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The U.S. Department of Energy’s National Energy Technology Laboratory (DOE-NETL) has been developing methods and tools
(the online Carbon Dioxide Storage prospeCtive Resource Estimation Excel aNalysis (CO2-SCREEN) tool) to estimate carbon
dioxide (CO2) storage potential in subsurface reservoirs. The CO2 storage efficiency terms are input in the tool to calculate
storage potential in targeted reservoirs. In this effort, two CO2 storage efficiency terms were evaluated: volumetric displacement
(EV ) and microscopic displacement (Ed). The first term deals with efficiency of CO2 propagation into an accessible reservoir
volume, while the second term evaluates effectiveness of native fluid displacement with CO2. The interpreted well logs and core
sample measurements were applied to create the heterogeneous reservoir models including geostatistical realizations of porosity
and intrinsic permeability fields. Supercritical CO2 was injected over the course of 30 years into brine-saturated reservoir
models for clastics, limestone, and dolomite lithologies and deltaic fluvial, aeolian, shallow marine, and reef depositional
environments by means of varying reservoir parameters and injection scenarios. The reservoir models providing vertically
heterogeneous petrophysical properties and designated as “layered reservoir models” (with homogeneous parameters along
each layer of the model) were not determined to be a transition between the homogeneous and heterogeneous models in
respect to storage efficiency. Another finding shows that high-efficiency factors do not necessarily mean increased CO2 storage;
they rather indicate that the available volume and pore space are more fully utilized. The CO2 storage efficiency factors were
evaluated dynamically at the select time points using P10‐P50‐P90 percentiles. The results of this study show that the P10‐P90
distribution for volumetric efficiency is wider when compared to the microscopic efficiency. It was found that where dominant
buoyancy forces drive the plume to the top of a target formation, the volumetric efficiency is low. Tighter sandstone and
carbonate formations show prevalence of capillary forces and better utilization of reservoir volume.

1. Introduction

Subsurface storage of CO2 is gaining interest as a means for
mitigating greenhouse gas emissions. There is a need for
development of methods that estimate how much CO2 can
be stored in the subsurface to be widely available and easily
accessible. Recently, a standard guide for estimating storage
of CO2 in the subsurface with consistent terminology was
developed by the Society of Petroleum Engineers (SPE)
and the American Association of Petroleum Geologists
(AAPG) called the Storage Resources Management System

(SRMS) [1]. This system focuses on developing a framework
for large-scale commercial storage of CO2 in the subsurface
where a project is clearly defined with active injection wells
and the amount of storage space available is quantified.
There are three storage classifications under the SRMS: stor-
age capacity, contingent storage resources, and prospective
storage resources. Capacity quantifies storable quantities
for developed projects actively injecting CO2, while both
contingent and prospective storage resources cover projects
that are not proven but include various degrees of regional
assessments. The U.S. Department of Energy National Energy

Hindawi
Geofluids
Volume 2023, Article ID 5089508, 16 pages
https://doi.org/10.1155/2023/5089508

https://orcid.org/0000-0002-5806-1338
https://orcid.org/0000-0001-9658-8432
https://orcid.org/0000-0002-3207-5360
https://orcid.org/0000-0001-7328-9464
https://orcid.org/0000-0003-3004-3303
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5089508


Technology Laboratory (DOE-NETL) has worked to develop
storage methods at the contingent and prospective storage
levels for saline formations, unmineable coal seams, depleted
unconventional shale formations, and residual oil zones
[2–5]. An online version of these methods is available as the
CO2 Storage prospeCtive Resource Estimation Excel aNalysis
(CO2-SCREEN) tool [3]. These methods and tools have been
used worldwide to estimate contingent storage and prospec-
tive storage and incorporated into best practice field manuals
compiled from CO2 injection tests at various pilot-scale sites
[6–10]. The introduction of CO2 storage efficiency factors uti-
lized in the CO2-SCREEN tool is provided below.

The U.S. DOE is considering geologic carbon storage as
a means for reducing anthropogenic emission of CO2 that
contributes to climate change and formed a nationwide net-
work of regional partnerships to help determine the best
approaches for capturing and permanently storing CO2
[10]. The U.S. DOE Carbon Storage Program also developed
a CO2 storage method in conjunction with the Regional Car-
bon Sequestration Partnerships (RCSP) for the estimation of
volumetric CO2 storage in deep saline formations, oil and
gas reservoir, and unmineable coal seams in the U.S. and
portions of Canada [6–9]. The RCSP were government/
industry efforts tasked with determining the most suitable
technologies, regulations, and infrastructure needs for car-
bon capture, storage, and sequestration in different areas of
the country [10]. Saline aquifers show high potential in
terms of storage potential and safety as evidenced by devel-
opment phase field projects for CO2 storage [10].

As reported in Ref. [11], the U.S. DOE-NETL methodol-
ogy introduces a volumetric method to estimate prospective
mass CO2 storage resource (G) using

G = AdhsϕsρsEsaline
s, ð1Þ

where Ad , hs, ϕs, and ρs are the areal size of the formation,
the thickness of the formation, porosity, and CO2 density
(estimated at average pressure and temperature of the stor-
age formation), respectively. Superscripts d and s indicate
that a corresponding parameter is estimated deterministi-
cally and stochastically (the superscripts are further omitted
for clarity).

The storage efficiency (Esaline) term reduces the estima-
tion of stored CO2 mass at a specific site to accommodate
the complexities of the fundamental processes associated
with production, injection, and storage within saline aquifers.

Esaline = EAEhEϕEVEd , ð2Þ

Esaline =
1

1 + e −EAð Þ� � ∗
1

1 + e −Ehð Þ� � ∗
1

1 + e −Eϕð Þ� �

∗
1

1 + e −EVð Þ� � ∗
1

1 + e −Edð Þ� � ,
ð3Þ

where EA, Eh, and Eϕ are the fraction of the geologic area,
thickness, and porosity accessible for CO2 storage, respec-
tively. Since the individual efficiency terms in Equation (2)

are determined stochastically, Equation (2) is required to be
written in log odds notation and expanded to Equation (3)
(as described in Ref. [9]) to determine storage efficiency
(Esaline) using Monte Carlo sampling.

EV , the volumetric displacement efficiency, represents
the fraction of reservoir volume accessed by CO2 plume. It
is calculated as the ratio of CO2 injected to the pore volume
of the reservoir accessed by the CO2 plume.

EV = Vi

Ahϕ 1 − Swirr

� � = Qit

Ahϕρ 1 − Swirr

� � , ð4Þ

where Vi is the volume of injected CO2; A, h, and ϕ are the
area, thickness, and porosity of the accessed volume, respec-
tively; and Swirr

is the irreducible water saturation. The vol-
ume of the injected CO2 can also be expressed through
mass flow rate ðQiÞ, injection duration ðtÞ, and averaged
CO2 density (ρ) at in situ conditions (Equation (4)). To
determine the area, A, the minimum-area-circle approach
is used as depicted in Figure S1 (Supplemental Materials).
The accessible volume is the multiplication of the area and
thickness of the formation.

Ed , the microscopic displacement efficiency, is the frac-
tion of water displaced by CO2, which is calculated at the
plume level by the average water saturation (Swave

) as shown
in Equation (4) [12].

Ed = 1 − Swave
= SCO2ave

, ð5Þ

where SCO2ave
is the average CO2 saturation within the CO2

plume. It is assumed that CO2 would not be able to occupy
all effective porosity defined by ð1 − Swirr

Þ [12].
The volumetric and microscopic displacement efficien-

cies are dynamic terms in Equation (2) and Equation (3)
since their values are time-dependent and change with the
CO2 plume propagating through a target formation. As
injection progresses with time, plume shape changes and,
therefore, EV changes. In addition, Ed changes as average
saturation values change due to buoyancy forces, capillary
trapping, and other processes. The time dependency of stor-
age efficiencies emphasizes the importance of the heteroge-
neous representation of porosity and intrinsic permeability
in reservoir models mimicking actual pore network in a
saline aquifer and coupled permeability controlling mobile
phase flow.

Shao et al. [13] performed simulations on various sto-
chastic model realizations under different conditions and
showed that nested geological heterogeneity is a major
player in controlling plume propagation. Rasheed et al.
[14] found that an aquifer with a porosity higher than 20%
and a low to medium level of heterogeneity is more suitable
for CO2 storage. Stochastically generated and spatially
correlated permeability distributions have shown that het-
erogeneous permeability significantly affects both the accu-
mulation and distribution of CO2 [15–17]. Heterogeneity
also promotes the local capillary trapping that may deviate
the path of rising CO2 [18, 19]. Both experimental and
numerical studies have identified the great impact of
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heterogeneous capillary trapping on the performance of CO2
storage [20, 21].

Several studies have explored CO2 storage in saline for-
mations using numerical simulation [22]. Storage potential
and efficiency factors have been investigated by developing
heterogeneous models and performing sensitivity analysis
using geologic (e.g., ratio of net to gross thickness, ratio of
net to total area, and ratio of effective to total porosity), mac-
roscopic (e.g., gravity), and microscopic (e.g., saturation)
terms [23]. To estimate storage efficiency for specific lithol-
ogies and depositional environments, heterogeneous geocel-
lular models and geological architecture common to each of
the environments had to be developed [24–26]. However,
prior storage efficiency values were mostly based on limited
geologically nonspecific relative permeability data.

Recently, CO2 storage capacity in deep saline aquifers
and residual oil zones (ROZs) was investigated using
machine learning algorithms [27, 28]. The developed smart
tools could be used to provide fast and accurate storage effi-
ciency for aquifers that have similar parameters falling
within the range of the database [27]. The proposed artificial
neural network models can predict the CO2-enhanced oil
recovery (EOR) and storage performance with high accuracy
in ROZs [28].

In our recent work, storage efficiency parameters were
estimated based on homogeneous reservoirs [29]. Homoge-
neous CO2 storage efficiency values for supercritical CO2
injection into brine-saturated reservoirs for clastics, lime-
stone, dolomite lithologies and marginal marine, strand
plain, deltaic complex fluvial, aeolian, shallow marine, and
reef depositional environments were determined for 30 years
of injection [29]. In this work, we add complexity to the stor-
age efficiency factors by incorporating heterogeneity into the
reservoir models. The numerical simulations of fluid
dynamic models to estimate volumetric displacement (EV )
and microscopic displacement (Ed) efficiency factors for
saline formations were performed using the TOUGH3 code
[30]. In this effort, heterogeneity was accounted for in the
reservoir models designed for CO2 injection using downhole
well log information retrieved at pilot sites of different
lithologies and depositional environments. The models are
developed using the corresponding experimental relative
permeability data available in the CO2-Brine Relative
permeability Accessible (CO2BRA) database [31]. The het-
erogeneous storage efficiency values are also available in
DOE-NETL’s CO2-SCREEN tool v4.1 [3].

2. Methodology

The workflow of the manuscript includes creating heteroge-
neous reservoir models that represent five combinations of
lithology and depositional environment. Next, simulation
cases are run with varying pressure, temperature, permeabil-
ity anisotropy, injection rate, reservoir thickness, porosity,
and permeability distributions. Then, the results of CO2
injection over 30 years are processed to calculate time-
dependent storage efficiency terms using Equations (4) and
(5). The computed efficiency factors are then analyzed and
compared with factors estimated using homogeneous reser-

voirs. A summary table listing the storage efficiency factors
as P10‐P50‐P90 percentiles is provided at the end of the
manuscript.

2.1. DOE Carbon Storage Partnership Sites Used as Proxy for
Heterogeneous Reservoir Models. Five saline reservoir models
and five depositional environments were considered in this
study based on the data collected by the RCSP. The hetero-
geneous reservoir models were based on the corresponding
sections of saline aquifers showing the best quality in terms
of total porosity and intrinsic permeability for continuous
CO2 injection. Below is the list of the formation/depositional
environments utilized for making the models and their brief
descriptions. A suite of wireline logs was collected at each
site and interpreted with core sample measurements to pro-
vide total porosity and intrinsic permeability distributions
within the reservoir thickness. Supplemental material con-
tains derived porosity and permeability logs used to create
the heterogeneous reservoir models (Figures S2, S5, S7,
S10, and S13).

(1) Lower Mt. Simon Sandstone/Shallow Marine (3,320-
3,507 ft. (1012-1069m) true vertical depth below
ground surface (TVDbgs) (187 ft. (57m) total) at
Duke Energy #1 Well (East Bent Field, Boone
County, Kentucky)). The field project conducted at
the Duke Energy East Bend Generating Station in
Boone County, Kentucky, was carried out within
the Midwest Regional Carbon Sequestration Part-
nership. The Mt. Simon Sandstone represents the
target injection reservoir at the East Bend site. Based
on the core sample analysis, the reservoir is sand-
dominated consisting of a fine- to coarse-grained
quartz in a lower shoreface (shallow marine) deposi-
tional environment [32]

(2) Cranfield Sandstone/Fluvial (10,430-10,505 ft. (3179-
3202m) measured depth (MD) (75 ft. (23m)) and
10,598-10,630 ft. (3230–3240m) MD (32 ft. (10m))
at CFU 31F#1 Injection Well (Cranfield Unit,
Lincoln County, Mississippi)). This field project is
being conducted at the Cranfield Site, Franklin,
Mississippi, within the framework of Southeast
Regional Carbon Utilization and Storage Partner-
ship. The target reservoir in the Tuscaloosa Forma-
tion at Cranfield Site represents fluvial sandstone
containing high amounts of volcanoclastic grains
[33]. The volcanoclastic grains were dissolved during
early diagenesis and served as a source for quartz
cements. Chlorite cement prevented precipitation
of additional cement and preserved high porosity
as deep as 1.86miles (~3 kilometers)

(3) Broom Creek Sandstone/Aeolian (6,280-6,457 MD ft.
(1914-1968m) (177 ft. (54m)) at Flemmer Well #1
(Wildcat Field, North Dakota)). In spring 2017, the
Energy & Environmental Research Center initiated
an effort to determine the feasibility of developing a
commercial-scale CO2 geologic storage complex able
to store more than 50 million tons (Mt) of CO2 in
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central North Dakota safely, permanently, and eco-
nomically. The geologic characterization well was
drilled in the Broom Creek Formation, which repre-
sents a quartz-dominated sandstone, and sidewall
core samples were retrieved from the well [34]. The
depositional environment of the Broom Creek For-
mation is aeolian [35]

(4) Middle Duperow Carbonate/Reef (3,280-3,450 MD ft.
(1000-1052m) (170 ft. (52m)) at Danielson 33-17
Well (Kevin Dome formations, Kevin Sunburst
Field, Toole County, Montana)). The Big Sky Car-
bon Sequestration Partnership (BSCSP, now the part
of Carbon Utilization and Storage Partnership of the
Western United States) was supported through a
cooperative agreement with DOE. BSCSP’s goal
was to demonstrate that the Kevin Dome is a safe
and viable location for the long-term storage of
CO2. The Middle Duperow Carbonate (mixed lime-
stone and dolostone) formation was selected as a tar-
get formation, and the Danielson 33-17 Well was
drilled through the formation [36]

(5) Bass Islands Dolomite/Shallow Marine (3,440-3,515
MD ft. (1048-1071m) (75 ft. (23m)) at St. Charlton
4-30 Well (St. Charlton, Otsego County, Michigan)).
As part of the Midwest Regional Carbon Sequestra-
tion Partnership Phase II research program, the St.
Charlton 4-30 Well was drilled and logged in north-
eastern Otsego County, Michigan. The Bass Islands
Group (BILD) is carbonate, and evaporitic sedimen-
tary rocks were produced by the diagenetic alteration
of Late Silurian shallow water in Michigan and the
eastern Great Lakes region. The BILD, deposited in
a shallow marine environment, is dominantly dolo-
mite with locally high porosity and permeability
due to grainstone and collapsed karst textures.
Porosity ranges from 2% to 38% with an average of
13%. Permeability ranges from 0mD to 684mD with
an average of 23mD. The Core Energy St. Charlton
#4-30 well drilled through at least 188 ft. (57m) of
BILD and collected 78 ft. (24m) of core from the
uppermost part along with 42 ft. (13m) of the over-
lying Bois Blanc Formation [37]

2.2. CO2BRA Database of Relative Permeability Data for
Select Lithologies and Deposition Environments. Besides het-
erogeneity of the petrophysical properties in a target forma-
tion, another strong factor influencing the efficiency terms
is relative permeability (kr) controlling multiphase flow in
pore space. The impact of different kr relationships and
their parameters is critical to accurately predict the propa-
gation supercritical CO2 (scCO2) and saturation distribu-
tion in a reservoir [38, 39]. In this study, CO2BRA, a
freely available database containing experimental data for
rock types of different depositional environments [31, 40],
was utilized to correlate lithology and depositional environ-
ment of the select heterogeneous reservoir models with kr
experimental data measured for corresponding core sam-
ples. The kr data for the corresponding lithology/deposition
were made available in the TOUGH3 code [30] used to con-
duct simulations. Details of the CO2BRA database imple-
mentation into the code and selection of experimental kr
curves for a lithology/deposition environment of interest
can be found elsewhere [29].

Table 1 lists the five target formations and their domi-
nant deposition environments, described in the previous
section, against relevant CO2BRA sample names of the same
lithology and deposition. The table also collects porosity,
permeability, and parameters of residual saturations and
maximum kr values derived from the unsteady-state experi-
ment of CO2 injection into the brine-saturated core samples
[40]. Noticeably, there are low endpoint kr values of CO2
(<0.3) and high residual brine saturations (>0.4) for the kr
curves that were typical for the unsteady-state method of
scCO2 injection [41, 42]. The method relies on the injection
of scCO2 to displace brine in a fully saturated sample and
never truly settles on a steady-state condition due to the
incremental displacements of the primary fluid [43, 44].
The low endpoint numbers for scCO2 and high residual sat-
uration values for brine are attributed to capillary end
effects, sample heterogeneity, and low mobility ratio by
Jeong et al. [45].

Supplemental material contains descriptions of sidewall
core samples (where available) extracted at the geological
wells and the CO2BRA samples corresponding to similar
lithology and depositional environment (Figures S3, S4, S6,
S8, S9, S11, S12, S14, and S15 and Tables S1-S2). The
images of the samples are accompanied with general

Table 1: Formation and CO2BRA sample names corresponding to similar lithology and depositional environments and CO2BRA sample
porosity, permeability (mD), and parameters∗ of relative permeability curves.

N Formation name Lithology
Depositional
environment

CO2BRA sample
name

Sample
porosity

Sample
perm. (mD)

Swir krw
max SCO2ir krCO2

max

1 Lower Mt. Simon Sandstone Marginal marine Bandera Brown A 0.164 124 0.566 1.00 0.00 0.320

2 Cranfield Sandstone Deltaic complex fluvial Castlegate 0.252 865 0.705 1.00 0.00 0.185

3 Broom Creek Sandstone Aeolian Navajo 0.156 41 0.497 1.00 0.00 0.271

4 Middle Duperow
Carbonate,
limestone

Shallow marine Edwards Yellow 0.192 25 0.460 1.00 0.01 0.102

5 Bass Island
Carbonate,
dolomite

Shallow marine/reef Silurian 0.129 327 0.453 1.00 0.10 0.032

∗Where Swir and SCO2ir are the residual water and scCO2 saturations and krw
max and krCO2

max are the maximum brine and scCO2 relative permeability values.
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geological descriptions and, at certain cases, information
about grain size indices and mineralogy.

2.3. Reservoir Model Preparation. The heterogeneous reser-
voir models were approximated using a vertical cylindrical
model with a wellbore placed along its axis (Figure 1).
Taking advantage of the cylindrical symmetry, 2D axisym-
metric models were created using 5,000m as a reservoir
radius in the lateral direction and a wellbore placed on
the left boundary of a 2D model. The meshes were created
using quadrilateral grid blocks with CO2 entering through
a wellbore perforated along the length of reservoir thick-
ness. The meshes consist of 35 uniformly spaced grid
blocks in the lateral direction (X-coordinate) with 42 and
62 cells in the vertical direction (Z-coordinate) for 50
and 75m reservoir thickness, respectively. That produces
35 × 42 and 32 × 62 mesh sizes. No-flow boundaries at
the top and the bottom and open-flow boundaries at the
lateral extent of the reservoir are assumed. The mesh size
sensitivity analysis was conducted to confirm that finer
mesh sizes provide similar numerical results. The reservoir
models were created flat focusing on the geologic hetero-
geneity of the rocks.

To populate the mesh with porosity and permeability
data, the well log information depicted in Figures S2, S5,
S7, S10, and S13 and core measurement correlations
(Supplemental Materials) were used. Two types of
heterogeneity were introduced into the reservoir models:
(1) layered. Porosity and permeability values were varied
with depth following the mesh discretization in the vertical
direction. To do so, the corresponding values were
upscaled (red lines in the above-mentioned figures in
Supplemental Materials) to fit layers of the meshes. In the
lateral direction, the properties were assigned uniformly
assuming they are laterally homogeneous. This model
implies ideal geological control of the properties in the
horizontal directions. (2) Heterogeneous. For those models,
the density porosity logs across the reservoir thickness
were utilized to estimate empirical variograms in the
vertical direction. Since only one well log was adopted for
each formation, to quantify spatial correlation in the lateral
direction, the anisotropy factors were applied following the
guidance from Gorecki et al. [23] for horizontal variogram
ranges or information about geologic control of bedding
planes at nearby wells if available (like for Danielson and
Wallewein wells drilled into the Middle Duperow
formation) [46]. Since the reservoir models utilize a 2D
approximation, no azimuthal control for model variogram

was used. That implies the same geospatial property
correlation in the horizontal direction. Using the model
variogram as weighting functions, ordinary kriging along
with Sequential Gaussian Simulation was performed using
the normal score-transformed porosity as the input data
on a rectangular reservoir grid. The output from the
stochastic simulation, which is a normal score porosity,
was transformed back to actual porosity values. A
geostatistical software, WinGSLib v.2015 [47], was used to
calculate porosity distributions for each heterogeneous
reservoir model. To generate coupled intrinsic permeability
data, the correlation derived from permeability logs, or
core measurements, was used to develop permeability
values. Up to nine realizations of porosity and coupled
permeability distributions were generated for use in
simulations to account for uncertainty in property
distributions. Figure 2 shows the layered and heterogeneous
representation of the sandstone/fluvial reservoir models
generated using the Cranfield Sandstone formation as a proxy.

The initial pressure and temperature conditions were
selected based on data from Gas Information System
(GASIS) [48], which is a public database containing approx-
imately 20,000 oil and gas reservoir records. The initial P‐T
values correspond to CO2 in supercritical condition. CO2
injection was executed for 30 years using an open interval
across the entire reservoir thickness. Table 2 collects pertinent
reservoir model parameters and injection scenarios. The simu-
lation cases designed to estimate statistical distributions of the
CO2 storage efficiency terms are considered in the next section.

2.4. Simulation Cases. For each combination of lithologies
and depositional environments listed in Table 1, simulation
cases were designed by varying five parameters for sensitivity
analysis, as shown in Table 3.

They included pressure, temperature, permeability
anisotropy (i.e., the ratio of vertical permeability to hori-
zontal permeability, kv/kh), reservoir thickness, and injec-
tion rate. A min/max value was selected for each
parameter. The min/max pressure was coupled with min/
max temperature representing shallow/deep formations,
respectively. The minimum pressure and temperature were
selected in such a way to assure the existence of scCO2.
The min/max for permeability anisotropy was set at 0.1
and 0.5 [52, 53]. The min/max injection rates were selected
in such a way to be consistent with field data [32–37] and
the maximum pressure buildup around the wellbore and
formation fracture pressure [29]. The thickness variability
was based on consideration of typical perforation intervals

CO2

5,000 m

50 m or
75 m

Injection
well

x

z

Figure 1: Utilization of the cylindrical 3D domain to generate a 2D reservoir model.
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positioned against reservoir sections with largest perme-
ability in the target formations [34].

In this study, the numerical simulations were carried out
using the ECO2M module of TOUGH3 [30] designed for

simulations of CO2 storage in saline aquifers. The module
represents a comprehensive description of thermodynamic
properties of a H2O-NaCl-CO2 mixture [54] within broad
ranges of pressure, temperature, and salt concentrations.
The module accounts for phase changes that can arise dur-
ing CO2 injection involving gaseous, liquid, and supercritical
phases of CO2 together with brine and has improved conver-
gence during the appearance and disappearance of a non-
aqueous phase. PetraSim [55] was used to postprocess the
results of the simulations.

3. Results and Discussion

Table 3 lists 16 total cases created using various injection
scenarios and reservoir parameters, which together with
nine geostatistical realizations of porosity and coupled per-
meability distributions for each case provide 144 simulations
carried out for each reservoir model type: layered and het-
erogeneous models. In total, 288 simulation runs were con-
ducted. The results of the simulations were postprocessed
following the approach described in Section 2 to calculate
CO2 efficiency terms and corresponding percentile values
(Equations (4) and (5)). Figure 3 compares volumetric dis-
placement efficiency (EV ) and microscopic displacement
efficiency (Ed) computed using layered and heterogeneous
reservoir models with homogeneous values calculated in
the previous study [29] for select lithology/depositional envi-
ronment. The efficiency terms are represented as horizontal
bars (probability distribution ranges) where the minimum
and maximum values correspond to P10 and P90 values
(10th and 90th percentile), respectively. The table also con-
tains minimum and maximum porosity and permeability
values extracted from the GASIS database [48] for homoge-
neous models and average porosity/permeability values eval-
uated using layered and heterogeneous (one realization)
reservoir models.

The analysis of Figure 3 indicates that introducing geo-
logic heterogeneity into petrophysical properties strongly

0.14 0.22 0.30 0.38

(a) Vertical heterogeneous porosity

0.07 0.14 0.29 0.380.07 0.14 0.29 0.38

(b) Fully heterogeneous porosity

2.00 422 842 1,2602.00 422 842 1,260

(c) Vertical heterogeneous permeability (mD)

1.00 455 909 1,3601.00 455 909 1,360

(d) Fully heterogeneous permeability (mD)

Figure 2: Layered and heterogeneous porosity (a, b) and layered and heterogeneous permeability (c, d) distributions of the sandstone/fluvial
reservoir.

Table 2: Model parameters and injection scenarios.

Mesh size and model dimensions

Length 5,000m

Thickness 55 and 75m

Mesh size 35 × 42 and 35 × 62
Number of elements 1,470 and 2,170

Rock properties

Porosity Heterogeneous

Permeability Heterogeneous

Number of geostatistical realizations 9

Relative permeability CO2BRA database

Capillary pressure Lithology-sensitive∗

Initial conditions

Initial pressure GASIS database

Pressure gradient 10.14 kPa/m

Initial temperature GASIS database

Temperature gradient 0.02°C/m

Brine concentration 8wt.%

Pore compressibility 4.5-10 Pa-1

Injection scenarios

Injection rate 400 and 800 tons/day

Injection period 30 years

Perforation Reservoir thickness
∗For sandstone reservoir models, the Brooks-Corey capillary pressure
function was used using the parameters from Refs. [49, 50], and for
limestone and dolomite reservoir models, the van Genuchten capillary
pressure function was utilized using the parameters from Ref. [51].
Leverett scaling of capillary pressure was invoked since heterogeneous
porosity and permeability fields were used.
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influences flow characteristics determining the plume size
and shape. This translates into broad variations of the volu-
metric efficiency that range from 11.5% in sandstone/aeo-
lian to 90.5% in carbonate/shallow marine depositional
environments. In some cases, probability distribution ranges
of volumetric efficiency become narrower by adding hetero-
geneity (e.g., sandstone aeolian), and in others, ranges
become wider (e.g., carbonate reef limestone). Given that
the volumetric efficiency is based on a CO2 plume shape
and maximum propagation of CO2 into pore space of a
saline aquifer, it is expected that the volumetric efficiency
is sensitive to porosity and permeability distributions in a
reservoir. The results indicate that there is no trend in prob-
ability range changes moving from homogeneous to layered
and then to heterogeneous models. We also concluded that
layered models utilizing idealistic property distribution in
the lateral direction cannot be considered as “transition”
models from homo- to heterogeneous models in terms of
volumetric efficiency evaluation. Since layered models use
only vertical variability in porosity and permeability, loca-
tions of layers with high values of porosity and permeability
in the horizontal direction (Figures S2, S5, S7, S10, and S13)
facilitate plume extension into those layers and determine
an efficiency value.

Microscopic efficiency ranges are generally less impacted
and demonstrate narrow ranges compared to the distribu-
tion ranges of the volumetric efficiency. Only the carbon-
ate/reef data show wide distribution ranges for both
layered and heterogeneous models. For that combination
of lithology and deposition, large shifts are observed in both
microscopic and volumetric efficiency ranges, moving from
homogeneous to layered and then to heterogeneous models.
These variations of CO2 plume shape and storage efficiencies
are further explained in Figure 4. The presence of high per-
meable layers (Figure S13) in the middle of the layered

model (Figure 4(b)) allows for CO2 to channel through the
formation, resulting in a different plume shape compared
to the homogeneous or heterogeneous models (Figures 4(a)
and 4(c)). As a result, volumetric efficiency is reduced
because of the extended plume shape for the layered
model. Reduction of microscopic efficiency of the layered
model is associated with diminishing of CO2 saturation in
the areas behind the advancing CO2 front. Such behavior
indicates dominance of capillary trapping over transverse
buoyancy crossflow and is typical for layered systems of
contrasting porosity/permeability [56]. The heterogeneous
model provides a larger EV value when compared to the
homogeneous model (Figures 4(a) and 4(c)). In the
heterogeneous case, the efficiency term is calculated based
on the minimum-area-circle approach (Figure S1) and near
vertical plume interface which results in more effective
reservoir volume utilization.

Thus, the balance between viscous, capillary, and buoy-
ancy forces affects the efficiency terms. A dimensional anal-
ysis has been widely used to characterize multiphase fluid
flow in porous media to quantify the ratio of a certain force
over another one [57–60]. The residually trapped nonwet-
ting phase is directly affected by a tradeoff between viscous,
capillary, and buoyancy forces and was shown to be corre-
lated with dimensionless number magnitude, like capillary
and bond numbers [61–65]. To analyze dominant forces act-
ing during CO2 flow in porous media of the reservoir, the
dimensionless bond (Bo) number was engaged which
assesses the ratio of gravitational (negative to buoyancy)
and capillary forces (Equation (6)) from Shook et al. [66],
Kuo and Benson [67], Trevisan et al. [68], and Ben [69].

Bo =
ΔρgkV
σ cos θ , ð6Þ

Table 3: Example of parameters used for sensitivity analysis (Lower Mt. Simon).

Modeling cases
Model no. Temperature (°C) Pressure (MPa) Kv/Kh Rate (tons/day) Thickness (m) Porosity Permeability

1 32.2 9.65 0.5 400 55

Heterogeneous Heterogeneous

2 32.2 9.65 0.5 800 55

3 32.2 9.65 0.1 400 55

4 32.2 9.65 0.1 800 55

5 87.8 27.6 0.5 400 55

6 87.8 27.6 0.5 800 55

7 87.8 27.6 0.1 400 55

8 87.8 27.6 0.1 800 55

9 32.2 9.65 0.5 400 75

10 32.2 9.65 0.5 800 75

11 32.2 9.65 0.1 400 75

12 32.2 9.65 0.1 800 75

13 87.8 27.6 0.5 400 75

14 87.8 27.6 0.5 800 75

15 87.8 27.6 0.1 400 75

16 87.8 27.6 0.1 800 75
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0 10 20 30 40 50 60 70 80 90 100
Storage efficiency (%)⁎Minimum and maximum porosity and permeability

⁎⁎Average values

Sandstone: Aeolian

Sandstone: Shallow marine

Sandstone: Fluvial

Carbonate: Shallow marine dolomite

Carbonate: Reef limestone

Volumetric efficiency Microscopic displacement

Homogenous model 10-30 200-1000
Layered model 25 85
Heterogenous model 25 127

Layered model⁎⁎ 24 328

Heterogenous model⁎⁎ 25 200

Homogenous model 10-30 100-400
Layered model 12 1
Heterogenous model 18 6

Homogenous model 10-25 50-110
Layered model 6 1
Heterogenous model 10 20

Porosity (%)
Permeability (mD)

Homogenous model 10-30 50-350
Layered model 12 5
Heterogenous model 13 4.5

Homogenous model⁎ 15-25 20-800

Figure 3: Impact of heterogeneity on probability distribution of the efficiencies at 30 years of CO2 injection. The values of the homogeneous
models were obtained from Haeri et al. [29].

Homogenous
EV = 63%, Ed = 52%

Layered
EV = 19%, Ed = 38%

Heterogenous
EV = 86%, Ed = 56%

0.00 0.2 0.50 0.75 1.00

CO2 saturation

Figure 4: Variations of CO2 plume shape and storage efficiencies for a modeling case of carbonate/shallow marine dolomite at 30 years of
injection.

Sandstone: Aeolian
P = 27.6 MPa
T = 93 °C
Kavg = 214 mD
Bo = 2.60

Carbonate: Reef limestone
P = 27.6 MPa
T = 96 °C
Kavg = 16 mD
Bo = 0.20

Sandstone: Fluvial
P = 27.6 MPa
T = 96 °C
Kavg = 67 mD
Bo = 0.93

Carbonate: Shallow marine dolomite
P = 27.6 MPa
T = 96 °C
Kavg = 7 mD
Bo = 0.07

0.00 0.25 0.50 0.75 1.00

CO2 saturation

Figure 5: Variation of plume shape at 30 years of CO2 injection in select depositional environments and lithologies using heterogeneous
reservoir models. P: pressure; T : temperature; Kavg, average permeability; Bo: the dimensionless number.
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where Δρ, σ, and θ are the density difference of two fluids,
interfacial tension, and contact angle between supercritical
CO2 and brine at storage conditions, respectively, g is the
gravitational constant, and kV is the average vertical perme-
ability of the formation.

Figure 5 illustrates distinctly different plume shapes for
selected cases at 30 years of injection resulting from an inter-
play between those forces. These simulation cases use an
injection rate of 800 tons/d and permeability anisotropy of
0.1. The Bo number together with the average permeability,
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Effect of increasing pressure and temperature

Sandstone:
Shallow marine

Sandstone:
Fluvial

Carbonate: Shallow
marine dolomite
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Reef limestone

Sandstone:
Aeolian

Lithologies and depositional environments
Light color: Lower property value Dark color: Higher property value

Effect of increasing injection rate

Effect of increasing permeability anisotropy

Effect of increasing reservoir thickness

Figure 6: Impact of various pertinent parameters on volumetric efficiency at 30 years of CO2 injection in select depositional environments
and lithologies.
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pressure, and temperature conditions is depicted in Figure 5.
To calculate the Bo number, the density difference between
CO2 and brine at storage conditions and permeability are
averaged over the grid cells within the plume area. The aver-
age values of 27mN/m [70–72] and average 22° [73, 74]
were used for the interfacial tension and contact angle,
respectively. As a general trend, the larger the Bo number,
the more tendency of CO2 to move upward reflecting the
dominance of buoyancy force. In the case of the sand-
stone/aeolian formation (Bo = 2:6), the high permeability
facilitates migration of CO2 upward under the influence of
density difference and its accumulation at the boundary with
the seal acting as a structural trapping. On the other hand,
the Bo numbers smaller than 1 indicate the dominance of
capillarity resulting in retarded vertical movement and more
capillary trapping in horizontal direction, as seen in Figure 4.
Consequently, the Bo number serves as a criterion to deter-
mine the dominant force for flow that correlates with the
resultant plume shape (Figure 4).

Both EV and Ed are impacted by variation in the param-
eters listed in Table 3. However, EV was influenced the most.
Figure 6 illustrates the change in the probability distribution
of EV (P10‐P90 range) with variation of the modeling param-
eters, including pressure and temperature (associated with
depth), permeability anisotropy, injection rate, and reservoir
thickness in different depositional environments. The light

and dark bars of each color correspond to minimum and
maximum values of a certain parameter, respectively. Rais-
ing the pressure and temperature (i.e., going deeper in the
formation) consistently shifts the efficiency distribution
range upward, showing an increase in the volumetric effi-
ciencies (Figure 6, the first plot from the top). The deep for-
mations typically are more favorable for CO2 storage as
higher temperature associated with viscosity reduction
makes the CO2 more mobile [60]. Gorecki et al. [23] demon-
strated that with increase of temperature, there is a small
increase in the microscopic efficiency and a small decrease
in volumetric efficiency. The impact of temperature is not
studied independently in this work. However, pressure is
shown to be the leading factor compared to temperature,
resulting in a consistent increase in the volumetric efficiency
ranges. The impact of injection rate (Figure 6, second plot
from the top) is similar to pressure and temperature influ-
ence. Using a high injection rate, a larger CO2 mass enters
the reservoir for the same injection time compared to cases
with a low injection rate. Consequently, capillary entry pres-
sure is likely overcome, leading to diminishing capillary
trapping and accessing more pore volume and thus higher
volumetric efficiency.

The influence of permeability anisotropy is the opposite
(Figure 6, third plot from the top). Increasing the permeabil-
ity anisotropy (changing Kv/Kh from 0.5 to 0.1) shifts the

Sandstone: Shallow marine
Kv/Kh = 0.5
EV = 59%
Bo = 0.50

Sandstone: Shallow marine
Kv/Kh = 0.1
EV = 45%
Bo = 0.10

0.00 0.25 0.50 0.75 1.00

CO2 saturation

Figure 7: Effect of permeability anisotropy on volumetric efficiency and the Bo number in the sandstone shallow marine using
pressure = 27:6MPa, temperature = 88°C, injection rate = 800 t/d, and Kavg = 8mD at 30 years of CO2 injection.
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Figure 8: Impact of reservoir thickness on volumetric efficiency ranges during the 30 years of CO2 injection in carbonate reef limestone.
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volumetric efficiency ranges downward (i.e., reduction in
volumetric efficiency). With more contrast permeability
anisotropy, CO2 moves predominantly in the lateral direc-
tion that leads to a decrease in volumetric efficiency. In other
words, the mechanism of CO2 fluid flow is shifted from
buoyancy-driven to permeability-controlled by the predom-
inant flow in the horizontal direction.

An exception is the sandstone/aeolian case, in which the
average permeability is high enough to compensate the lat-

eral flow advantage with transverse buoyancy flow, leading
to volumetric efficiency being insensitive to the variation of
permeability anisotropy. To illustrate the influence of per-
meability anisotropy, Figure 7 depicts the plume shapes for
the sandstone/shallow marine case with a relatively more
drastic EV reduction under the influence of an increase in
permeability anisotropy. The reduction of the Bo number
correlates with more extensive plume propagation in the lat-
eral direction under the dominance of capillary forces, when
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Figure 9: Impact of various pertinent parameters on microscopic efficiency at 30 years of CO2 injection in select depositional environments
and lithologies.
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Kv/Kh = 0:1. The capillary trapping makes the propagation
front uneven with multiple areas of elevated CO2 saturations.

Increasing the reservoir thickness leads to decreasing
both P10 and P90 values for sandstone/shallow marine and
carbonate/reef limestone. For the remaining lithology/depo-
sition, the changes of P10 and P90 with thickness increase
occur in different directions (Figure 6, bottom plot). That
means that thickness may be strongly coupled with other
reservoir parameters and implemented heterogeneity. It
should be noted that in most cases, the trends of the param-
eter impact on P10 and P90 values remain preserved over the
course of 30 years of injection.

As an example, Figure 8 displays dynamic changes of the
efficiency values with time for carbonate/reef limestone. The
P10 and P90 values of the higher thickness remain under cor-
responding storage efficiencies of the lower thickness over
the course of 30 years of injection.

The effect of the modeling parameters and injection rate
on Ed is less pronounced compared to EV . Figure 9 shows
the microscopic efficiency terms affected by those parameters
and the rate. There is a general increasing trend in efficiencies
with increasing depth (higher pressure and temperature). Sim-

ilar trend is found for the volumetric efficiency that agrees
with the previous work using the homogeneous reservoirs
[23, 29]. The permeability anisotropy contrast (changing Kv/
Kh from 0.5 to 0.1) undermines the ability of CO2 to displace
brine and, thus, decreases the microscopic efficiency (similar
trend with the volumetric efficiency) in all the selected litholo-
gies and depositional environments. This finding is different
than what was found in the previous work [29] that showed
little sensitivity of the efficiency terms on anisotropy after a
few years of injection using homogeneous reservoir models.
There is a general trend of increase of the P90 value for Ed with
an increase of injection rate while effect of thickness shows no
certain trend across all cases. That implies that for a reservoir
with dominance of one lithology and depositional environ-
ment, the thickness of a formation plays little role in micro-
scopic efficiency.

Table 4 collects dynamic EV and Ed efficiency terms and
their product calculated using P10, P50, and P90 values for
select time points: 1, 5, 10, 20, and 30 years. It is noticeable
that efficiencies are time-dependent. After 1 year of injec-
tion, the P10, P50, and P90 values are the lowest, and then,
they increase toward 5 years and get relatively flat after 10

Table 4: Calculated dynamic storage efficiencies for studied lithologies and depositional environments.

Lithology: depositional environment Injection years
Volumetric

displacement EVð Þ
Microscopic

displacement Edð Þ
Product∗ of EVð Þ ×

Edð Þ
P10 P50 P90 P10 P50 P90 P10 P50 P90

Sandstone: aeolian

1 14.6 24.2 34.4 36.1 39.6 44.7 5.8 9.3 14.0

5 12.2 16.6 24.0 38.7 43.1 47.8 5.2 7.4 10.5

10 12.0 15.8 22.7 40.2 45.0 49.2 5.2 7.4 10.3

20 11.9 16.6 24.5 42.2 46.3 49.7 5.4 8.0 11.4

30 11.4 16.0 23.9 43.2 47.3 50.2 5.3 7.8 11.2

Sandstone: shallow marine

1 17.2 25.2 35.5 28.9 32.4 35.5 5.4 8.1 11.7

5 23.9 30.2 38.7 30.3 33.6 37.0 7.9 10.3 13.2

10 26.4 35.5 46.4 29.3 33.3 37.1 8.5 11.8 15.8

20 31.8 43.3 54.0 30.5 34.0 37.7 10.6 14.4 18.7

30 33.9 44.6 57.4 30.7 35.2 40.3 11.7 16.0 21.0

Sandstone: fluvial

1 40.2 51.4 62.4 22.2 24.7 27.2 9.7 12.6 15.7

5 47.0 62.2 75.8 24.2 26.7 29.0 12.2 16.5 20.6

10 49.2 65.2 78.5 24.8 27.6 29.8 13.2 17.7 21.8

20 48.7 66.0 79.9 26.0 28.6 30.5 13.6 18.5 22.7

30 46.8 65.1 80.0 26.3 29.1 30.8 13.2 18.6 23.1

Carbonate: shallow marine dolomite

1 37.8 49.1 66.4 49.4 51.1 52.6 19.3 26.8 33.9

5 50.1 67.7 81.2 51.4 53.5 55.5 26.6 36.1 43.5

10 58.8 76.2 86.5 52.4 54.5 56.1 31.8 40.7 47.2

20 69.0 80.5 88.9 53.4 55.1 56.5 37.9 44.5 49.1

30 69.6 81.6 90.8 53.8 55.3 56.7 38.4 45.6 50.3

Carbonate: reef limestone

1 25.0 35.0 49.9 30.2 34.9 43.2 8.7 13.2 18.8

5 28.4 41.6 55.2 35.3 44.2 52.1 11.8 17.8 25.3

10 31.3 41.9 58.7 39.2 48.4 54.7 13.9 20.7 28.4

20 32.0 46.0 65.6 43.1 52.4 55.6 15.4 23.8 33.2

30 30.3 47.6 69.3 45.8 53.3 55.8 15.0 25.0 35.4
∗Equation (3) assuming EA, Eh, and Eϕ to be equal to 1.0.
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years. During the initial stage of injection, a CO2 plume in a
target formation is not fully developed and EV and Ed values
are low. The exception belongs to EV values of the sand-
stone/aeolian reservoir having high absolute permeability
and allowing quick propagation of the plume. The data
shown in Table 4 are transferred to the CO2-SCREEN tool
[3], and updated values are available in the online version
of the tool.

In should be noted that since the efficiency terms are
estimated up to 30 years of injection, reactive transport of
CO2 in the formations and the effects of geochemical reac-
tions were not included. Although it is known that CO2
can significantly impact pore structure, especially in carbon-
ate reservoirs [41, 75], the data show that mineral dissolu-
tion is most likely to develop during hundreds of years
(except carbonates) [76]. Similarly, since postinjection
periods and possible imbibition of the displaced fluid were
not accounted for, the relative permeability hysteresis effects
were not included into the simulations. The estimated het-
erogeneous efficiency terms are designed to be applied for
formations with dominant lithologies and depositional envi-
ronments listed in Table 1. For a target reservoir with large
variability in depositional environment within stratigraphic
layering, those factors should be applied with caution. Dis-
tinct structural features like dome, anticline, and incline
were not considered in this work. It should be kept in mind
that the reported efficiency factors can be influenced by such
structural traps and acting gravitational forces. The 2D
approximation used to create the reservoir models implies
that the CO2 plume propagates uniformly from a wellbore.
However, geospatial property correlation may vary in the
azimuthal directions that together with possible presence
of sealing faults deviate CO2 plume expansion from its sym-
metrical shape. Consequently, the uncertainty in efficiency
terms due to an asymmetric plume shape will increase with
injection time. For our next effort, we consider studying
CO2 injection using 3D heterogeneous reservoirs and devel-
oping a methodology of efficiency terms estimation for mul-
tiple well injection scenarios.

4. Conclusions

The results of this work indicate that there is a strong effect
of the reservoir parameters and injection rate on the volu-
metric efficiency, while microscopic efficiency is less influ-
enced as it is evident by narrow ranges of P10‐P90 values
for Ed compared to the corresponding ranges for EV . The
increase of pressure and temperature and injection rates
results in a general trend of increasing efficiencies. Increas-
ing permeability anisotropy decreases both efficiency terms
contrary to prior work utilizing homogeneous reservoir
models that showed little dependency. The data suggest that
there is no clear trend in the efficiency changes because of
using homogeneous, layered, and heterogeneous reservoir
models. Layered models providing laterally homogeneous
petrophysical properties cannot be considered as transition
between the homogeneous and heterogeneous models in
respect of storage efficiency change.

There are no consistent trends in P10‐P90 ranges com-
paring homogeneous and heterogeneous model results. The
volumetric and microscopic efficiencies are sensitive to
injection time. There is a trend of increasing efficiencies with
time indicating better utilization of reservoir volumes.

The heterogeneous reservoir models using high porosity
and permeability had the lowest volumetric efficiency. That
was attributed to dominance of buoyancy forces leading to
poor utilization of reservoir volume by the plume. For other
heterogeneous reservoirs, the higher contribution of capil-
lary forces results in better EV values (expressed through
P10 and P90 values). It is shown that tighter reservoirs with
low permeability and porosity demonstrate higher EV and
Ed , implying more efficient volume and pore network utili-
zation. In other words, higher efficiency factors do not mean
that more CO2 can be placed in a formation, rather that the
available volume and pore space will be more fully filled. A
low porosity reservoir with a high-efficiency factor might
hold less CO2 than a high porosity reservoir with a low-
efficiency factor.
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