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Due to the lack of drilling data and poor quality of seismic data in deep-water offshore areas, conventional methods cannot
effectively predict the total organic carbon (TOC) content. In this paper, the BP neural network method is used to predict the
TOC of the strata overlying the target layer, which adds to the TOC information in the study area. Then, the highest TOC
value of the strata overlying the target layer is used to select the most sensitive seismic attributes. Finally, the sensitive seismic
attributes are used to evaluate the source rocks with no or few wells. A set of TOC prediction technology flows is established
for TOC combined with seismic attributes under the condition of no wells and few wells in deep-water areas. The application
example shows the reliability of TOC prediction by this technical process, and the study has a certain reference significance for
the evaluation of hydrocarbon source rocks in offshore deep water.

1. Introduction

Oil and gas exploration and development in offshore deep-
water areas are characterized by high investment and high
risk. As the material basis of oil and gas systems and accu-
mulation, the accurate prediction of the distribution and
quality of hydrocarbon source rocks is of great significance
for searching for oil and gas accumulation zones, clarifying
the pattern of oil and gas accumulation, and calculating the
resource amount [1–3].

The total organic carbon (TOC) content is one of the
most important parameters for evaluating the hydrocarbon
generation potential of source rocks. At present, the
methods to obtain the TOC content mainly include geo-
chemical, logging, and seismic methods. Due to the lack of
cores, the TOC acquisition by geochemical analysis is costly,
which makes it difficult to carry out systematic studies and
meet the exploration needs of low–medium offshore oil-
bearing basins. Considering the availability and continuity
of conventional logging data, many researchers have per-
formed exploratory work in predicting the TOC content

using logging information, forming two types of methods.
The first category is the ΔlogR method and its modification,
that is, the superposition of resistivity and porosity curves to
predict the total organic carbon content [4–10]. The prob-
lems of this method are mainly in two-fold: first, the matu-
rity parameters need to be determined, which restricts the
use of this method, so its improved algorithm is used more
often now; second, the process of determining the logR
model is susceptible to human interference. This model
requires the artificial determination of fine-grained non-
source rock as the baseline, so the appropriate selection of
the baseline determines the prediction accuracy of ΔlogR.
In practice, it is difficult to find a suitable baseline for some
wells, even when the scale is well defined, so calculation
accuracy is not guaranteed. The second type of method is
to use single characteristic curves or multicharacteristic
curves for fitting calculations. For example, the statistical
relationship between the natural gamma curve and TOC
value is established, the method of compensating for the
density curve and TOC single factor fitting is proposed
based on the concept of small kerogen density, and
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multivariate fitting modelling is carried out using the
compensation density curve, compensation neutron curve,
acoustic time difference curve, deep resistivity curve, etc.
[11–14]. The advantage of this kind of algorithm is that
the method is simple, but the prediction accuracy needs to
be further improved. These two methods require a certain
amount of logging data in the target zone and require a large
amount of sample data. Therefore, they are not suitable for
areas with few or no wells. TOC prediction by the seismic
method is mainly based on measured seismic data combined
with sedimentary geological information and establishes the
relationship between seismic data and the TOC of source
rocks by means of geophysical inversion and multiattribute
prediction [14–16]. Loseth et al. [17] used the attribute of
the maximum trough amplitude to predict the thickness of
the source rock. Cao et al. [18] used the seismic attribute
method to predict the thickness of the source rock in the
new exploration area of the northern basin of the South Yel-
low Sea. Lin et al. [15] found the best attribute combination
by optimizing the seismic multiattribute in the Weixinan
Sag. Leedberg [19] used seismic inversion to predict the dis-
tribution of shale oil source rocks in the Northern Alaska
basin. Qin et al. [20] used 3D seismic data to predict the
abundance of organic matter in the entire formation through
seismic multiattribute inversion. Tao et al. [21] used fre-
quency division inversion technology to predict source
rocks, and Liu et al. [22] used a multiattribute fusion method
to predict source rocks. This method requires the measured
TOC of the target layer and then obtains TOC information
of the whole target layer by using the continuity of seismic
data. However, it cannot be applied to the situation where
no well is present in the target layer.

In recent years, artificial neural networks have developed
rapidly. As a mathematical model imitating biological neural
networks, it has many advantages in solving high-dimensional
and nonlinear problems. Many scholars try to use neural net-
work algorithms to predict TOC, that is, to improve the accu-
racy of TOC calculation by using the strong approximation
function of neural networks, among which the BP neural net-
work is the most widely used network. Guo et al. calculated
the TOC content by combining plate classification with a BP
neural network [23]. Xiong et al. used a BP neural network to
predict the TOC of shale [24]. Zhang et al. used a BP neural net-
work to predict and evaluate the TOC content in complex
lithologies [25]. Bolandi et al. predicted the TOC content of
mudstone by combining a BP neural network with acoustic,
resistivity, and density logging [26]. Such methods further
improve the calculation accuracy of TOC and are widely used.
Compared with deep learning methods represented by convo-
lutional neural network (CNN), BP neural network is a shallow
neural network, which has many advantages such as simple and
reliable structure, simple sample data production, and fast error
convergence. It is very suitable for nonlinear fitting problems
such as parameter prediction.

The study area is located in the northern deep-water area
of the Yinggehai Basin, covering an area of 6000 km2. The
area is composed of the Lingao uplift, Haikou nose-like
structural belt, and east–west slope belt, which is a Cenozoic
sedimentary depression with a thickness of more than 8 km.

The structures were deposited mainly during the Eocene
(Lingtou Formation), Oligocene (Yacheng Formation and
Lingshui Formation), Miocene, Pliocene, and Quaternary.
The source rocks are mainly the Oligocene Yacheng Forma-
tion, which is composed of littoral and neritic facies and is
also the target layer of this study. In the study area, 24 explo-
ration wells have been drilled, among which 7 wells have
measured 137 sets of discrete TOC contents. Due to the lim-
itation of drilling depth, none of the wells reached the target
layer, and the TOC of only 1 well was taken from the Ling-
shui Formation, which overlies the target layer. The Lingshui
Formation and the target formation are Oligocene in age,
while the TOC values of the other wells are from shallower
formations of Miocene age and younger. TOC was not mea-
sured in the remaining 17 wells, of which only one well was
drilled into the Lingshui Formation, the formation overlying
the target formation, while the other wells were drilled into
shallower formations. The study area is located in the
deep-water area, which is not conducive to the prediction
of source rocks due to the extremely harsh conditions, such
as less TOC measured in drilling, no logging information in
the target layer, and poor seismic data quality. The single
logging method, seismic method, or neural network method
cannot overcome the constraints of the above conditions and
obtain satisfactory source rock prediction results. In this
paper, based on the nonlinear characteristics between TOC
and logging information, the BP neural network method is
used to predict the TOC of the strata overlying the target layer
and add to the TOC information in the study area. Then, the
highest TOC value of the strata overlying the target layer is
used to select the most sensitive seismic attributes. Finally,
the selected seismic attributes are used to evaluate the source
rock without wells in the deep-water area.

2. Logging Characteristics of the Total Organic
Carbon Content

Conventional logging series have the characteristic of low
cost and are more widely used than unconventional logging
series, so this paper discusses only the relationship between
conventional logging curves and TOC. The correlation anal-
ysis of 137 cores from 7 wells in the study area shows that
TOC has a certain correlation with gamma logging, resistiv-
ity logging, and acoustic time difference logging (Figure 1).
Generally, lacustrine or marine argillaceous source rocks
tend to absorb more radioactive uranium due to their small
grain size and large specific surface area, resulting in higher
natural gamma logging values. However, the TOC of argilla-
ceous source rocks in this area is negatively correlated with
natural gamma radiation (Figure 1(a)), which may be
because the argillaceous source rocks in this area are coal-
measure source rocks. As organic carbon is enriched, the
contents of humus and absorbed radioactive elements
decrease, leading to a decrease in natural gamma rays. The
resistivity of organic matter is large, and the resistivity log
value increases with increasing TOC, so the resistivity log
value is positively correlated with TOC (Figure 1(b)). Due
to the high acoustic propagation time of organic matter,
the acoustic log value increases with increasing TOC.
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However, the correlation between the acoustic time differ-
ence log value and TOC content is not obvious in this
area (Figure 1(c)), which may be related to the fact that
this area contains coal-measure source rock with a large
burial depth.

As shown in Figure 1, although there is a certain
degree of correlation between the response of the above
characteristic curves and TOC content, such a relationship
can be used only for qualitative analysis of TOC, which
has too low of precision for quantitative calculation,
especially when the TOC content is low, thereby showing
obvious dispersion. This phenomenon occurs because con-
ventional logging curves measure the comprehensive
response of formations. When the TOC content is not
high, the information expressed by logging curves is sup-
pressed by other information, which is difficult to show.
Therefore, it is necessary to use a neural network to mine
TOC information.

3. Predicting TOC Using a BP Neural Network

3.1. The Architecture of the BP Neural Network. A back
propagation (BP) neural network is a multilayer feed-
forward network trained by an error inverse propagation
algorithm that can easily deal with complex multidimen-
sional nonlinear mapping problems in engineering
research and has a good effect on data classification, clus-
tering, and prediction. Its main principle is to use the
method of error back propagation to train on the basis
of the known learning sample set and build a network
with the training results [23, 27–31]. The learning process
of the BP neural network is divided into two kinds: for-
ward propagation learning and back propagation learning.
In the forward learning process, the input vector is proc-
essed layer by layer from the input layer through the hid-
den layer and then transmitted to the output layer. In this
case, the state of neurons in each layer affects only the
state of neurons in the next layer. Once the desired results
cannot be obtained in the output layer, reverse propaga-
tion is carried out again, and the error signal is returned
along the original path. In this way, the error is minimized
by constantly modifying the weight of neurons in each
layer (Figure 2). The input data of the input layer of the

BP neural network are normalized logging data, such as
RT data (resistivity logging), which can be expressed as
follows:

xi =
RT − RTmin

RTmax − RTmin
, 1

where xi is the normalized sample data obtained from the
input layer, RTmin is the minimum resistivity logging data,
and RTmax is the maximum resistivity logging data. In
order to ensure the normal calculation of equation (1),
abnormal cases of RTmin and RTmax should be excluded,
and the difference between them should not be 0.

The most basic algorithm of the BP neural network is
“the fastest descent method,” which is applied to two pro-
cesses of signal forward propagation and error back propa-
gation. The output formula of the output layer in the
forward propagation process is as follows:

Yk = f 〠
n

j=1
wjk × xj + bk , 2

where f = 1/1 + e−x is the activation function, wjk is the
weight from the j neuron in the hidden layer to the k neuron
in the output layer, bk is the offset of the k neuron in the
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Figure 1: Correlation between conventional logging response and TOC.
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hidden layer, xj is the output of the last hidden layer, and Yk

is the output result of the output layer.
In the process of error back propagation, the output

error signals of neurons in each layer are calculated from
the output layer, and then the weights and thresholds of each
layer are adjusted according to the error gradient descent
method to minimize the mean square error (MSE). The
expression of the mean square error function is as follows:

MSE =
1
2n

〠
n

j=1
E2
i , 3

where Ei is the error of the ith input data and n is the num-
ber of input data point. In Formula (2), the weight adjust-
ment formula is expressed as follows:

wi j+1 = ε × βj × Yk + α × Δwij, 4

where wi j+1 is the weight from input layer i to hidden layer
j + 1, Δwij is the weight from input layer i to hidden layer j, ε
is the learning step, βj is the error term, α is the momentum
factor, and Yk is the result of the output layer. The parame-
ter α is used to prevent local error minimization by using
additional momentum to slide over these minima. The cor-
rection weight should not only consider the effect of error
on the gradient but also consider the influence of the error
trend.

3.2. Training and Validation. During BP neural network
modelling, the logging data collected in the study area,
including gamma, resistivity, and acoustic time difference
data, were first preprocessed and standardized uniformly.
The measured TOC values of 116 samples from 6 wells were
collected, and the corresponding three groups of logging
data were input into the BP neural network. The actual mea-
sured TOC of the remaining 1 well was used as validation
data. The input data are a 3 × 116 matrix of 116 three-
element vectors, and the output data are a 1 × 116 matrix
of 116 1-element vectors. Sufficient sample data can guaran-
tee the generalization ability of the network. However, lim-
ited by the quantity and quality of actual logging data, we
can only obtain 116 sets of sample data to participate in
the training and verification of the network. Although the
subsequent test and verification results of the network are
satisfactory, it is always required to obtain as many samples
as possible. The network debugging process is as follows: 100
groups of data are randomly selected as training sets, and the
weights of the neural network are constantly updated to
minimize the MSE. The training set was used to determine
the network structure, and the remaining 16 groups of data
were used as test sets to independently test the performance
of the neural network. The expected value was set, that is, the
overall accuracy was greater than 90%. The final training
time was 10min, and the final epoch number was 297. As
shown in Figure 3, when the number of iterations is 297,
the training accuracy is the best. Here, the output of each
layer needs to be deactivated by activation functions; com-
monly used activation functions include sigmoid, tanh, and

ReLU functions. Among them, sigmoid and tanh functions
are prone to the problem of gradient disappearance, and
the deep network does not easily converge during training.
Therefore, the ReLU function is adopted here, which can
adequately solve the above problems and carry out train-
ing smoothly. In network training, the trainlm function
is used as the training function, and the momentum factor
is 0.93. Figure 4 shows the distribution of the predicted
TOC and measured TOC values in the training and test
phases. The correlation coefficient (R) in the training
phase is 0.83, and that in the test phase is 0.81. Figure 5
shows TOC values predicted from the validation well com-
pared to measured values. As shown in Figure 5, the two
values are in good agreement. Although there is some
deviation in the values of individual well sections, the
trend of increasing or decreasing values on the two curves
is basically the same. The results show that the BP neural
network has high reliability in predicting the TOC of
source rocks and can provide a basis for resource potential
evaluation.

4. The Use of High TOC to Select the Most
Sensitive Seismic Attribute

There are no drilling data of the target formation in the
study area, and only two wells (C and D) are drilled into
the Lingshui Formation adjacent to the target formation.
Well C has a small number of measured discrete TOC
values in the Lingshui Formation, while well D has no
measured TOC values. Standardized acoustic time differ-
ence, resistivity, and gamma log data from these two
wells were used as input data for continuous TOC pre-
diction using trained neural networks (Figure 6). For
the whole study area, although the TOC values of the
two wells adjacent to the target layer are known, the
TOC distribution of the target layer cannot be directly
obtained vertically. In addition, due to the small number
of wells in the horizontal direction and the large area of
the study area, the TOC distribution of the source rock
cannot be predicted horizontally. Seismic data are
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information bodies that can be continuously distributed
both vertically and horizontally. Given the seismic infor-
mation at one location, we can infer the seismic informa-
tion at another location at a certain distance according to
the continuous distribution of seismic data. The change
in geological conditions indicated by seismic information
is a gradual process, which is consistent with the charac-
teristics of geological deposition [16]. Based on the conti-
nuity and gradual characteristics of seismic data, we
propose an evaluation route for deep source rocks in
the case that there is no drilling in the target layer in

deep water. First, the high TOC values of two wells in
the Lingshui Formation of the strata overlying the target
layer were correlated with seismic attributes, and the seis-
mic attribute with the highest correlation was found.
Then, the high TOC area of the deep target layer is pre-
dicted by using the same seismic attribute based on the
continuity of seismic data. Here, the key to successful
TOC prediction using attributes is to extract and select
seismic attributes that are most relevant to source rocks.
In this study, GeoEast software was used to extract 39
seismic attribute bodies of the instantaneous class, wavelet
class, statistical class, and mathematical class, further cal-
culate the correlation between the attribute values of each
attribute body at these two wells and the predicted TOC,
and screen out 8 kinds of attribute bodies with a correla-
tion of more than 30% (Table 1). The perigram (smooth
reflection intensity) has the greatest correlation with
TOC. It should be noted that, when calculating the corre-
lation between seismic attributes and TOC values, it is
necessary to extract the attribute values and TOC values
of the same depth of the well in advance and then use
the common correlation calculation method in mathemat-
ics to calculate the correlation. Since TOC values are dis-
crete vertically and seismic attributes are continuous, both
values must be guaranteed to exist at the same depth
when extracting these two values.

Figure 7 shows the main survey line profile of the peri-
gram passing through well C. Figure 8 shows the local
enlargement of Figure 7. The above figure shows the peri-
gram attribute, and the following figure shows the seismic
data profile corresponding to the above figure. Figure 8
shows that the high TOC area of well C is in good agreement
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with the perigram of the Lingshui Formation. In addition,
the seismic data corresponding to high TOC are character-
ized by strong amplitude, medium and low frequencies,
and good continuity.

Figure 9 shows the connection line profile of the peri-
gram across well C. Figure 10 is a partial enlargement of

Figure 9, with the perigram attribute shown above and the
corresponding seismic data profile shown below. The fea-
tures observed in Figure 10 are the same as those in Figure 8.

Figure 11 shows the mainline section of the perigram
across well D. Figure 12 is a partial enlargement of
Figure 11, with the perigram shown above and the seismic
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Table 1: Correlation between seismic attributes and TOC.

Seismic attribute Relevance to TOC

Perigram (smooth reflection intensity) 0.78

RST (the intensity of reflection) 0.37

Prg∗CIP (the product of reflection intensity and phase cosine) 0.36

Entropy (pseudo entropy) 0.42

Normal var (the standard variance) 0.41

Kurt (kurtosis) 0.40

Variance 0.33

Absamp (absolute value of amplitude) 0.43
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data section corresponding to the figure shown below.
Figure 12 shows that the high TOC area of well D is in good
agreement with the perigram of the Lingshui Formation. In
addition, the seismic data corresponding to high TOC also
have the characteristics of strong amplitude, medium and
low frequencies, and good continuity.

Figure 13 shows the perigram connection line profile
across well D. Figure 14 is a partial enlargement of

Figure 13, with the perigram attributes shown above and
the corresponding seismic data profile shown below. The
features observed in Figure 14 are the same as those in
Figure 12. In addition, the high TOC area of well D matches
the perimeter of the Lingshui Formation very well. In addi-
tion, the seismic data corresponding to high TOC also have
the characteristics of strong amplitude, medium and low fre-
quencies, and good continuity.
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Laterally, the distance between the two wells, C and D, is
5 km, and the high TOC area of the two wells in different
positions coincides with the perigram attribute of the same
formation. This indicates two points of view: one viewpoint
is that the accuracy of TOC prediction by the BP neural net-
work is very high and reliable; the other is that it is reason-
able and feasible to predict the spatial distribution of TOC
by using seismic attributes.

5. Technical Process for TOC Prediction

The technical process for TOC prediction based on the
BP neural network and seismic attributes is presented
below. This technical process can be applied to the eval-
uation of source rocks in areas with no or few wells in
the target layer, as well as other areas with general
conditions.
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(1) The logging curves are collected and preprocessed,
and this step includes acoustic logging, gamma log-
ging, and resistivity logging; collecting measured
TOC values; and generating training data sets

(2) A BP neural network is built, a training data set is
used to train the neural network, and then the effec-
tiveness and accuracy of the network are verified

(3) A neural network is used to predict continuous TOC
values of unmeasured TOC wells

(4) A variety of seismic attributes is obtained, and then
the most sensitive attribute associated with high
TOC is selected

(5) This sensitive attribute is used to predict the high
TOC distribution area of the target layer

6. TOC Prediction Results

Based on the aforementioned TOC prediction and evalua-
tion process of source rocks, the regional lateral
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characteristic map of the high TOC content of the target for-
mation is obtained (Figure 15). High TOC areas (yellow) are
distributed laterally in strips and sheets. Since well CD was
not drilled into the target formation, we projected the well-
head of vertical well CD onto the Yacheng Formation for
easy display, as shown in Figure 15. TOC is high in the area
where well CD is located, and it can be inferred that the
source rocks there are relatively developed.

In general, the distribution characteristics of TOC pre-
dicted by the BP method can provide a basis for source rock
evaluation, but there are some limitations of this method.
These limitations are present because there are no wells in
the target layer in the study area, and very few wells are
drilled into the strata adjacent to the target layer. Therefore,
limited by the small number of samples, it is impossible to
establish a one-to-one mapping relationship between the
predicted TOC values and the values of sensitive attributes,
which has adverse effects on the numerical characterization
of TOC in the target layer. Therefore, this method can only
describe the TOC of the study area qualitatively rather than
quantitatively.

7. Conclusion

The application in the study area shows that the TOC pre-
diction technique combined with the BP neural network
and seismic attributes has good prospects in the study of
source rocks. Through the research in this paper, the follow-
ing conclusions are drawn:

(1) The BP neural network has the characteristics of a
simple structure, high prediction accuracy, and
strong adaptability. The predicted TOC has high
reliability, which provides a basis for resource
quantity evaluation and a technical idea for the
TOC evaluation of source rocks under such geologi-
cal conditions

(2) The technical process is still unable to achieve the
spatial quantitative characterization of TOC, and
further targeted research should be carried out
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