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Significant amounts of unconventional oil and gas resources have been discovered in the Yanchang Formation of Ordos Basin.
Shale layers deposited in Chang 7 member (divided into Chang 7-2 submember (C7-2SM) and Chang 7-3 submember
(C7-3SM) and Chang 9 member (C9M)) are the main source rocks. Based on the comparison of mineralogical and
geochemical characteristics, it is concluded that (1) in terms of mineralogical characteristics, the C7-3SM shale possesses
the largest content of illite/smectite mixed layer and reducing minerals and the least quantity of quartz. The COM shale
shows the highest percentage of quartz and illite and the least amount of K-feldspar and Kaolinite. In C7-2SM and COM
shale, amorphous silica surrounded tightly by clay minerals is easily observed by the scanning electron microscopy. Besides the
drilling orientation, the small content of quartz contributed to the lowest porosity for the C7-3SM shale. (2) In terms of
geochemical characteristics, the C7-3SM shale exhibits high productivity due to type II, kerogen. The organic matter in the
C7-2SM and C9M shale contains mainly type II, and possibly type III kerogen. The COM shale exhibits the highest organic

thermal maturity. The C7-3SM shale was formed in a relatively higher salinity of sedimentary water.

1. Introduction

Successful exploration of shale gas in previous years has
aroused wide public concern about the shale reservoir
[1-4]. In recent years, the lacustrine shale gas exploration
also succeeded in the Permian Lucaogou Formation of Jung-
gar Basin, the Mesozoic Yanchang Formation of Ordos
Basin and the Upper Cretaceous Qingshankou Formation
of Songliao Basin. Along with these exploration practices, a
lot of research findings have been produced [5-8]. The
lacustrine shale is different from marine shale in many
aspects, including the structural and depositional setting,
pore and fracture networks, geochemical and reservoir char-
acteristics, shale gas genetic types, and accumulation model
[9-12].

Globally, only 1.2% of Phanerozoic source rocks are Tri-
assic in origin. However, the Triassic Yanchang Formation
of the Ordos Basin having the large abundant shale oil
resources in China [13, 14]. Shale layers, the most important
source rock in the Ordos Basin, are primarily deposited in
Chang 9 and Chang 7 members. In recent years, the Chang
7 member shale has drawn much attention, especially the
C7-3SM shale has been regarded as an integrated whole to
compared with marine shale [4, 15]. Because in this period,
the basin’s area and the water body’s depth reached the peak
[16]. However, the C7-2SM and C9Ms shale were neglected.
The deposition time of C7-2SM and C7-3SM is similar. Due
to changes in the sedimentary environment, they show sig-
nificant differences in their shale quality. In the COM sedi-
mentary period, the lake basin development was still in the
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FIGURE 1: Location map showing the research area and drilling cores in the Ordos Basin, Central China.

early stage, which was a semideep lake sedimentary environ-
ment [17]. Both Chang 7 and C9Ms shale had similar com-
positions, with abundant type II organic matter and major
minerals such as quartz, clay minerals, and feldspars [15,
18]. They are generally less mature than the marine shale,
and the relatively larger amount of clay minerals in Chang
7 and C9M shale affects the methane sorption of bulk rocks
under dried conditions [15]. Comprehensively comparative
research about different layers of Yanchang Formation shale
is much imperative. Based on the previous work [19], the
latest research results of Chang 9, systematically comparing
C7-2SM, C7-3SM, and Chang 9, were presented in this
research.

2. Geological Setting

The Ordos Basin, as one of the most petroliferous and gas-
bearing lacustrine basin, is located in the central part of
North China [11, 20]. Because of the wrench movement
around the basin in the Cenozoic era, the Ordos Basin is
now an asymmetric huge north-south syncline with a
wide-gentle east limb and a narrow-abrupt west one. The
Ordos Basin can be divided into six tectonic units [21, 22],
namely, the Northern Yimeng uplift, south Weibei uplift,
eastern Jinxi flexural zone, western Xiyuan obduction zone
with Tianhuan hollow zone closely next to it, and Yishan
ramp region in the center. Yishan ramp region is the main

part of the wide-gentle east limb. The research area is located
in the southeast of Yishan ramp region and is a western-
leaning monocline with lower stratigraphic dip (<1°), gentle
average slope (7-8 m/km), and simple internal structure
(Figure 1).

The Triassic strata consist of fluvial and lacustrine
deposits [23]. The Yanchang Formation was deposited in
the late Triassic age and is divided into 10 members from
top to bottom according to marker beds and sedimentary
cycles. The seismites were widely developed in the whole
Yanchang Formation [22], but the shale layers, as the main
source rock in the area, were primarily deposited in the
Chang 7 and C9Ms (Figure 2). The COM formed in the early
stage of the late Triassic, and the shale layers only occurred
in the upper part and mainly consist of lacustrine organic-
rich black shale (commonly known as “Lijiatan” shale in
China) [24]. The Chang 7 member developed in the period
of flooding lake in Ordos Basin. The shale layers, as the main
body of Chang 7 member, mostly consist of organic-rich
black shale and oil shale (commonly known as “Zhangjia-
tan” black shale in China) [25].

The Yanchang Formation shale (shale in Chang 9 and
Chang 7 members) was deposited in a freshwater lacustrine
sedimentary environment, developing obvious organic mat-
ter lamina, pyrite framboids, and nanofossils [26, 27]. The
Yanchang Formation shale strata is about 80 m thick in aver-
age with the thickest area about 100 m, and is now buried in
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FiGurg 2: Lithological and logging characteristics of the Yanchang Formation shale in the study area. The photos column: (I) pyrite
framboids aggregate in Chang 7 member shale; (II) rock thin sections of Chang 7 member; (III) microscopic photos of rock thin
sections; (IV) barites; (V) pyrite framboids in C9M shale; and (VI) rock thin sections of CIM.

depth ranging from 832m-1700m with the average of
1288 m. Lamina mainly develops in Chang 7 member shale
indicating stronger anisotropy than COM shale (Figure 2).
Pyrite framboids in CO9M shale grow separately rather than
gathering to aggregate (Figure 2). Heavy minerals, such as
barite and phosphorite, can be observed occasionally both
in Chang 7 and COM shale (Figure 2). The organic-rich
shales in the Chang 7 member of the Yanchang Formation
are self-generation and self-accumulation production sys-
tems with oil in fine-grained sedimentary rocks [28].

The Chang 7 member can be divided into three sub-
members (SM) according to the sedimentary cycle [25, 29].
The lithology of Chang 7-1 SM mainly consists of sandstone
and siltstone, which do not belong to the section of Chang 7
member shale reservoir. The Chang 7 member shale can be
divided into C7-2SM and C7-3SM (Figure 2). The two SM
shale appears to be similar in the gamma readings, with
upper possessing relatively higher gamma value as a result
of containing volcanic debris with radioactive substances
[30] but display a significant difference in the acoustic time
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TaBLE 1: Statistical table of samples numbers corresponding to experimental methods.

Experimental methods C7-2SM C7-3SM CIM
XRD 25 17 18
Trace element analysis 25 15 20
TOC and ROCK-EVAL.II methodology analysis 96 29 31
Vitrinite reflectance values 40 13 17

Note: “TOC, ROCK-EVALL.I analysis” means the sample from same depth was used in all the three experiments.

data, with C7-2SM presenting low frustration in AC data
and C7-3SM displaying relatively higher and increasing
AC values with progressive burial depth.

3. Samples Preparation and
Experimental Methods

3.1. Samples Preparation. A series of experiments were con-
ducted, including X-ray diffraction, total organic carbon
analysis, rock pyrolysis, and vitrinite reflectance. Shale sam-
ples of the C7-2SM, C7-3SM, and COM cannot be acquired
from any individual well so far. The shale sample numbers
for each and matching experimental method are presented
in detailed in Table 1.

3.2. Experimental Methods

3.2.1. X-Ray Diffraction Analysis and Scanning Electron
Microscope Observation. A total of 60 shale samples from
Chang 7 and C9M shales were ground to powder finer than
200 mesh (i.e., <75pum) and then analyzed for whole-bulk
and clay fraction (<2mm) mineralogy by quantitative
X-ray diffraction (XRD) analysis by Rigaku automated
powder diffractometer (D/MAX-RA) equipped with a Cu
X-ray source (40 Kv, 35mA), following the two independent
processes of the CPSC procedure [31]. First, the bulk mineral
composition of the powder sample was determined over an
angular range of 4-70720 at a scanning speed of 1°26/min.
Second, the clay mineral content was determined over an
angular variations of 3-65°20 at a scanning speed of 1.5°20/
min after the clay fractions being separated from the rock
powder sample. The scanning electron microscope (SEM)
observation was also conducted using a Leica microscope
with a CRAIC Microscope photometer and FEI Quanta-
200F apparatus with an energy-dispersive spectrometer
(EDS) in the State Key Laboratory of Petroleum Resources
and Prospecting (Beijing) to ascertain image analysis of
minerals.

3.2.2. Total Organic Carbon and Rock-Eval Analysis. 156
samples were used in TOC and Rock-Eval analysis, using
laboratory apparatus LECO TOC (CS-230HC) and the
ROCK-EVALII methodology, which were conducted in
the State Key Laboratory of Petroleum Resources and Pro-
specting, China University of Petroleum, Beijing. The sam-
ples used in TOC measurement were immersed in 5% HCI
solution for two days in order to eliminate the carbonate
minerals and then dried in a stoving oven at 65°C for 1.5

Calcite 0 10 20 30 40 50 60 70 80 90 100 Clay

O Barnett shale
¢ Chang7-2 SM

m Chang7-3 SM
4 Chang 9 member

FiGure 3: Triangle figure of comparison between terrestrial shale
from the Yanchang Formation and Barnett Mineral composition
data of Barnett shale samples is from Jarvie et al. [2].

days. Rock-Eval pyrolysis is an established method for char-
acterizing the type and thermal maturity of organic matter
in sedimentary rocks as well as their petroleum generation
potential [32]. The samples were subjected to programmed
heating in an inert atmosphere to determine the amount
of volatile gas and residual hydrocarbons (S; peak) and
the amounts of nonvolatile hydrocarbons and oxygen-
containing organic compounds released during thermal
cracking of the remaining organic matter in the rock
(recorded as S,).

3.2.3. Vitrinite Reflectance and Trace Element Analysis. The
thermal maturity reflected by the experimental vitrinite
reflectance values was acquired by full-automatic micro-
scope photometer (MPV-SP). A total of 60 samples were
employed for trace element analysis. Samples were crushed
into mm-size fragments and washed in 10-percent HCI to
leach soluble secondary material (e.g., calcite), followed by
agitation in reverse osmosis water prior to powdering. Each
sample was heated in 30% H,O, until all organic matter had
been digested. The concentration of trace elements in min-
erals was obtained with laser-ablation microprobe linked
with inductively coupled plasma mass spectrometer
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FIGURE 4: Mineral composition of C7-2SM, C7-3SM, and C9M shale samples.

(LAM-ICP-MS) in the Beijing Research Institute of Ura-
nium Geology, which is the geological experiment research
department of the China National Nuclear Corporation
(CNNCQC). Detection limits were typically in the range
100-500 ppb for Sc, 10-100ppb for Sr, Zr, Ba, Gd, and
Pb, 1-10ppb for Y, Nb, La, Ce, Nd, Sm, Eu, Dy, Er, Yb,
Hf, and Ta, and usually 1ppb for Pr, Th, and U.

3.2.4. Porosity and Permeability Analysis. The cylinder shale
samples with a diameter of 2.5cm and a length of 5cm for
each were analyzed for porosity and permeability in the Res-
ervoir Porous Flow Laboratory of RIPED-Langfang Petro-
China. These samples were definitely without factitious

microfracture on the surface formed during the drilling pro-
cess. It is hard to identify artificial microfracture formed in
the sample interior before porosity and permeability analy-
sis, which explains aberrant data point appearance.

4. Results

4.1. Mineral Composition and SEM-EDS. There are scarcely
any carbonate minerals in both the Chang 7 and CIM shales
(Figure 3) compared with the Barnett shale [2, 33]. Illite-
smectite mixed layer is the main composition of clay min-
erals. The C7-2SM exhibits a little bit higher content of clay
minerals than the C7-3SM and C9M shale and detrital
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F1GURE 5: SEM images and EDS of amorphous silica in C7-2SM and COM shale. The red “+” in the figure is the right point where EDS measures.

minerals (Table 2, Figure 4). The COM shale owns the high-
est percentage of quartz (36.22%) and illite (26.17%) while
possesses the least amount of K-feldspar (1.33%) and kaolin-
ite (0.06%) (Figure 4). The C7-3SM shale possesses much
larger content of illite/smectite mixed layer and less quantity
of quartz, which exhibits great dissimilarity with C7-2SM
and C9M shales. In C7-2SM and C9M shales, some amor-
phous silica was observed, which cannot be measured by
XRD (Table 2). They are surrounded tightly by clay min-
erals, and there is no space for them to grow into authigenic
microquartz (Figure 5).

4.2. Geochemical Characteristics

4.2.1. Organic Matter Richness. The TOC data points of the
C7-2SM and C9M shales are more scattered, mainly ranging
from 2% to 12% (Table 3). Most of the TOC values of the
C7-2SM shale distribute in the range of 2%~6% and COIM
shale in the range of 4%~8%, while that of the C7-3SM shale
is chiefly in the variation range of 4%~6%. The C7-3SM
shale possesses the highest content of residual bitumen
and oil, as indicated by the largest S, values, which are
approximately equal between the C7-2SM and C9M shales
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FIGURE 6: Relationship for C7-2SM, C7-3SM, and C9M shale between §,, S,, and TOC.
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FI1GURE 7: Frequency histogram of Ro for C7-2SM, C7-3SM and C9M shales.

(Figure 6(a)). The TOC of both the Chang 7 and Chang 9
shales exhibits good positive correlation with S, values.
But the slope value of the line on behalf of the C7-3SM
shale is much higher than the other two sections of shale
(Figure 6(b)). According to the principle of laboratory
apparatus LECO TOC (CS-230HC) analysis, TOC includes
the contribution from kerogen and residual bitumen and
oil. The C7-3SM shale possesses the highest content of
residual hydrocarbon and kerogen.

4.2.2. Organic Matter Maturity. Both the Chang 7 and COM
shales are mainly in the oil window at the present time with
R, ranging from 0.8% to 1.2% (Figure 7, Table 4). S, stand-
ing for hydrocarbon newly generated during the Rock-Eval
process has better positive correlation with TOC than §,
representing residual hydrocarbon in shale samples, which

indirectly indicates the relatively low thermal maturity.
Exquisitely compared with each other, the organic matter
in Chang 9 shale exhibits the highest thermal maturity,
and that in the C7-3SM shale samples the lowest. The
CIM shale is buried about 100 m deeper than the Chang 7
member shale, which makes the highest thermal maturity
easily understandable. However, the thermal maturity of
C7-3SM shale is lower despite being buried deeper than
C7-2SM shale, which implies the existence of other controls
on thermal maturity.

4.2.3. Organic Matter Types. According to Rock-Eval data,
kerogen in both C7-2SM and C9M shales contains mainly
type II, and possibly type III, especially for COM shale
(Figure 8). Approximately half of the C7-3SM shale samples
show the type II; kerogen, but the other half of the samples
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F1GURE 8: Plot of hydrogen index (HI) versus Tmax, showing the types of organic matter for C7-2SM, C7-3SM, and C9M shales.
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FIGURE 9: The relationship between Sr/Ba and Sr/Cu. The C7-3SM shale exhibits special linear correlation between Sr/Ba and Sr/Cu.

present the type II, kerogen, and the data points are distrib-
uted a little far away from the type III threshold line
(Figure 8). It can be an explanation of possessing the highest
values of S; and S, with medium content of TOC and the
lowest thermal maturity.

4.3. Trace Element Analysis. Element B is regarded as a com-
mon parameter that possesses a positive linear correlation
with salinity of sedimentary water [34, 35]. In Yanchang
Formation shale, B was not determined at all, indicating a
freshwater sedimentary environment. The Sr/Ba is another
parameter sensitively reflecting the salinity of sedimentary

water. It represents freshwater sedimentary environment
when the Sr/Ba value is less than 1 [36, 37], which is exactly
describing the Yanchang Formation shale samples
(Figure 9). The Sr/Cu is a parameter employed to express
the dry-humid degree of sedimentary environment. It repre-
sents warm-moist climate when the Sr/Cu values range from
1 to 10 [34, 37], which is exactly describing most of the Yan-
chang Formation shale samples.

The dry-humid degree of the sedimentary environment
has a great influence on the salinity of sedimentary water.
The Yanchang Formation shale presents a linear correlation
between Sr/Ba and Sr/Cu (Table 5). The slope value of the
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F1Gure 10: The resolution comparison of reducing environmental exquisite changes for variety of parameters. The parameters of (Cu+Mo)/
Zn and Cr/Cu show higher sensitivity. (Cu+Mo)/Zn and Cr/Cu values are generally much larger and smaller, respectively, for C7-3SM shale.

line on behalf of the C7-3SM shale is much lower than those
of the lines representing the C7-2SM shale and C9M shale,
which means relatively higher salinity of sedimentary water
for the C7-3SM shale (Figure 9).

A large quantity of parameters have been used to reflect
the reducibility or oxidability of sedimentary environment,
such as Ce/La, Th/U, Cr/V, Cr/Cu, V/Sc, V/(V+Ni), and
(Cu+Mo)/Zn [38-41]. All the parameters mentioned above
indicate a reduced environment for the Yanchang Forma-
tion shale. But only the parameters of Ce/La, (Cu+Mo)/Zn,
V/Sc and Cr/Cu satisfy our requirement to exquisite
comparison among C7-2SM, C7-3SM and CO9M shale
(Figure 10). Compared with C7-2SM and C9M shales, the
Ce/La, (Cu+Mo)/Zn, and V/Sc values of the C7-3SM shale
are much larger and the Cr/Cu values smaller (Figure 11),

which represents a stronger reducing environment. It was
also indicated indirectly by much larger percentage of reduc-
ing minerals, pyrite and siderite, in Figure 4.

4.4. Porosity and Permeability. The Chang 9 member shale
possesses the highest porosity followed by the Chang 7-2
SM shale. Although two samples from the Chang 7-3 SM
shale display higher permeability, in general, no apparent
difference of permeability occurs among the three sections
of shale (Table 6).

5. Discussion

Sedimentation and diagenesis are the main controlling fac-
tors for the differences among the three members and also
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lead to the enrichment of organic matter and the potential of
oil and gas resources. According to the trace element analy-
sis, the C7-3SM shale developed under much deeper and
stratified water. The relatively larger amount of reducing
minerals in C7-3SM shale, pyrite and siderite, implies a dif-
ferent sedimentary environment from the C7-2SM and C9IM
shales. Furthermore, much deeper water represents further
away from the sediment provenance, which explains the
much larger content of illite/smectite mixed layer and less
quantity of quartz.

The COM shale is buried deeper than Chang 7 member
shale and has experienced stronger diagenesis, which
explains the nearly disappearance of kaolinite. In addition,
more K-feldspar was dissolved for the COM shale during
the burial diagenesis to provide K* for smectite-illite trans-
formation, reducing the most amount of illite and the least
content of K-feldspar. The smectite to illite reaction is a dis-
solution—precipitation reaction [42, 43]. This reaction
releases locally high silica supersaturation in the pore water,
which probably provides silica source for the authigenic
microquartz crystals [44, 45]. According to the experiment
[46], about 18% of the silica (1101.1 g of the products pro-
duced by the reaction, including 197.7 g of silica) will be
released during the conversion of montmorillonite to illite.
The chemical reaction formula adopted is as follows:

1.308 [(AlalsMgo.ss) (Sig09)O30(OH), (Nay 45)2H,0
+ (0.06Fe,0; + 0.56K,0 + 0.02Ca0)]
- [(Al4.12Feo.1Mgo.56)(Si7.17)020(OH)4(K1.47Na0.01Cao.03)]
+3.29§i0, + 0.56Na, O + 0.55MgO + 3.23H,0.

(1)

It was another contribution to the larger content of
quartz in COM shale.

In fact, the drilling orientation was the major factor to
porosity and permeability. Samples with drilling orientation
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perpendicular to sedimentary stratification (“vertical” sam-
ples) display relatively lower porosity and permeability than
samples with drilling orientation parallel to sedimentary
stratification (“parallel” samples) because of the existence
of lamina, which improves porosity and permeability in
the research about the Yanchang Formation shale of Ordos
Basin. Regardless of the degree of compaction and diagene-
sis, the laminar zone, where different mineral zones come
into contact with each other, is always the weakest zone in
the sample and has gaps that are difficult to close. “Vertical”
samples are lack of lamina. Alternatively, the striations
developed in the sample are perpendicular to the flow direc-
tion of the gas used in the permeability test. In permeability
tests, gas is more likely to pass through the gap between the
two different laminates. If the laminar is perpendicular to
the direction of gas flow, it is equivalent to gas from one
medium into another medium, and the flow velocity must
be reduced. Lamina is the main contribution to bedding fis-
sure development, which is the key factor to induce cylinder
shale samples fragmentation when being drilled perpendicu-
larly to sedimentary stratification.

Besides, porosity displays a positive correlation with the
content of quartz, no matter for “vertical” samples or “paral-
lel” samples (Figure 12). Compaction of soft muds to hard
shale during progressive burial involves both mechanical
and chemical processes causing significant changes of the
physical mudstone rock properties. In the shallow parts
(<2km) of sedimentary basins, the sediments compacted
mostly mechanically. The Yanchang Formation shale strata
is buried in depth ranging from 2730 ft to 5577 ft (832 m-
1700 m) with an average of 4225.7 ft (about 1288 m), which
means mechanical compaction dominates the changes of
shale physical properties. Hence, the special mineral compo-
sition of the Chang 7-3 SM, a small percentage of quartz and
large quantity of illite/smectite mixed layer, exactly explains
the lowest porosity.

6. Conclusion

Based on mineralogical and geochemical characteristics, this
work compared C7-2SM, C7-3SM, and Chang 9 shales:

(1) All three section of shales developed in a freshwater
sedimentary environment. But the C7-3SM shale
samples formed in deeper sedimentary water of rela-
tively higher salinity and stronger reducibility,
inducing the largest content of illite/smectite mixed
layer and the least quantity of quartz. The C7-2SM
and C9M shale formed in similar sedimentary envi-
ronment according to the trace element characteris-
tic and mineral composition in view of mineral
evolution during diagenesis

(2) The C7-3SM shale owns higher S, values and pro-
ductivity of hydrocarbon per gram TOC due to type
II, kerogen. Kerogen in C7-2SM and C9M shale
contain mainly type II, and possibly type III, organic
matter, especially for COM shale
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TABLE 6: Porosity and permeability of the Yanchang shale samples.

Number Depth (m) Way of drilling Member/SM Length (cm) Diameter (cm) Porosity (%) Permeability (mD)

1 1409.31 Vertical C7-2SM 4.039 2.489 0.646 0.002933
2 1414.15 Vertical C7-2SM 5.065 2.494 0.400 0.000961
3 1415.67 Vertical C7-2SM 2.821 2.497 1.385 0.000927
4 1417.73 Vertical C7-2SM 2.735 2.492 0.964 0.000331
5 1418.95 Vertical C7-2SM 3.933 2.494 0.857 0.000303
6 1420.88 Vertical C7-2SM 2.958 2.492 1.331 0.000501
7 1419.66 Parallel C7-2SM 2.757 2.494 2.229 0.001192
8 1141.92 Parallel C7-2SM 2.870 2.460 2.690 0.001634
9 1386.12 Parallel C7-3SM 4.920 2.458 2.262 0.000468
10 1388.72 Parallel C7-3SM 2.755 2.478 2.062 0.001002
11 1392.62 Parallel C7-3SM 2.946 2.496 2.779 0.000201
12 1392.77 Parallel C7-3SM 2.783 2.479 2.375 0.000178
13 1399.25 Parallel C7-3SM 2.686 2.482 2.585 0.007016
14 1399.78 Parallel C7-3SM 3.302 2.490 2.976 0.000047
15 1398.37 Parallel C7-3SM 3.470 2.490 2.118 0.002029
16 1608.28 Parallel C7-3SM 2.972 2.483 1.341 0.004561
17 1613.38 Parallel C7-3SM 3.892 2.494 2.030 0.002188
18 1619.22 Parallel C7-3SM 3.808 2.492 1.631 0.000664
19 1621.85 Parallel C7-3SM 4.249 2.499 2.135 0.000197
20 1611.12 Vertical C7-3SM 4.779 2.491 0.786 0.000068
21 1611.86 Vertical C7-3SM 2.839 2.489 0.615 0.000535
22 1620.68 Parallel C7-3SM 2.778 2.495 1.962 0.000428
23 1360.75 Parallel COM 3.000 2.470 3.790 0.001289
24 1600.19 Parallel COM 2.880 2.480 2.550 0.002533
25 1671.34 Parallel CoOM 2.770 2.470 3.330 0.001781

Vertical: drilling orientation perpendicular to sedimentary stratification. Parallel: drilling orientation parallel to sedimentary stratification.
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FIGURE 12: Relationship for the Chang 7-2 SM, Chang 7-3 SM, and Chang 9 member cylinder shale samples between porosity and content of
quartz.
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(3) The C7-3SM shale samples display the lowest poros-
ity. The drilling orientation and the small content
of quartz contributed to the lowest porosity for
the C7-3SM shale
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