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The uncertainty and complexity of rock burst brings great difficulties to the prediction of rock burst grades. In order to estimate
the risk grades of rock burst, an integrated method combining principal component analysis (PCA) and sparrow search algorithm
(SSA) with probabilistic neural network (PNN) was proposed. Considering that the in situ stress of rock mass, the strength of
rock, and the strength of rock mass are the key influencing factors of rock bursts, the maximum in situ stress σmax, maximum
tangential stress σθ, rock strength σci, rock mass strength σcm, and three rock burst evaluation indexes (σθ/σci, σci/σmax, and
σcm/σmax) were selected to constitute the rock burst grade evaluation index system. Forty-three groups of rock burst
engineering data were gathered. After preprocessing the rock burst data using PCA, four of the new linearly independent
indexes PCA1, PCA2, PCA3, and PCA4 were obtained for estimating rock burst grades. The SSA was utilized to optimize the
smoothing factor in the PNN. Using PCA-SSA-PNN-based architecture, a new multi-index rock burst grade prediction
method was proposed. The results from the new multi-index rock burst grade prediction method were compared with those
from single- and multi-index prediction methods. It shows that the predictions from the multi-index rock burst prediction
methods are closer to the actual rock burst grades than that from the single-index rock burst prediction methods; compared with
other multi-index rock burst prediction methods, the prediction accuracy of PCA-SSA-PNN is greater (up to 90%) and more
available in the prediction of rock burst grades. The results presented herein may provide reference for the rock burst warning.

1. Introduction

Rock burst is a kind of dynamic failure phenomenon which
often occurs in the high ground stress area of deep buried
tunnels. When the mechanical equilibrium state of rock
mass is broken, the accumulated energy in the rock mass is
released in a sudden and violent form, resulting in a
dynamic instability phenomenon [1–5]. The accurate assess-
ment of rock burst grade classification is an important con-
tent of rock burst prevention measures.

The prediction methods of rock burst grade used in
practical engineering are usually based on rock strength,
such as the Russenes criterion [6], Erlang Mountain crite-
rion [7], and Barton criterion (Barton et al. [8]). Further-
more, in recent years, some scholars have further studied
the rock burst prediction method also based on the rock

strength. For example, Afraei et al. [9] analyzed the contri-
bution rate of rock burst influencing factors to rock burst
grade prediction and found that maximum tangential stress
and uniaxial compressive strength of rock significantly con-
tributed to rock burst grade prediction; He et al. [10] modi-
fied the previous rock burst grade prediction method by
introducing the gradient stress and recognized that the range
of the rock strength stress ratios used for rock burst grade
prediction was not uniform; Wu et al. [11] put forward the
rock burst criterion of Lalin railway tunnel, and compared
with the Russenes criterion and Erlang Mountain criterion,
the rock burst criterion of Lalin railway tunnel is more con-
sistent with the actual situation of Lalin railway; Wang et al.
[12] established a rock burst prediction model based on rock
mechanical properties and in situ stress, which could be reli-
ably applied to rock burst prediction. These above prediction
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methods of rock burst grade consider the stress condition
and mechanical properties of rock well and promote the
research of rock burst prediction method.

However, the occurrence of an actual rock burst is
more closely related to rock mass structure and strength,
and there are some reports about predicting rock burst
using rock mass structure and strength. For example,
Qiu et al. [13] discussed the influence of rock mass struc-
ture on the velocity of flying rock when rock burst
occurred and realized that floor deflection is an important
focal mechanism that causes rock velocity and serious rock
burst damage; Chen et al. [14] and Ma et al. [15] consid-
ered the impact of rock mass integrity on rock burst and
found that the strength of rock mass is the main control-
ling factor for the prediction of rock burst grade; Du et al.
[16] analyzed the influence of structural plane strength on
rock burst and held that structural plane strength is the
main factor to judge whether instantaneous rock burst or
hysteretic rock burst occurs in rock mass; Mohamad
et al. [17] considered that the joint spacing and apertures
are the main causes that determine the number and dis-
tance of flying rocks as rock burst occurs; Feng et al.
[18] and Zhou et al. [19] believed that rock mass structure
is an important factor affecting the occurrence of rock
burst, and the structural surface where rock burst occurs
is mostly rigid surface. These above researches take the
rock mass structure as the important factor of inducing
rock burst, which is consistent with the actual situation.

In practice, most of the rock burst grade classification
prediction methods based on the strength of rock materials
or rock mass were based the single-index methods, and these
methods were usually summarized from the specific engi-
neering cases with the relatively less evaluation information.
Considering the actual complexity, many scholars adopted
the multi-index method to estimate the rock burst grade.
For example, Zhou et al. [20] considered that genetic algo-
rithm and particle swarm optimization algorithm could
speed up the parameter optimization search of support vec-
tor machine (SVM), and the proposed method of rock burst
grade prediction has strong robustness; Dong et al. [21]
found that compared with SVM, the random forest algo-
rithm had a lower misjudgment rate of rock burst grade;
Wang et al. [22] established a multi-index method for rock
burst prediction based on the fuzzy matter-element theory,
information entropy theory, and proximity rule and found
that the established method is more reliable than the tradi-
tional method; Zhang et al. [23] made a comprehensive pre-
diction of rock burst based on the rock elastic energy index,
rock strength, and principal stress, which could make up for
the deficiency of single-index rock burst prediction method;
Li et al. [24] proposed a rock burst prediction network based
on genetic algorithm and extreme learning machine, and the
prediction results show that the maximum relative error of
the proposed method is 4.71%; Xu et al. [25, 26] put forward
a new rock burst grade evaluation using the ideal point the-
ory, and the error rate is 5%, and the average crossover error
rate is 13.33%; Liang et al. [27] found that gradient-boosted
decision tree algorithm could be applied to short-term rock
burst prediction with an accuracy of more than 90%; Meng

et al. [28] believed that BP (back propagation) neural net-
work prediction and least square method may reduce the
influence of subjective judgment on the prediction results
and could obtain the prediction results in the first time; Chen
et al. [29] utilized the Bayesian method to estimate the rock
burst grade and found that Bayesian statistical learning model
has robustness and generalization in rock burst risk assess-
ment; Gao et al. [30] held that the radial basis neural network
optimized by hybrid particle swarm optimization algorithm
may take into account individual optimization and global
optimization and could predict the rock burst grade correctly
and effectively; Gong et al. [31] established a deep learning
rock burst prediction model based on dropout and Adam
algorithm, and the model avoids the problem of determining
index weights and is completely data-driven; Liu et al. [32]
found that the rock burst prediction network based on histo-
gram gradient-enhanced tree algorithm still has a high predic-
tion ability for incomplete rock burst data, with an accuracy of
nearly 80%. In these above researches, machine learning and
deep learning methods were adopted to establish a multi-
index rock burst grade prediction network, and the accuracy
of the prediction results was significantly improved than that
of the single-index rock burst prediction method. The multi-
index rock burst grade prediction methods could consider
the influencing factors of rock burst in many aspects, reduce
the interference of human factors, and make the prediction
result more close to the actual situation.

Actually, the multi-index rock burst prediction methods
may be used to reveal the mechanism of rock burst in more
detail. However, the existing multi-index-based predictions
usually focused on the rock strength and ignored the influence
of rock mass strength. For the high complexity and unpredict-
ability of a rock burst, it is necessary to conduct a new multi-
index evaluation method of rock burst grade considering the
rock mass strength. In this study, the field data of a tunnel in
western China and the case data of diversion tunnel project
in Pakistan [33] and Erlangshan tunnel project in China [7,
34] were used as the data set for rock burst grade evaluation.
The data set was then divided into training set and test set.
The principal component analysis (PCA) method was further-
more used both to reduce the dimension of the rock burst data
set and to eliminate the linear correlation between different
indexes. The sparrow search algorithm was also conducted
to optimize the smoothing factor in the probabilistic neural
network (PNN). The prediction results from the improved
PNN algorithm were thereafter compared with those from
other existing rock burst predictionmethods, including single-
and multi-index rock burst prediction methods.

2. PCA-SSA-PNN-Based Architecture

2.1. Structure of PNN. Probabilistic neural network (PNN) is
a kind of network structure based on radial basis function
proposed by Specht in 1990 [35], mainly composing of input
layer, pattern layer, summation layer, and output layer as
shown in Figure 1. The PNN has the characteristics of fast
convergence, high stability, and no local optima and is suit-
able for rock burst grade classification. The PNN is briefly
described below.
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2.1.1. Input Layer. Before input to the input layer, the sample
data need to be standardized. The activation function in the
input layer is used to introduce the sample data and calculate
the distance between the input and training vectors, which is
calculated by

dij = Xk − xij
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where X represents the standardized sample data, Xk
represents the group k in sample data X, xij represents
the training sample data of class i and group j, Xij rep-
resents the class i and group j data in the sample data
to be identified, m represents the number of groups of
sample data X, and n represents the number of features
in each group.

2.1.2. Pattern Layer. The number of cells in this layer is the
same as that of training samples. The Gaussian function
was introduced into this layer as the activation function.
The distance from the input layer was used as the input in
the pattern layer. The output of the pattern layer is

Gij Xkð Þ = 1
2πð Þ1/2σl

exp −
Xk − xij
À Á

Xk − xij
À ÁT

σ2

 !

, ð2Þ

where GijðXkÞ represents the output value of class i and
group j in the pattern layer; σ represents the smoothing fac-
tor, a key parameter for PNN training; and l represents the
dimension of the sample vector.

2.1.3. Summation Layer. The number of cells in this layer is
the same as the number of the PNN target classes. In this

layer, the output of pattern layer was added separately based
on different classes, and the output of the summation layer is
as follows [36, 37]:

Fi Xkð Þ = ∑Ni
j=1Gij Xkð Þ

Ni
, ð3Þ

where Ni is the group number of class i in the training sam-
ple and FiðXÞ reflects the probability that the input vector
Xk is judged as class i.

2.1.4. Output Layer. The number of cells in the layer is 1.
The class corresponding to the largest one in FiðXkÞ was
output as 1, and the rest was output as 0.

2.2. SSA. Sparrow search algorithm (SSA) is an intelligent
optimization algorithm to simulate the foraging and antipre-
dation behavior of sparrow population, which was proposed
in 2020 [38]. This algorithm has the characteristics of strong
optimization ability and fast convergence speed. Sparrow
populations were divided into finders and followers, and
the finders provided foraging directions for the followers.
The sparrow population was set up with a certain percentage
of sparrows aware of danger to avoid attacks, usually 10 to
20 percent. SSA is shown in Figure 2 and could be divided
into seven steps as follows.

2.2.1. Set the SSA Initial Parameters. The number of spar-
rows, the maximum number of iterations, the ratio of dis-
coverers to followers, the proportion of sparrows aware of
danger of sparrows, and warning value are set.

2.2.2. Calculate the Fitness Function Value. The fitness func-
tion value was calculated by using the initial parameters of
SSA. The fitness function is usually the error function
between the estimated value and the actual one.

2.2.3. Update the Finder’s Location Information Based on the
Calculated Alarm Value. The position information of finders
in the population was updated by using [39–41]
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where k represents the current number of iterations; itermax
represents the maximum number of iterations; Xk

ij repre-
sents the position information of the ith sparrow in the jth
dimension of the sparrow population; R2 represents a ran-
dom number ranging from 0 to 1; ST represents the early-
warning value initially set, generally 0.5 to 1; Q represents
a random number subject to normal distribution; and L rep-
resents a matrix of 1 ×D, where D represents the dimension
of the sparrow population. When R2 < ST, that is, there are
no predators around the foraging environment, the finder
could perform extensive search operations; when R2 ≥ ST,
that is, some sparrows have already found predators, all
sparrows need to quickly move to somewhere safe to feed.

Figure 1: Structure of PNN.
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2.2.4. Update the Location Information of the Followers. The
position information of followers in the population was
updated by using
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where M represents the number of population, Xk
worst repre-

sents the worst position information in the sparrow popula-
tion at the k iteration, Xk

F represents the best position
information of the finders in the sparrow population at the
k iteration, and A is a matrix of 1 × d, where each element

in A is randomly assigned as 1 or -1 and A+ = ATðAATÞ−1.
When i >M/2, that is, the ith follower with a lower fitness
value has not received food and needs to fly somewhere else
to forage for food.

2.2.5. Update the Location Information of the Sparrows
Aware of Danger. Update the position information of the
sparrows aware of danger in the population by using
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where Xk
best represents the optimal position information in

the sparrow population at the k iteration, β represents a ran-
dom number following a normal distribution, K represents a
random number from -1 to 1, Fi represents the fitness value
of the ith sparrow, Fg represents the current optimal fitness
value, Fw represents the current value of the worst fitness,
and ε represents a very small constant in preventing the
denominator from returning to zero. When Fi < Fg, the
sparrow is at the edge of the population and is extremely
vulnerable to predators; when Fi = Fg, that is, sparrows are
aware of danger and need to be close to other sparrows to
minimize their risk of predation.

2.2.6. Update the Fitness Values and Record the Optimal
Parameters. Using the position information of sparrow pop-
ulation in Equations (4), (5), and (6), the fitness values were
recalculated and reordered. The fitness values and the best
and worst position information of the sparrow were also
recorded.

2.2.7. Whether the Maximum Number of Iterations Is
Achieved. If the number of iterations does not reach the
maximum number of iterations at this time, the iterative cal-
culation will continue until the number reaches the maxi-
mum of iterations, and then, the optimal fitness value and
corresponding optimal position information of the sparrow
will be output.

2.3. Development of PCA-SSA-PNN Model. Based on the
field data of a tunnel in western China and the data of rock
burst in the diversion tunnel project of Pakistan and the

Figure 2: SSA flow chart.
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Erlang Mountain tunnel of China, 43 groups of data [7,
14, 25, 26, 33] were selected. Each group of the data con-
tains seven rock burst influencing factors, including maxi-
mum in situ stress σmax, maximum tangential stress σθ,
rock strength σci, rock mass strength σcm, the ratio of σθ
to σci, the ratio of σci to σmax, and the ratio of σcm to
σmax. Among them, σmax, σθ, and σci were obtained by
indoor and outdoor tests, while σcm was estimated by
the Hoek-Brown strength criterion. These seven factors
constitute a prediction index system of rock burst grade.
Using the method of Table 1 (proposed by National Stan-
dards Compilation Group of People’s Republic of China
[42]), the classification of rock burst grade was divided
into four classes: no rock burst, slight rock burst, medium
rock burst, and strong rock burst, corresponding to the
numbers I, II, III, and IV, respectively.

Considering that the Gaussian function in the PNN
needs to be independent of each index of the rock burst pre-
diction, the principal component analysis (PCA) method
was used to reduce the dimension of the seven indexes of
rock burst grade prediction, and four new independent
indexes of rock burst grade prediction were obtained:
PCA1, PCA2, PCA3, and PCA4. Figure 3 shows the structure

of the new multi-index rock burst grade prediction method
PCA-SSA-PNN. The original and new predicted indexes
are shown in Table 2.

As shown in Figure 3, the 43 groups of new index data of
rock burst in Table 2 were standardized by

xs =
xp − �xp
xps

, ð7Þ

where xs represents the standardized data, xp represents new
index data of rock burst, and �xp and xpσ represents the mean
value and variance of the new index data of rock burst,
respectively.

The 29 of the 43 groups of new index data were ran-
domly selected as the training set, and the remaining 14
groups were selected as the test set. The smoothing factor
σ is a key parameter in determining the performance of
PNN. The network is easy to be overfitted if the smoothing
factor is too small, while the details may be impossible to
be distinguished if the smoothing factor is too great [43].
In the current study, the SSA was used to optimize the
smooth factor in the PNN, the training set was again divided

Table 1: The classification of rock burst grade [42].

Features of rock burst
Rock burst grades

I II III IV

Sound features None Cracking sounds and tearing sounds The crisp crackling sound Very loud popping sounds

Movement features None Loosen or peel off Burst, peeled off, and little ejection Lots of bursts and ejections

Aging features None Occurs sporadically and intermittently Long duration
Occurs in succession and
rapidly extends deep

Influence depth None <0.5m 0.5 to 1m 1 to 3m

Hazardous degree None Little Relatively large Serious

Figure 3: Structure of PCA-SSA-PNN.
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into optimization training set and optimization test set, and
the estimated loss value of rock burst grade in optimization
test set was calculated. The estimated loss value was mini-
mized by constantly updating the smooth factor, and the

optimal smooth factor value was then recorded and output,
and the optimum smooth factor was finally input into the
PNN to obtain the rock burst grade by using the prediction
network PCA-SSA-PNN.

Table 2: Rock burst data.

No. of samples
Original index of rock burst prediction New index of rock burst prediction

Rock burst grade
σci σmax σcm σθ σcm/σmax σci/σmax σθ/σci PCA1 PCA2 PCA3 PCA4

1 40.62 49.7 2.42 97.63 0.05 0.82 2.40 -9.82 12.67 -4.26 -5.51 IV

2 35.63 23.5 2.12 63.5 0.09 1.52 1.78 -89.75 -11.16 -2.43 0.14 III

3 84.54 22.2 4.1 77.74 0.18 3.81 0.92 0.62 48.54 -5.87 5.06 II

4 30.43 34.8 1.47 69.3 0.04 0.87 2.28 -76.55 9.80 -5.14 -2.80 IV

5 22.15 19.9 1.51 53.3 0.08 1.11 2.41 152.31 21.20 7.08 3.40 III

6 21.08 43.3 1.02 100.84 0.02 0.49 4.78 -96.69 -24.31 -1.32 -0.86 IV

7 26.51 31.8 1.2 91.49 0.04 0.83 3.45 -49.84 27.83 -7.36 -4.06 IV

8 43.49 28.6 2.11 55.92 0.07 1.52 1.29 -4.07 34.42 -3.91 -1.71 III

9 101.27 31 3.72 87.78 0.12 3.27 0.87 126.53 -46.30 9.27 5.08 III

10 62.88 33.3 2.66 96.78 0.08 1.89 1.54 123.80 -53.88 5.52 5.43 III

11 100.97 45.4 5.25 128.19 0.12 2.22 1.27 112.39 -1.58 -3.57 -6.35 III

12 43.15 36.6 2.09 102.18 0.06 1.18 2.37 -67.53 16.71 -5.44 -8.31 IV

13 123.03 48.6 8.42 124.53 0.17 2.53 1.01 -56.15 -33.90 0.44 10.88 III

14 78.87 28.8 3.57 80.44 0.12 2.74 1.02 1.37 51.01 -8.43 5.21 III

15 88.76 29.6 4.31 78.42 0.15 3.00 0.88 112.51 0.23 -4.60 -6.13 III

16 41.1 28.7 2.13 74.24 0.07 1.43 1.81 1.05 52.59 -4.10 5.27 III

17 74.83 24.9 3.16 70.21 0.13 3.01 0.94 112.59 -2.02 -2.44 -6.54 III

18 48.4 35.8 2.69 101.45 0.08 1.35 2.10 153.85 28.37 9.71 3.51 III

19 63.97 78.7 3.32 206.68 0.04 0.81 3.23 -64.88 9.74 -4.86 -3.00 IV

20 50.37 25.4 2.8 64.74 0.11 1.98 1.29 -36.29 -39.64 0.26 -0.89 III

21 55.39 36.9 3.08 98.63 0.08 1.50 1.78 111.20 -3.45 -2.19 -6.20 III

22 42.54 46.3 2.21 121.1 0.05 0.92 2.85 115.40 5.76 -2.58 -6.68 IV

23 132.64 88.9 4.45 238.75 0.05 1.49 1.8 132.22 -31.42 7.20 4.79 IV

24 136.26 88.9 5.95 239.82 0.07 1.53 1.76 114.73 3.43 -3.58 -6.64 IV

25 138.53 88.9 7.27 239.66 0.08 1.56 1.73 1.15 52.67 -3.98 5.23 IV

26 130.79 88.9 5.24 239.35 0.06 1.47 1.83 -62.49 -52.63 1.31 4.22 IV

27 128.45 88.9 6.34 238.92 0.07 1.44 1.86 -0.52 46.59 -6.98 5.32 IV

28 130.31 88.9 6.32 239.77 0.07 1.47 1.84 -98.72 -15.03 -2.23 6.51 IV

29 136.46 54.9 7.67 121.45 0.14 2.49 0.89 -55.89 -31.71 -0.85 -2.98 III

30 141.58 54.9 10.43 120.34 0.19 2.58 0.85 -123.82 22.46 24.15 -2.50 III

31 141.67 54.9 10.56 120.42 0.19 2.58 0.85 -3.66 37.64 -5.36 5.37 III

32 137.91 54.9 8.13 121.36 0.15 2.51 0.88 136.03 -22.35 2.09 4.70 III

33 140.79 54.9 5.92 121.08 0.11 2.56 0.86 -54.77 -11.16 -3.13 -4.46 III

34 135.84 54.9 6.74 120.90 0.12 2.47 0.89 56.89 -51.74 2.07 -2.60 III

35 126.23 54.9 7.10 121.18 0.13 2.30 0.96 -83.62 -23.39 -1.53 -0.06 III

36 118.95 110 7.74 262.88 0.07 1.08 2.21 -62.86 19.60 -5.41 -1.73 III

37 108.54 110 11.54 262.67 0.10 0.99 2.42 -54.94 -26.42 -1.00 -3.58 III

38 171.24 110 22.45 262.00 0.20 1.56 1.53 -89.54 -32.39 -0.57 7.65 II

39 84.98 110 6.70 262.59 0.06 0.77 3.09 0.18 47.11 -6.13 5.07 III

40 92.48 110 11.51 262.64 0.10 0.84 2.84 -83.61 61.48 42.32 -4.27 III

41 164.4 110 18.85 263.04 0.17 1.49 1.6 -72.71 -43.18 -0.04 -3.16 II

42 66 9.1 33.00 25.40 3.63 7.25 0.38 -54.54 -19.06 -1.52 -1.67 I

43 114 18.1 57.00 48.32 3.15 6.30 0.42 -111.56 -33.10 -0.58 -0.18 I
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3. Evaluation of PCA-SSA-PNN-
Based Architecture

3.1. Prediction Results of PCA-SSA-PNN-Based Architecture.
The new rock burst index data in Table 2 were utilized as the
original data set of rock burst grade prediction network, and
the total errors of training set and test set were considered as
the fitness function value of rock burst grade prediction net-
work. The SSA was used to optimize the PNN, and the opti-
mal smoothing factor (1.0217) was obtained. Therefore, a
multi-index rock burst grade prediction network based on
PCA-SSA-PNN was constructed. The PCA-SSA-PNN-based
architecture was adopted to predict the rock burst grades of
the test set. Figure 4 shows the prediction results.

It can be seen from Figure 4 that there is a misjudgment in
group 10 of the test data set, and the prediction was one grade
higher than the actual rock burst, with an error ratio of less than
8%; the prediction results of PCA-SSA-PNN-based architecture
are generally consistent with the actual rock burst grades. In
order to further analyze the performance of PCA-SSA-PNN,
the statistical results in Figure 4 are shown in Table 3.

Table 3 shows the comparison between the prediction
results of PCA-SSA-PNN and actual grades in detail. It can
be seen fromTable 4 that the PCA-SSA-PNNhas a higher pre-
diction accuracy of no rock burst, slight rock burst, and strong
rock burst with the accuracy ratios of 100%; the prediction
accuracy of PCA-SSA-PNN for medium rock burst is close
to 90%, which could meet the needs of engineering; the
PCA-SSA-PNN may overestimate the medium rock burst by
11.11%; the average overprediction ratio of rock burst predic-
tion by PCA-SSA-PNN is less than 8%; the PCA-SSA-PNN
does not underestimate the rock burst grades; the average
accuracy of rock burst prediction by PCA-SSA-PNN reaches
90% (here 92.86%), indicating that the established PCA-
SSA-PNN has strong ability in estimating rock burst grades.

3.2. Comparison between PCA-SSA-PNN and Other
Prediction Methods. In exploring the feasibility of the
above-established PCA-SSA-PNN for estimating rock burst

grades, three single-index methods, or Russenes’ [6], Bar-
ton’s [8], and Xu et al.’s [25, 26] methods, were conducted
to estimate the rock burst grade for the test set data. The
single-index prediction methods are shown in Table 4. Fur-
thermore, four multi-indexes, or back propagation (BP) neu-
ral network, support vector machine (SVM), random forest
(RF), and standard PNN (smoothing factor is set to 0.5),
were also conducted to estimate the rock burst grades.

It can be seen from Table 4 that in predicting the rock
burst grades, Barton’s and Russenes’ methods are based on
the rock strength, while Xu et al.’s method is based on the
rock mass strength. Considering the consistency in compar-
ison, the cases of σcm/σmax greater than 0.15 were considered
as minor rock burst.

Using these above single- and multi-index prediction
methods, the rock burst grade predictions were obtained
(see Table 5).

The statistics of prediction results of rock burst grades by
using the single- and multi-index prediction methods are
conducted and shown in Table 6.

As shown in Table 6,

(a) for the comparison of PCA-SSA-PNN and single-
index prediction methods, Barton’s method and

Figure 4: Prediction results of PCA-SSA-PNN.

Table 3: Prediction results of various rock burst grades.

Evaluation of prediction results
Rock burst grades

I II III IV

Accuracy ratio 100% 100% 88.89% 100%

Overprediction ratio 0% 0% 11.11% 0%

Underprediction ratio 0% 0% 0% 0%

Error ratio 0% 0% 11.11% 0%

Average accuracy ratio 92.86%

Average overprediction ratio 7.14%

Average underprediction ratio 0%

Average error ratio 7.14%
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Russenes’method are based on the rock strength and
have the poorer performances with the prediction
accuracy less than 50%, and Xu et al.’s method is
based on the rock mass strength and has a better per-

formance with the prediction accuracy of greater
than 70%, while the established PCA-SSA-PNN in
this study has the best performance; Russenes’
method may overestimate the rock bursts grade in

Table 4: Single-index prediction methods of rock burst grade.

Single-index prediction methods Indicators
Rock burst grade

I II III IV

Barton’s method σci/σmax >10 5 to 10 2.5 to 5 <2.5
Russenes’ method σθ/σci <0.2 0.2 to 0.3 0.3 to 0.55 <0.55
Xu et al.’s method σcm/σmax >0.15 0.07 to 0.15 <0.02

Table 5: Results by various rock burst prediction methods.

No.
Single-index methods Multi-index methods Actual

rock
burst

σci/σmax σθ/σci σcm/σmax Barton Russenes
Xu
et al.

PAC1 PAC1 PAC1 PAC1 BP SVM RF
Standard
PNN

PCA-
SSA-PNN

1 2.22 1.27 0.12 IV IV III 112.39 -1.58 -3.57 -6.35 III III IV I III III

2 1.98 1.29 0.11 IV IV III -36.29 39.64 0.26 -0.89 III III III III III III

3 6.3 0.42 3.15 II III II 111.56 33.10 -0.58 -0.18 I I I I I I

4 3.01 0.94 0.13 III IV III 112.59 -2.02 -2.44 -6.54 III III III III III III

5 1.49 1.6 0.17 IV IV II 132.22 31.42 7.20 4.79 III III II II II II

6 1.52 1.78 0.09 IV IV III -4.07 34.42 -3.91 -1.71 III III III III III III

7 3.27 0.87 0.12 III IV III 126.53 46.30 9.27 5.08 III III III III III III

8 2.53 1.01 0.17 III IV II -56.15 33.90 0.44 10.88 III III III III III III

9 0.84 2.84 0.10 IV IV III -83.61 61.48 42.32 -4.27 IV III IV III III III

10 0.77 3.09 0.06 IV IV IV 0.18 47.11 -6.13 5.07 II III IV I IV III

11 1.47 1.83 0.06 IV IV IV -62.49 52.63 1.31 4.22 IV IV IV IV IV IV

12 3.81 0.92 0.18 III IV III 0.62 48.54 -5.87 5.06 III III III III II II

13 0.82 2.4 0.05 IV IV IV -9.82 12.67 -4.26 -5.51 IV IV IV IV IV IV

14 2.56 0.86 0.11 III IV III -54.77 11.16 -3.13 -4.46 III III III III III III

Table 6: The statistical results of Table 5.

Prediction methods
Performances

Overprediction ratio (%) Underprediction ratio (%) Accuracy ratio (%) Error ratio (%)

Single-index

Barton’s method 57.1 0 42.9 57.1

Russenes’ method 85.7 0 14.3 85.7

Xu et al.’s method 21.4 7.1 71.5 28.5

Multi-index

BP 21.5 7.1 71.5 28.5

SVM 14.2 0 85.8 14.2

RF 28.5 0 71.5 28.5

Standard PNN 7.1 14.3 78.6 21.4

PCA-SSA-PNN 7.1 0 92.9 7.1

Table 7: Rock burst grade prediction of Mufeiling tunnel.

No. Mileage σci (MPa) σcm (MPa) σmax (MPa) σθ (MPa) σci/σmax σθ/σci σcm/σmax
Rock burst grade

Prediction Actual

1 DK77+500 68.93 2.69 28.6 68.59 2.41 0..99 0.094 III III

2 DK79+050 68.93 2.69 36.5 91.85 1.89 1.33 0.074 III III
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most cases, followed by Barton’s, Xu et al.’s, and
PCA-SAA-PNN methods

(b) for the comparison of single- and multi-index pre-
diction methods, the underprediction ratio of the
rock burst is very low and much lower than the over-
prediction ratio both by the single- and multi-index
methods; compared with the single-index prediction
methods, the multi-index prediction methods have
higher accuracy ratio and lower overprediction ratio;
among the single-index methods, Xu et al.’s method
has the highest accuracy, reaching 71.5%, while
among the multi-index methods, BP method has
the lowest accuracy, also reaching 71.5; the average
accuracy of multi-index methods is higher than that
of single-index methods, so the predictions by the
multi-index methods are closer to the actual rock
burst grades

(c) for the comparison of PCA-SSA-PNN and other
multi-index prediction methods, PCA-SSA-PNN
has the highest prediction accuracy, followed by
SVM, standard PNN, BP, and RF; the predictions
by established PCA-SSA-PNN are much closer to
the actual rock burst grade than those by other four
multi-index methods; all of the five multi-index
methods overestimate the rock burst grade with the
great-small overestimating ratio of RF, BP, SVM,
standard PNN, and PCA-SSA-PNN; PCA-SSA-
PNN, SVM, and RF do not underestimate the rock
burst grade, while BP and standard PNN may under-
estimate the grades; the standard PNN-based archi-
tecture underestimates the rock burst grades, while
that of PCA-SSA-PNN-based architecture is greatly
improved both with the accuracy ratio increasing
by 14.3% and with the underprediction ratio reduc-
ing to zero

In conclusion, the multi-index methods is more suitable
for the prediction of rock burst grade than the single-index
prediction methods; compared with the other four multi-
index rock burst prediction methods, the established PCA-
SSA-PNN is more reasonable to predict the grade classifica-
tion of rock burst.

4. Discussions

In order to analyze the performance when the proposed
model face with the new conditions, a new rock burst case
was introduced. Mufeiling tunnel of Hangzhou-Wenzhou
railway is located in Tonglu County, Hangzhou City, Zhe-
jiang Province, China. The starting mileage is DK74
+702.93, the ending mileage is DK84+943.27, and the central
mileage is DK79+823.08, with a total length of 10240.34m.
The tunnel site is located in the middle and low mountain-
ous area, with large relief and natural slope of 25~35°. The
highest elevation of the tunnel site is about 889m, and the
maximum depth is 619m. According to statistics, rock
bursts have occurred 421 times on six working faces during
the construction of the Mufeiling tunnel.

Rock burst has caused serious damage to Mufeiling tun-
nel, increased the difficulty of the initial support and the
amount of engineering, and seriously hindered the construc-
tion progress. Therefore, it is necessary to determine the
rock burst grade of Mufeiling tunnel in order to take appro-
priate preventive measures. PCA-SSA-PNN was used to pre-
dict rock burst at DK77+500 and DK79+050 locations of
Mufeiling tunnel, respectively, and the results are shown in
Table 7.

It can be seen from Table 7 that the predicted results are
basically consistent with the actual rock burst grades. The
rock burst grade prediction method based on PCA-SSA-
PNN has been well applied in Mufeiling tunnel.

5. Conclusions

In this work, the field data of a tunnel in western China and
the rock burst data of the Pakistan diversion tunnel project
and the Erlang Mountain tunnel project in China were used
as the original input data in the rock burst prediction net-
work. Different influencing factors of rock burst were con-
sidered to establish the index system for the rock burst
grade prediction. The principal component analysis (PCA)
was used to reduce the dimension of the rock burst data
set and eliminate the linear correlation among different
influencing factors. The sparrow search algorithm (SSA)
was used to optimize the smoothing factor in the probabilis-
tic neural network (PNN), and a multi-index rock burst pre-
diction network PCA-SSA-PNN was thereafter obtained.
The comparison of the prediction results by PCA-SSA-
PNN with those by the single- and other multi-index rock
burst prediction methods was furthermore conducted,
respectively. It shows the following:

(1) Among the single-index rock burst prediction
methods, the method considering the strength of
rock mass has higher prediction accuracy

(2) The accuracy of multi-index methods is often higher
than that of single-index methods in predicting the
grade classification of rock burst

(3) Among the multi-index rock burst prediction
methods, in the order from large to small, the over-
prediction rates are random forest, back propaga-
tion, support vector machine, standard PNN, and
PCA-SSA-PNN, while the underprediction rates are
RF, BP, standard PNN, SVM, and PCA-SSA-PNN

(4) The established rock burst prediction method based
on the PCA-SSA-PNN architecture considers the
influence of rock mass strength, and the rock burst
grade estimated by the method is in good agreement
with the actual rock burst grade, which could be used
for the rapid prediction of rock burst in practice

The multi-index rock burst grade prediction method
established in this study takes into account the influence of
rock mass strength on rock burst. However, the rock mass
strength cannot be directly obtained by testing methods at
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present, so it is often estimated by empirical formula, and
there may be errors between estimated results and actual
values. Moreover, the number of different rock burst grades
in PCA-SSA-PNN training is small, which will have some
influence on the generalization ability of the network. There-
fore, the category and quantity of rock burst grade data need
to be increased in the subsequent research, and the selection
method of rock mechanical characteristic parameters and
the application range of the new multi-index prediction
method also need to be further studied.
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