The solid lines represent
our model, and the circle marks the dual porosity without con-
sideration of stress sensitivity [67]. From Figure 1, it can be
seen that the two models agree well, which shows that our
model is valid.

4.1.2. Verification Using Case Data. For verification, case
data presented by Wang et al. [71] is used, which is obtained
from an oil well in the Tahe oilfield. Figure 2 shows the
result of matching with case data. As seen in Figure 2, the
paper model agrees with the case data comparatively well,
which shows that the model is valid. Analysis results are as
follows: k = 4 3μm2, ω = 0 041, λ = 1 825 × 10−7, S = −4 45,
C = 0 205m3/MPa, γ = 1 451MPa-1, K = 0 999, R = 2 100m,
and εPD

Γ = 0 5.

4.2. Analysis of Sensitivity

4.2.1. Effect of Permeability Modulus γD on the PPD Curves.
Figure 3 shows the effect of the permeability modulus γD
(γD = 0 001, 0.01, 0.02, and 0.03) on the PPD curves. Other

parameters are as follows: CDe2S = 100, S = 1, εPDΓ = 100,
λ = 10−3, ω = 10−5, RDe = 2 000, and K = 0 999. As shown
in Figure 3, the larger the value of γD, the higher the PPD
curves. As time increases, the effect of the permeability modu-
lus on PPD curves increases. When γD ≠ 0, horizontal line of
value 0.5 does not appear in the middle stage of the pressure
derivative curve. This means that the SSP affects the analysis
of the well-testing data.

4.2.2. Effect of Elastic Coefficient εPD
Γ of Outer Boundary on

the PPD Curves. According to Li et al. [65], εPD
Γ ⟶ 0 reflects

the closed boundary, εPDΓ ⟶ +∞ reflects the constant pres-
sure boundary, RD ⟶∞ reflects the infinite boundary, and
0 < εPD

Γ < +∞ reflects between the closed boundary and con-
stant pressure boundary.

3
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Pressure derivative
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Figure 1: Result of comparison of our model to the model without
consideration of stress sensitivity.
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Figure 4 shows the effect of the elastic coefficient
εPDΓ (εPD

Γ = 0, 0.1, 1, and 1 000) of outer boundary on the
PPD curves. Other parameters are as follows: CDe2S = 100,
S = 1, γD = 0 01, λ = 10−3, ω = 10−5, RDe = 2 000, and K =
0 999. As shown in Figure 4, εPDΓ does not affect the early
and middle stages of the pressure derivative curves but affects
the late stage of the pressure derivative curves. When the value
of εPDΓ is zero, it reflects the closed boundary. While, when the
value of εPD

Γ is 1 000, it reflects that is close to the closed bound-
ary. Moreover, when RD ⟶ +∞, it reflects the infinite
boundary. This means that with the value of εPDΓ , the late stage
of PPD curves are between closed boundary and constant
pressure boundary. The larger the value of εPD

Γ increases, the
higher the late stage of pressure curves gets from the horizon-
tal line to the curve of the closed boundary and the higher the
“hump” of the pressure derivative curve is. However, the outer
boundary condition between the closed boundary and con-
stant pressure boundary has not been considered in the model

of the reservoir with the ideal outer boundary (infinite bound-
ary, closed boundary, and constant pressure boundary). Thus,
our model has generality in comparison to the model with an
ideal outer boundary. Therefore, this means that the accuracy
of well-testing analysis can be enhanced.

4.2.3. Effect of CDe
2S on the PPD Curves. CDe

2S is a dimen-
sionless quantity, which considers wellbore storage and skin
simultaneously and shows degrees of improvement or dam-
age to the well.

Figure 5 shows the effect of CDe
2S (CDe

2S = 1 000, 2 000,
5 000, and 10 000) on the PPD curves. Other parameters are
as follows: S = 1, γD = 0 01, εPD

Γ = 100, λ = 10−5, ω = 10−5,
RDe = 2 000, and K = 0 999. CDe

2S affects the middle stage
of the pressure curve. The larger the value of CDe

2S increases,
the higher the pressure derivative curves are in the middle
stage and the earlier the effect of boundary appears on the
pressure derivative curves.

4.2.4. Effect of Skin S on the PPD Curves. Figure 6 shows the
effect of skin S (S = −3, -1, 0, 1, 3) on the PPD curves. Other
parameters are as follows: γD = 0 01, εPD

Γ = 1, λ = 10−3, ω =
10−4, CDe

2S = 10, RD = 5 000, and K = 0 999. Skin S affects
the middle and late stages of the PPD. The smaller value of
S decreases, the upper the PPD curves are, the higher
“hump” of the pressure derivative curve gets, and the later
it appears.

4.2.5. Effect of Dimensionless Radius RD on the PPD Curves.
Figure 7 shows the effect of the dimensionless radius RD
(RD = 100, 1 000, 5 000, 10 000) on the PPD curves. Other
parameters are as follows: γD = 0 01, εPD

Γ = 1, λ = 10−3, ω =
10−5, CDe2S = 1 000, S = 1, and K = 0 999. RD affects only
the late stage of the PPD curves. The larger the value of RD
increases, the later the effect of boundary appears.
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4.2.6. Effect of Interporosity Flow Coefficient λ on the PPD
Curves. Figure 8 shows the effect of the interporosity flow
coefficient λ (λ = 10−3, 10-4, and 10-5) on the PPD curves.

Other parameters are as follows: γD = 0 01, εPD
Γ = 1, ω =

10−4, CDe2S = 10, S = 1, RD = 5 000, and K = 0 999. The inter-
porosity flow coefficient λ affects the middle stage of the
PPD curves. The larger the value of λ increases, the upper
the PPD curves are, the higher the “hump” of the pressure
derivative curve gets, the deeper the concave of the pressure
derivative curve is, and the later the concave appears.

4.2.7. Effect of Storage Ratio ω on the PPD Curves. Figure 9
shows the effect of the storage ratio ω (ω = 10−1, 10-2, and
10-3) on the PPD curves. Other parameters are as follows:
γD = 0 01, εPD

Γ = 1, λ = 10−4, CDe2S = 10, S = 1, RD = 5 000,
and K = 0 999. ω affects both the early and middle periods
of flow. The smaller the value of ω gets, the upper the pres-
sure curves are, the higher the “hump” of the pressure deriv-
ative curve gets, the deeper the concave is, and the earlier the
concave appears.

4.2.8. Effect of Permeability Ratio K on the PPD Curves.
Figure 10 shows the effect of the permeability ratio K
(K = 0 999, 0.9, 0.85, and 0.8) on the PPD curves. Other
parameters are as follows: γD = 0 001, εPDΓ = 1, ω = 10−4,
λ = 10−4, CDe2S = 1 000, S = 0, and RD = 500. K affects both
the early and middle periods of flow. The smaller the value
of K, the upper the pressure curves are, and the higher the
“hump” of the pressure derivative curve gets, the deeper the
concave are.

Both the SSP and the condition of elasticity of the outer
boundary greatly affect the well-testing analysis, but the
previous papers have considered these effects individually
and have not considered them simultaneously, which may
result in considerable errors in the well-testing analysis.
The well-testing model proposed in our paper considers
the effect of the SSP and the condition of elasticity of the
outer boundary simultaneously. Thus, this model may
improve the accuracy of the well-testing analysis for the
DPR. In reality, there is not only the dual-porosity reservoir
for the vertical well but also the triple-porosity reservoir for
the vertical well and the dual-porosity reservoir for the
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horizontal well. However, this model is limited to the dual-
porosity model for vertical wells. The model proposed in this
paper may be improved into dual-porosity and triple-

porosity models for horizontal and inclined wells. We are
going to study dual-porosity and the triple-porosity dual-
permeability model for horizontal and inclined wells, con-
sidering stress sensitivity and EOB.

5. Conclusions

In this paper, the well-testing model for the DPR is pre-
sented, considering SSP and EOB simultaneously.

(1) The seepage differential equation for the DPR consid-
ering stress sensitivity and EOB simultaneously is
established using the continuity equation, motion
equation, state equation, and interporosity flow equa-
tion between matrix and fracture

(2) The dimensionless seepage differential equation is
obtained using dimensionless variables

(3) Applying Pedrosa’s transformation and perturbation
transformation, the nonlinearity of the nonlinear
seepage differential equation is decreased

(4) The analytical solution in the Laplace space is
obtained by using the Laplace transformation, and
the type curves of PPD are drawn by applying the
Laplace numerical inversion [70]

(5) This model is verified by comparing it to the model
in [67] with the EOB without consideration of SSP
and using case data

(6) Through analysis of the sensitivity of parameters, it
can be seen that both the SSP and EOB conditions
affect the analysis of well-testing data

This model may improve the accuracy of the analysis of
the well-testing data as compared with the previous well-
testing model for DPR.

Appendix

A. Mathematical Model

In order to describe the degree of the SSP of the reservoir
and its influence, Pedrosa [72] introduced the concept of a
permeability modulus for the homogenous reservoir. As
the reservoir pressure decreases, the opening of the natural
fracture decreases. Therefore, the permeability of the natural
fracture also decreases.

The permeability modulus is defined as follows:

γ = 1
kf

dkf
dpf

A 1

Integrating Eq. (A.1),

kf = kf ie
−γ pi−pf A 2
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It is assumed that the fluid flows in the matrix and natural
fracture system obey Darcy’s law. The following equation may
be obtained, which shows the fluid flow in a natural fracture.

vf =
kf
μ

∂pf
∂r

A 3

Substituting Eq. (A.2) into Eq. (A.3),

vf =
kf ie

−γ pi−pf

μ

∂pf
∂r

A 4

The motion equation of fluid flow in a matrix system is as
follows.

vm = km
μ

∂pm
∂r

A 5

To describe the changes in oil density in the natural frac-
ture and matrix system during the production of oil, the fol-
lowing equations are applied, respectively.

ρf = ρoe
Co pf −pi , A 6

ρm = ρoe
Co pm−pi A 7

To describe the changes in porosity of the natural fracture
and matrix system during the production of oil, the following
equations are applied, respectively.

φf = φf ie
Cf pf −pi , A 8

φm = φmie
Cm pf −pi A 9

It is assumed that the interporosity flow is pseudosteady
state. Then, the following equation should be satisfied [73]:

q∗ = αkmρo
μ

pm − pf A 10

The continuity equation of fluid flow in the natural frac-
ture system may be obtained as follows:

1
r

∂ rρf vf

∂r
=
∂ ρfφf

∂t
− q∗ A 11

The continuity equation of fluid flow in the matrix system
may be obtained as follows:

1
r
∂ rρmvm

∂r
= ∂ ρmφm

∂t
+ q∗ A 12

In order to obtain a seepage differential equation for the
matrix system, Eqs. (A.5), (A.7), (A.9), and (A.10) are
substituted into Eq. (A.12).

∂2pm
∂r2

+ 1
r
∂pm
∂r

= φmiμCmt

km

∂pm
∂t

+ α pm − pf A 13

Equation (A.13) is a seepage differential equation for the
matrix system in the natural fracture reservoir.

In order to obtain a seepage differential equation for the
natural fracture system, Eqs. (A.4), (A.6), (A.8), and (A.10)
are substituted into (A.11).

∂2pf
∂r2

+ 1
r

∂pf
∂r

+ γ
∂pf
∂r

2
= e−γ pf −pi

φf iμCft
kf i

∂pf
∂t

−
αkm
kf i

pm − pf

A 14

Equation (A.14) is a seepage differential equation for the
natural fracture system considering the SSP in the natural
fracture reservoir.

The reservoir has uniform pressure at the initial stage of
oil production. Therefore, the initial condition is as follows.

pf r, t
t=0

= pm r, t t=0 = pi A 15

Inner boundary condition is as follows.

C
dpw
dt

−
2πrhkf ieγ pf −pi

μ

∂pf
∂r

+ 2πrhkm
μ

∂pm
∂r

r=rw

= −qB,

A 16

pw = pf − Sr
∂pf
∂r r=rw

= pm − Sr
∂pm
∂r r=rw

A 17

Considering the outer boundary as the elastic boundary,
the outer boundary condition can be obtained as follows.

ε
Pf

Γ pf + r
∂pf
∂r r=R

= ε
Pf

Γ pm + r
∂pm
∂r r=R

= 0 A 18

For convenience, the following dimensionless variables
are defined.

The dimensionless pressure is pD = 2π kf i + km h/qBμ
Δp (Δp = pi − p).

The storage ratio is ω = φf iCft/φf iCft + φmiCmt .

The dimensionless interporosity flow coefficient is λ =
α km/kf i r2w.

The dimensionless time is tD = kf i + km t/ φf iCft +
φmiCmt μr

2
w.

The dimensionless wellbore storage is CD = C/2π φf iCft
+ φmiCmt hr

2
w.

The dimensionless permeability modulus is γD = qBμ/
2πkf ih γ.
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Permeability ratio of fracture system to the sum of frac-
ture and matrix system

K =
kf i

kf i + km
A 19

Introducing these dimensionless variables, the dimen-
sionless equations can be obtained from Eqs. (A.13)~(A.18).

The dimensionless seepage differential equations for the
natural fracture system and matrix system in the natural
fracture reservoir are as follows.

K
∂2pfD
∂r2D

+ 1
rD

∂pfD
∂rD

− γD
∂pfD
∂rD

2

= eγDpfD ω
∂pfD
∂tD

+ λ pfD − pmD ,
A 20

1 − K
∂2pmD

∂r2D
+ 1
rD

∂pmD

∂rD

= 1 − ω
∂pmD

∂tD
+ λ pmD − pfD

A 21

Dimensionless initial condition:

pfD rD, tD
tD=0

= pmD rD, tD tD=0
= 0 A 22

Dimensionless inner boundary condition

CD
dpwD
dtD

− KrDe
γDpfD

∂pfD
∂rD

+ 1 − K rD
∂pmD

∂rD rD=1
= 1,

A 23

pwD = pfD − S
∂pfD
∂rD rD=1

= pmD − S
∂pmD

∂rD rD=1

A 24

Dimensionless outer boundary condition:

ε
PfD

Γ pfD + rD
∂pfD
∂rD rD=RD

= ε
PfD

Γ pmD + rD
∂pmD

∂rD rD=RD

= 0

A 25

The dimensionless well radius is introduced as follows:

rDe = rDe
S A 26

Taking TD = tD/CD, the dimensionless seepage differen-
tial equations for the natural fracture system and matrix
system in the natural fracture reservoir can be written as
follows.

∂2pfD
∂r2De

+ 1
rDe

∂pfD
∂rDe

− γD
∂pfD
∂rDe

2
= eγDpfD

ω

KCDe2S
∂pfD
∂TD

+ λe−2S

K
pfD − pmD ,

A 27

∂2pmD

∂r2De
+ 1
rDe

∂pmD

∂rDe
= 1 − ω

1 − K CDe2S
∂pmD

∂TD

+ λe−2S

1 − K
pmD − pfD

A 28

Dimensionless initial condition:

pfD rD, TD
TD=0

= pmD rD, TD TD=0
= 0 A 29

Dimensionless inner boundary condition:

dpwD
dTD

− KrDee
γDpfD

∂pfD
∂rDe

+ 1 − K rDe
∂pmD

∂rDe rDe=1
= 1,

A 30

pwD = pfD 1, TD = pmD 1, TD A 31

Dimensionless outer boundary condition

ε
PfD

Γ pfD + rDe
∂pfD
∂rDe rDe=RDe

= ε
PfD

Γ pmD + rDe
∂pmD

∂rDe rDe=RDe

= 0,

A 32

where RDe = RDe
S.

B. Solution of Model

The seepage differential equation (Eq. (A.27)) for the frac-
ture system and inner boundary condition (Eq. (A.30)) has
strong nonlinearity. Therefore, to linearize these equations,
Pedrosa’s transformation and perturbation transformation
are applied.

Pedrosa’s transformation is as follows [72]:

pfD rDe, TD = −
1
γD

ln 1 − γDξf D B 1

Applying Pedrosa’s transformation to Eqs. (A.27) and
(A.29) and rearranging, the following equations are
obtained.

The seepage differential equations for the natural frac-
ture and matrix system in the natural fracture reservoir are
as follows.

∂2ξ f D
∂r2De

+ 1
rDe

∂ξf D
∂rDe

= 1
1 − γDξf D

ω

KCDe2S
∂ξf D
∂TD

+ λe−2S

K
−

1
γD

ln 1 − γDξ f D − pmD ,

B 2
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∂2pmD

∂r2De
+ 1
rDe

∂pmD

∂rDe
= 1 − ω

1 − K CDe2S
∂pmD

∂TD
+ λe−2S

1 − K

pmD − −
1
γD

ln 1 − γDξf D

B 3

Initial condition:

ξf D rDe, TD TD=0
= pmD rDe, TD TD=0

= 0 B 4

Inner boundary condition:

1
1 − γDξf D

dξwD
dTD

−
1

1 − γDξf D
2 KrDe

∂ξf D
∂rDe

+ 1 − K rDe
∂pmD

∂rDe
rDe=1

= 1,

B 5

ξwD = ξf D 1, TD = ξmD 1, TD B 6

Outer boundary condition:

−
ε
PfD

Γ

γD
ln 1 − γDξf D + 1

1 − γDξf D
rDe

∂ξf D
∂rDe rDe=RDe

= 0

B 7

The perturbation transformations are as follows [72]:

ξf D = ξf D0 + γDξf D1 + γ2Dξf D2+⋯≈ ξf D0,
B 8

−
1
γD

ln 1 − γDξf D = ξf D + 1
2 γDξ

2
f D+⋯≈ ξf D, B 9

1
1 − γDξf D

= 1 + γDξf D + γ2Dξ
2
f D+⋯≈ 1 B 10

As the value of γD is very small (γD < <1), the solution of
zero-order perturbation can satisfy the accuracy require-
ment. Thus, seepage differential equations, initial conditions,
and inner and outer boundary conditions are written as
follows.

Seepage differential equation for natural fracture system:

∂2ξf D0
∂r2De

+ 1
rDe

∂ξf D0
∂rDe

= ω

KCDe2S
∂ξf D0
∂TD

+ λe−2S

K
ξf D0 − pmD

B 11

Seepage differential equation for matrix system:

∂2pmD

∂r2De
+ 1
rDe

∂pmD

∂rDe
= 1 − ω

1 − K CDe2S
∂pmD

∂TD
+ λe−2S

1 − K
pmD − ξf D0

B 12

Initial condition:

ξf D0 rDe, TD TD=0
= pmD rDe, TD TD=0

= 0 B 13

Inner boundary condition:

dξwD0
dTD

− rDe
∂ξf D0
∂rDe

+ rDe
∂pmD

∂rDe rDe=1
= 1 B 14

ξwD0 = ξf D0 1, TD = ξmD 1, TD B 15

Outer boundary condition:

ε
PfD

Γ ξf D0 + rDe
∂ξf D0
∂rDe rDe=RDe

= 0 B 16

The Laplace transformations are defined as follows:

ξf D0 rDe, z =
∞

0
e−zTDξf D0 rDe, TD dTD, B 17

pmD rDe, z =
∞

0
e−zTDpmD rDe, TD dTD B 18

The Laplace transformations of Eqs. (B.11)~(B.16) are
taken with respect to TD.

The equations for the natural fracture and matrix system
in the Laplace space can be written as follows.

∂2ξf D0
∂r2De

+ 1
rDe

∂ξf D0
∂rDe

+ A1ξf D + A2pmD = 0, B 19

∂2pmD

∂r2De
+ 1
rDe

∂pmD

∂rDe
+ A3pmD + A4ξf D0 = 0 B 20

Inner boundary condition in the Laplace space is as fol-
lows.

zξf D0 1, TD − KrDe
∂ξf D0
∂rDe

+ 1 − K rDe
∂pmD

∂rDe rDe=1

= 1
z
,

B 21

ξwD0 = ξf D0 1, TD B 22

Outer boundary condition in the Laplace space is as fol-
lows.

ε
PfD

Γ ξf D0 + rDe
∂ξf D0
∂rDe rDe=RDe

= 0 B 23

where A1 = ‐ ω/KCDe
2S z + λe−2S/K , A2 = λe−2S/K ,

A3 = − 1 − ω/ 1 − K CDe
2S z + λe−2S/1 − K , and A4

= λe−2S/1 − K .
The special solutions of Eqs. (B.19) and (B.20) may be

expressed by y1 = AK0 σr and y2 = BI0 σr . Using
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these special solutions, σ and coefficients A and B may
be obtained.

Substituting ξf D0 = Af K0 σr and pmD = AmK0 σr
into Eqs. (B.19) and (B.20) and arranging

Afσ + A1Af + A2Am = 0, B 24

Amσ + A3Am + A4Af = 0 B 25

From Eqs. (B.24) to (B.25), the following equations are
obtained.

Am = −
σ + A1
A2

Af ,

Am = −
A4

σ + A3
Af ,

B 26

σ1,2 =
− A1 + A3 ± A1 − A3

2 + 4A2A3

2
B 27

Substituting ξf D0 = Bf I0 σr and pmD = BmI0 σr
into Eqs. (B.19) and (B.20), the above results are also
obtained.

From the special solutions, the general solution to Eqs.
(B.19) and (B.20) may be expressed as follows.

ξf D0 = Af K0 σr + Bf I0 σr B 28

Taking Am = − σ + A1/A2 Af , Bm = − σ + A1/A2 Bf , and

σ = − A1 + A3 ‐ A1 − A3
2 + 4A2A3/2 and substituting the

general solution (B.28) into the inner boundary condition
(B.21), the following equation is obtained.

z Af K0 σ + Bf I0 σ − −Af K σK1 σ + Bf K σI1 σ

− Af 1 − K −
σ + A1
A2

σK1 σ + Bf 1 − K

−
σ + A1
A2

σI1 σ = 1
z
,

B 29

Af zK0 σ + K + 1 − K −
σ + A1
A2

σK1 σ

+ Bf zI0 σ − K + 1 − K −
σ + A1
A2

σI1 σ = 1
z

B 30

Taking Am = − σ + A1/A2 Af , Bm = − σ + A1/A2 Bf , and

σ = − A1 + A3 ‐ A1 − A3
2 + 4A2A3/2 and substituting the

general solution (B.28) into the outer boundary condition
(B.23), the following equation is obtained.

Eqs. (B.30) and (B.32) are rewritten.

C1Af + C2Bf =
1
z
, B 33

d1Af + d2Bf = 0, B 34

where

C1 = zK0 σ + K + 1 − K −
σ + A1
A2

σK1 σ ,

B 35

C2 = zI0 σ − K + 1 − K −
σ + A1
A2

σI1 σ ,

B 36

d1 = ε
PfD

Γ K0 σRDe − RDe σK1 σRDe , B 37

d2 = ε
PfD

Γ I0 σRDe + RDe σI1 σRDe B 38

From (B.33) to (B.34), Af and Bf are obtained as follows.

Af =
−d2

z −c1d2 + c2d1
, B 39

Bf =
d1

z −c1d2 + c2d1
B 40

From Eq. (B.22),

ξwD0 = ξf D0 1, TD = Af K0 σ + Bf I0 σ B 41

Nomenclature

B: Volume factor, dimensionless
C: Wellbore storage coefficient, m3/Pa
CD: Dimensionless wellbore storage, dimensionless

ε
PfD

Γ Af K0 σRDe + Bf I0 σRDe + Af RDe − σ K1 σRDe + Bf RDe σI1 σRDe = 0, B 31

Af ε
PfD

Γ K0 σRDe − RDe σK1 σRDe + Bf ε
PfD

Γ I0 σRDe + RDe σI1 σRDe = 0 B 32
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Cm, Cf : Compressibility of matrix and natural fracture
system, respectively, Pa-1

Cmt : Total compressibility of matrix system and oil,
Cmt = Cm + φmCo, Pa

-1

Cft: Total compressibility of natural fracture system
and oil, Cft = Cf + φf Co, Pa

-1

Co: Oil compressibility, Pa-1

K: Permeability ratio of fracture system to the sum of
fracture and matrix system, fraction

km, kf : Permeability of matrix and natural fracture system,
respectively, m2

kf i: Permeability of natural fracture under initial con-
dition, m2

h: Reservoir thickness, m
p: Reservoir pressure, Pa
R: Outer boundary radius, m
RD: Dimensionless outer boundary radius,

dimensionless
pm, pf : Pressure in matrix system and natural fracture

system, respectively, Pa
pi: Initial reservoir pressure, Pa
pw: Wellbore pressure, Pa
q: Well rate, m3/s
q∗: Mass flow velocity between matrix and fracture

system in the reservoir of unit volume, kg/(m3s)
r: Radius, m
rw: Well radius, m
S: Skin, dimensionless
t: Time, s
tD: Dimensionless time, dimensionless
z: Laplace variable, dimensionless
α: Shape factor between matrix and fracture, m-2

ρm, ρf : Oil density at pressure pm in the matrix system and
at pressure pf in natural fracture system, respec-
tively, kg/m3

ρo: Oil density under initial condition, kg/m3

γ: Permeability modulus, Pa-1

γD: Dimensionless permeability modulus, dimensionless
λ: Dimensionless interporosity flow coefficient,

dimensionless
ω: Storage ratio, dimensionless
μ: Viscosity of oil, Pa∙s
φm, φf : Porosity of matrix and natural fracture system,

respectively, fraction
φmi, φf i: Porosity of matrix and natural fracture system

under initial condition, respectively, fraction
vm, vf : Flow velocity of fluid in matrix and natural frac-

ture system, respectively, m/s.

Superscripts

: Laplace transformation.

Subscripts

D: Dimensionless
m: Matrix
f : Fracture
w: Well.

Abbreviations

EOB: Elastic outer boundary
DPR: Dual-porosity reservoir
SSP: Stress sensitivity of permeability
PPD: Pressure and pressure derivative.
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