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Geared toward the problems of predicting the unsteadily changing single oil well production in water flooding reservoir, a
machine learning model based on CNN (convolutional neural network) and LSTM (long short-term memory) is established
which realizes precise predictions of monthly single-well production. This study is considering more than 60 dynamic and
static factors that affect the changes of oil well production, introduce water injection parameters into data set, select 11 main
control factors, and then, build a CNN-LSTM model optimized by Bayesian optimization. The effectiveness of the proposed
model is verified in a realistic reservoir. The experiment results show that the prediction accuracy of the proposed model is
over 90%, which suggests a penitential application in an extensive range of applications. Production forecasting by the
developed model is simple, efficient, and accurate, which can provide a guidance for the dynamic analysis of a water flooding
reservoir, and work as a good reference of the development and production of other types of reservoirs.

1. Introduction

Oil production prediction runs through the entire develop-
ment course of a water-driven oilfield; it is the foundation
of the well stimulation and plays an important role in
making investment decisions. For a long time, the main
production prediction methods are reservoir numerical sim-
ulation, mechanism model, and decline curve analysis,
which have their respective advantages and disadvantages.
Since the 1990s, fuzzy comprehensive evaluation (FE), BP
neural network (BPNN), grey model (GM), and other
methods have been applied to oilfield production prediction
[1, 2]. Recently, with the maturity and wide application of
big data, artificial intelligence, and other technical theories
and methods, more and more intelligent algorithms have
been introduced into the petroleum industry, providing a
new way to solve complex engineering problems [3, 4].

As a nonlinear fitting method, machine learning can
learn rules from data and make a prediction. In the past 20
years, there has been extensive research on production
prediction based on machine learning. Common methods
include random forest (RF), support vector machine
(SVM), fuzzy comprehensive evaluation (FE), artificial neu-
ral network (ANN), and autoregressive integrated moving
average model (ARIMA) [5–14]. These classical machine
learning methods have been fully applied in the field of
petroleum industry and show strong vitality.

Y. Duana et al. use RTS (Rauch Tung Striebel) to smooth
the gas production series, and then, an ARIMA model was
established to predict the gas production [6]. J. Gu et al.
proposed an oil well production prediction model which
combines ARIMA and Kalman filter to eliminate the
influence of nonsynchronicity and hysteresis [7]. Viet
Nguyen-Le et al. propose 3 ANN models to predict the

Hindawi
Geofluids
Volume 2023, Article ID 5467956, 16 pages
https://doi.org/10.1155/2023/5467956

https://orcid.org/0000-0003-2815-5103
https://orcid.org/0000-0002-2413-034X
https://orcid.org/0000-0002-6877-4489
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5467956


parameters in Arps’s hyperbolic decline and then recon-
structs the production profile [13]. Y. Zhu et al. established
an “ε-SVM” production prediction model based on sequen-
tial minimal optimization (SMO) algorithm using produc-
tion records and bottom hole pressure data [14].

Since 2015, the recurrent neural networks represented by
long short-term memory (LSTM) and gated recurrent unit
(GRU) become a new hot spot in the field of production pre-
diction [15–22].

L. Zhang et al. proposed a GRU-FNN model to predict
single-well production in water drive oilfield [23]. X. Song
et al. adopted particle swarm optimization (PSO) to opti-
mize the basic structure of LSTM model and achieved better
model performance [24]. Weiss applied fuzzy ranking and
neural network to establish correlations to predict oil pro-
duction [25]. H. Wang et al. established a production predic-
tion model for high-water-cut oil fields considering both
timing and engineering factors based on LSTM and
increased the input features to 17 items, with a relative error
of only 1% [26]. Sagheer et al. compared the application
effects of simple RNN and LSTM in oil and gas production
predictions, verified that LSTM had better performance than
simple RNN [27].

All the predictions made in the above studies are pretty
accurate, but there is still room for further improvements.
First, most of the works are aimed at predicting the total
production of a reservoir or an oilfield, few research focused
on the single-well production prediction. In fact, accurately
predicting the production of single well is not easy because
the fluctuation of single-well production is more irregular
and more drastic than that of the block/reservoir produc-
tion. Also, there are too many factors affecting single-well
production, and we can hardly analyze them clearly. Second,
in most studies, the production series is divided into 3 seg-
ments based on time, the earlier one for training, the middle
one for validating, and the latest one for testing. However, as
we all know, the production changes of oilfield/oil well have
significant stages, and the early stage, middle stage, and late
stage have different dominant control factors or rules of
change. Learning the rules in early stage and predicting the
production changes in late stage are bound to cause errors.
Finally, there are few studies that consider both dynamic
and static characteristics in time series prediction. Based

on these considerations, to achieve accurate single-well pro-
duction prediction in water flooding oilfield, the data set was
built considering over 60 geological and development factors
that affect oil well production. The influence of the water
injection on oil production is also quantified and added to
the data set as a feature. The missing data are filled in accor-
dance with the industry knowledge and the distribution pat-
tern of data. Secondly, the feature correlation analyses
tailored to time series prediction are carried out, through
which 11 dominant control factors of oil well production
are selected to build the samples. The production prediction
model is established based on a one-dimensional convolu-
tion neural network and a long short-term memory neural
network, and the model hyperparameters are optimized by
Bayesian optimization. Finally, an example numerical test
is carried out in a practical reservoir. Results show that the
CNN-LSTM model has better performance compared with
the Bi-LSTM model, Attention-LSTM model, or any other
models. Production forecasting by the developed model is
simple, efficient, and accurate, which can provide a guidance
for the dynamic analysis of a water flooding reservoir and
work as a good reference of the development and production
of other types of reservoirs.

2. Methodology

2.1. LSTM and Conv1D. LSTM (long short-term memory)
can be the most successful recurrent neural network
(RNN) nowadays. Its unique design of gate structure and cell
state makes it possible to capture long-term dependencies,
which is also the key to its great success. As shown in
Figure 1, different from the other simple RNN units, there
are three gates in the LSTM cell unit: forgetting gate, input
gate, and output gate. In each time step, LSTM cells will par-
tially pass the information to the next step and retain some
information in the cell as the cell state, which is the key for
LSTM to achieve long-term memory. LSTM neural network
performs well in the field of time series prediction [28].

Conv1D (1-dimensional convolutional neural network)
is famous in the areas of image recognition, but in recent
years, people find that 1-dimensional CNN (Conv1D) can
well accomplish the task of time series prediction and even
outperforms LSTM and other time series prediction models
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Figure 1: The basic structure of LSTM cell. In each cell unit, long-term information and short-term information are conveyed, respectively.
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in certain cases. When Conv1D is used for time series pre-
diction, the inputs, n temporal steps with m features, can
be viewed as an image of size of n ×m, and Conv1D can
extract a new image from the input data by scanning and
calculating in one direction. Changing the number of filters
and the size of convolutional kernels, we can easily control
the size of outputs (see Figure 2). It should be noted that
the convolution kernel of Conv1D is also 2-dimensional,
but it can only slide windows in one direction, and that is
the difference between Conv1D and 2-dimensional convolu-
tional neural network.

2.2. Spearman Correlation Coefficient. Spearman correlation
coefficient, also known as the rank correlation coefficient, can
measure the degree of nonlinear correlation between two fea-
tures and is a method to analyze the correlation between two
variables. Spearman correlation coefficient is calculated as in

ρ =
∑n

i=1 xj − �x
À Á

yj − �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 xj − �x
À Á2∑n

i=1 yj − �y
� �2r : ð1Þ
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Figure 2: Diagram of Conv1Ds. For the inputs sized m × n and a Conv1D layer with k filters, the outputs’ size is k × n. Using multiple
Conv1Ds, the final output size is 1 × n. The model illustrated in this figure wants to predict production for the next three months, that
is, it wants three outputs, which we achieve using a simple dense layer containing three neurons.

Table 1: Initial data set. The italicized items are category features which need to be one-hot encoding.

Well basic data
Reservoir data of well

Name X_coordinate Y_coordinate Depth

Unit Layer Start date
Flooding
date

Position Top depth (MD) Bottom depth (MD)

Inject/production Well type
Initial

temperature
Initial
pressure

Top depth
(TVD)

Bottom depth (TVD)
Thickness of sand

bodies

Initial pressure
coefficient

Saturation
pressure

Initial solution
gas-oil ratio

Viscosity
Effective
thickness

Porosity Permeability

Monthly producing well production data

Time
Producing
scheme

Production
days

Nozzle
Pump

diameter
Pump depth Stoke

Jig frequency Monthly liquid Monthly oil
Monthly
water

Monthly gas Gas-oil ratio Water cut

Cumulative oil
Cumulative

water
Cumulative

liquid
Recovery Static pressure

FBHP (bottom hole
flowing pressure)

Working fluid level

Monthly water-injecting well injection data

Injection methods Injecting days
Pumping
pressure

Casing
pressure

Oil pressure
Injecting volume

monthly
Cumulative injecting

volume
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Figure 3: Static pressure, working fluid level and FBHP in well A. (a) The relationship between time and static pressure. (b) Comparison
between real values and predicted values of FBHP. (c) The relationship between working fluid level and FBHP.
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ρ ∈ ½−1, 1�. When the ρ is negative, it means that the two
features have a negative correlation, one feature increases
means the other decreases. Similarly, if ρ is positive, the two
features are positively associated. The larger the absolute value
is, the stronger the correlation between two features is.

2.3. Bayesian Optimization. Acclaimed as one of the best
hyperparameter tuning algorithm at present stage, Bayesian
optimization is a general gradient-free global optimization
strategy, which can identify a good set of hyperparameters
with few iterations. It is suitable in two cases: (1) the objec-
tive function is extremely complex and time-consuming to
evaluate; (2) the target function is difficult to differentiate
in respect to the independent variable.

In each iteration, Bayesian optimization decomposes the
optimization problem into multiple small optimization
problems. It samples the original function curve by a certain
method and builds an alternative curve by fitting these
points. Bayesian optimization builds a model to describe
the parameter-distribution of the objective function using
the Gaussian process model and then solves the minimum
value of the alternative model and uses this minimum value
as the optimal solution of the original function in this itera-
tion. This process is called surrogate optimization. By gradu-
ally increasing the number of sampling points, the model
will gradually approach the original objective function, and
an optimal combination of hyperparameters will be obtained.

In this paper, Bayesian optimization is used to optimize
network model hyperparameters, including network depth
and width, initial learning rate, and network activation func-
tions. For all hyperparameters to be optimized, a maximum
value and a minimum value are first specified for them,
respectively. Based on the Bayesian optimization method
in the package Keras_tuner, appropriate maximum iteration
and optimization objective are set and then executed to
obtain the optimal combination of hyperparameters.

3. Data Processing and Feature Engineering

3.1. Sources of Data. Data used in this paper were collected
from 426 oil wells and 94 water wells in a Chinese reservoir
named A with an average production time of 406 months.
The oldest wells in the data set can trace back to 1956.
During more than 60 years of development, the reservoir
has experienced a variety of production methods such as
pumping production, water flooding production, and frac-
turing production. At present, the reservoir has entered the
ultrahigh water cut stage, with an average water cut of more
than 95%.

The initial data include monthly production data of 426
oil wells, monthly injection data of 94 water-injecting wells,
and single-well reservoir information. The specific items are
shown in Table 1.

3.2. Data Preprocessing

3.2.1. Filling. In this paper, most of the missing data are bot-
tom hole flowing pressure, reservoir static pressure, or
dynamic liquid level height. According to their own charac-

teristics, we use different filling methods, taking well A as an
example to illustrate.

(1) Reservoir static pressure

According to the oil field development experience, the
change of static pressure during the oilfield development
process will not be significant and may have an obvious
trend; therefore, the regression fitting method can be useful.
Through the regression analysis using existing data, the rela-
tionship between the static pressure and time can be
obtained, and the missing static pressure data will be calcu-
lated, as shown in Figure 3(a).

(2) Bottom hole flowing pressure (FBHP)

Figure 3(b) shows that changes of bottom hole flowing
pressure during a well’s production life has stages, and the
range of FBHP in different stages varies greatly, which limits
the application of fitting regression method. In this case, we
use the cubic spline interpolation, and the filling results are
shown in Figure 3(b), which is basically consistent with the
actual value distribution.

(3) Working fluid level

As the working fluid level and FBHP were highly corre-
lated (see Figure 3(c)), we can easily obtain a linear relation-
ship between the two features, and one can be calculated
from another. If either the working fluid level height or
bottom hole flowing pressure is available, cubic spline
interpolation is used.

Water-injecting well1

Water-injecting well2

Water-injecting well

Water-injecting well

Water-injecting well3

Producting well1

Producting well1

Producting well

Radiation radius

Distance1,1

Distance1,3

Figure 4: Diagram of injection-production relationship. Producing
wells always be influenced by several water-injecting wells.
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3.2.2. Encoding. Since a large part of static features in the
data set are category features, the one-hot encoding process
for category features should be carried out to concordance
numerical features and category features. The features that
are treated with this operation include units, layers, well
types, and producing schemes.

3.2.3. Measurement of Injection-Production Relationship. A
major factor that affects the production of oil well in
water-driven reservoir is waterflooding measure. In this
paper, we propose the parameter injectionti , producing well
i injected volume in month t, and add it into the data set
as a feature “inject.”

As shown in Figure 4, an oil/producing well is often con-
trolled by n water/water-injecting wells. We assume that a
water-injecting well has a certain radiation radius, and in
the radiation radius around a water well, the oil well within
the radius is affected by that water-injecting well, and the
smaller the distance is, the greater the impact of inject well
on producing well is, and the larger producing well injected
volume is. The total producing well injected volume equals
the superposition of all “affected water-injecting wells.”

According to this hypothesis, we can quantify the pro-
ducing well injected volume, as shown in

distancei,j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi − xj
À Á2 + yi − yj

� �2r
, ð2Þ

injectionti = 〠
m

j=1

αtj
distancei,j

: ð3Þ

Here, i denotes the producing well i, j denotes the water-
injecting well j, m denotes the number of water-injecting

wells who influences producing well i. And the distance
between producing well i and water-injecting well j is
distancei,j. In tth month, αtj units of water were injected to
reservoir by water-injecting well j.

The radiation radius is determined by correlation analy-
sis: the closer the radiation radius to the actual radiation
radius, the higher the correlation between producing well
injected volume and the well production. By establishing
the relationship between radiation radius and correlation
coefficient, we can find the optimal radiation radius. As
shown in Figure 5, 1000m is the optimal radiation radius.
Under this radius, producing well injected volume in a

Time-invariant features

Class
feature

Numeric
feature

One-Hot
Encoding

PCA PCA

Concat

Figure 6: The data processing working flow. Static features and
dynamic features need to be treated separately, also the discrete
features and continuous features do.
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production), ρ (radiation radius, monthly oil production), and ρ (radiation radius, recovery).
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certain time and certain producing well is calculated and
added to the data set as the feature “inject.”

3.3. Feature Engineering

3.3.1. Feature Dimension Reduction. For better prediction
accuracy, feature compression is needed to improve the
quality of features and limit the number of features. In the
process of feature compression, static features and dynamic
features need to be treated separately, so are the discrete fea-
tures and continuous features. Otherwise, the static features
representing the characteristics of individual wells will
submerge in the continuously changing dynamic features.
Similarly, the highly sparse 0-1 features created by one-hot
encoding will also submerge in the continuously changing
numerical features. In the data processing working flow of
this paper (Figure 6), we first separate the dynamic features
(features that change over time), as shown in Table 1. There
are in total 11 dynamic features without dimension
reduction. Secondly, we separate the 0-1 features from the
static features for principal component analysis (PCA)
dimensionality reduction (with a confidence of 95%); then,
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the remaining numerical features are compressed by another
PCA model (with a confidence of 95%), and two sets of com-
pressed features are spliced to form the features numbered
no. 0-no. 32 (see Figure 7) finally.

3.3.2. Feature Selection. In previous studies, the analyses of
correlation with time series are generally carried out in the
same time step in terms of production prediction; this corre-
lation is the relationship between the current month’s output
and the current month’s flowing pressure (or other features).
This correlation can reflect the relationship between targets
and variables and between variables and variables. However,
there are still some loose places: the data used in prediction
is not the data of the current month, but the data of the pre-

vious n months, which means that if we want to get a more
accurate correlation coefficient, the calculation should also
be carried out between the target month’s output and the
input data used to predict it (see Figure 8).

The study takes the input length of 12 and the output
length of 12 (using the previous 12 months’ data to predict
the next 12 months’ production) as an example to illustrate
the problem.

Figure 7 shows the visualization results of Spearman cor-
relation coefficient between the inputs and outputs.
Figure 7(a) shows the average of 12 correlation coefficients
between the production in the next nth month and the
featurek in the last m months:

ρ outputn, featurek
� �

=
∑12

m=1ρ outputn, faturekm
� �

12 : ð4Þ

Here, ρðoutputn, featurekÞ denotes the Spearman corre-
lation coefficient between outputn and featurek; outputn
denotes the production in the nth month; featurek denotes
the kth feature; faturekm denotes the featurek in the last
m months.

Figure 7(b) shows the correlation coefficient between the
production in the next 1th month and the features in the last
mth months. When a certain feature is fixed, from left to
right, the color of the grids in Figure 7(a) gradually becomes
lighter, and the color of the grids in Figure 7(b) gradually
becomes darker, which means that the larger the time inter-
val between the inputs and outputs, the lower the correlation
between them, and the greater the difficulty of prediction.

Table 2: Model evaluation metrics.

MAE MAE = 1
n
〠
N

i=1
yi − byij j

MAPE MAPE = 1
n
〠
N

i=1

yi − byij j
yi

 !
× 100

RMSE RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i=1 yi − byij j
N

s

R2 R2 = ∑N
i=1 yi − �yð Þ2 −∑N

i=1 yið − cyiÞ2
∑N

i=1 yi − �yð Þ2

Accuracy accurate = 1 − ∑N
i=1 yi − byij jð Þ/yið Þ

N

 !
yi : the measured value at time i; byi : the predicted value at time i; �y: the mean
of yi ; N : sample size.
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Observing row by row, we can easily find that dynamic
features have stronger correlation with future productions
than static features, which can be easily explained: the corre-
lation coefficient depends to a certain extent on the relative
variation of the value of features in the sample. Compared
with the production which remains changed over time, static
features only vary from well to well, so the overall correla-
tion is weak. We also note that the forecast target (produc-
tion) has a strong autocorrelation—future production is far
more correlated with past production than any other charac-
teristic (up to 0.9), which means that the forecast value will
be largely determined by the past production data.

To reduce the degree of difficulty in model fitting,
accelerate the convergence, and eliminate invalid features,
features are selected, as shown in Figure 7(c): with ±0.2
as the threshold, the features of correlation ðaccumulative
correlation score over all outputsÞ ≥ 0:2 or ≤−0.2 will be

retained, and 11 features are eventually entered into the data
set. The correlation between them is shown in Figure 9. We
can find that the correlation between monthly water produc-
tion andmonthly liquid production is much greater than that
between monthly oil production and monthly liquid produc-
tion, which confirms that the block has entered the ultrahigh
water cut stage, and most of the produced liquid is water.

3.4. Sample Generation. Before generating the input samples,
we need to standardize the data, so that different features
have the same scale, and they will have a fair chance to be
learned by the model. As mentioned in the introduction, in
order to enable the model to learn the rule of production
variation at each production stage, we divided the data set
by wells: 341 wells constitute the training set for model train-
ing, 43 wells constitute the validation set for hyperparameter
optimization, and 42 wells constitute the test set for model
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Figure 10: The predicting performance of different models.

Table 3: Model structure (CNN-LSTM).

Layer (type)
Hyperparameters

Filter Kernel size Dilation rate

Conv1D_1 128 1 1

Conv1D_2 241 1 1

Unit Activation

LSTM_1 156 Softsign

LSTM_2 136 Softsign

Dropout rate

Dropout 0.2

Unit Activation

LSTM_3 57 None

Dense Prediction time steps None
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testing. The samples were manufactured by sliding time win-
dow and rearrange order to achieve better training effect.

4. Model Design and Evaluation

4.1. Evaluation Metrics. In this paper, in order to evaluate
the prediction performance of the model comprehensively,
five evaluation metrics are used to evaluate the model, as
shown in Table 2. It is worth noting that, to reduce the
uncertainty caused by the potential randomness of the
model, the model evaluation results in this paper are all from
the average of 3 experiments under the same setting.

4.2. Model Structure Design. After extensive investigations
and comparative experiments, LSTM and CNN are selected
to build a hybrid model. CNN is stacked in the first place, its
excellent ability of feature extraction enables the model to
extract as much hidden knowledge as possible. After the
CNN layers, we stacked the LSTM layers in the hope that
the model could learn the changes of timing sequence better.
In addition, the layer normalization is used between the
LSTM layers, which prevents possible gradient extinction
and gradient explosion.

In this paper, Bayesian optimization is used to optimize
the hyperparameters and the structure of the model. Since

the limited space, only the structure and hyperparameter
optimization results of the optimal model (CNN-LSTM)
are presented here, as shown in Table 3.

4.3. Comparative Model. There were 8 models built for the
optimal model selection, as shown below:

CNN-LSTM: Conv1D for feature extraction. LSTM for
timing sequence capture [29, 30].

LSTM: classical LSTM model.
Bi-LSTM: the normal LSTM model can only learn the

information from front to back, but cannot catch the infor-
mation from back to front. Bidirectional LSTM is an
improvement in this aspect. It combines forward LSTM
and backward LSTM to capture forward and backward
information at the same time [31, 32].

GRU: GRU is one of the varieties of LSTM and maybe
the most successful one. It simplifies the three gate structures
of LSTM cells into two and can achieve almost the same pre-
diction accuracy as LSTM while greatly accelerating conver-
gence [23].

CNN: one-dimensional convolutional neural network
model for time series prediction [33].

Attention-LSTM: the LSTM model supplemented with
an attention mechanism in hope that the addition of atten-
tion mechanism can help the model better capture the criti-
cal time steps which may contain the key information about
production changes. This paper adopts Luong Attention
mechanism and “General” score function. To focus attention
on multiple time steps instead of one, we modify the weight
activation function to “sigmoid” [34–36].

Self-Attention: do not use RNNs or CNNs, and the
multihead self-attention mechanism is used to realize the
prediction of time series. The structure of the model refers
to BERT [37], but word embedding and location embed-
ding are dropped, and the activation function adopts
“sigmoid” [38].

ARIMA: one of the most common time series prediction
models.

It is worth noting that the hyperparameters of all the
above models are also the most combined ones obtained
by Bayesian optimization.

4.4. The Training Set. The input of the neural network is
selected features as well as production records in a certain
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Figure 11: Different input length vs. model prediction error.

Table 4: Performance of different models (84-3).

Model MAE MAPE R2 RMSE Accurate Training time/min

CNN-LSTM 17.58 6.54 0.99 37.26 0.93 6.33

LSTM 20.33 7.02 0.99 44.36 0.9 5.18

GRU 21.45 7.15 0.99 47.14 0.9 3.04

Bi-LSTM 22.23 7.69 0.99 48.12 0.88 6.44

CNN 22.65 7.73 0.99 48.87 0.88 3.16

ARIMA 31.47 15.68 0.98 37.17 0.83 2.11

Attention-LSTM 40.26 18.26 0.97 60.68 0.82 8.26

Self-attention 60.15 25.36 0.96 80.67 0.66 5.01

84-3: using the data from the previous 84 months to predict oil production of the next three months.
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duration, and the model is trained in a “supervised” fashion
with future well production being the outputs. In this case,
the inputs at each step of the model include historic produc-
tion/features data for 82 consecutive months; the output is
the production in the next 3 months.

In the training process, the model based on the encoder-
decoder uses the “Teacher Forcing” hybrid training strategy
[35], in which 60% of the input data of each time step in the
decoder stage is real data, and the other 40% is the predicted
value of the previous model output. This hybrid strategy can
prevent overfitting caused by rapid convergence while
ensuring the prediction accuracy of the model. Through
the experiment, “Adagrad” was chosen as the model
optimizer. The size of batch and the initial learning rate were
set at 36 and 0.05, respectively. Callback function ReduceL-
ROnPlateau was used to adapt the learning rate. The maxi-
mum epoch is 150; training process is controlled by the
callback function EarlyStop. And model loss is MAE of pre-
dicted production.

5. Results and Discussion

5.1. Discussion of Different Models. Among the 8 models
proposed, CNN-LSTM model achieved the best perfor-
mance, and the predicting performance of other models
are shown in Figure 10 and Table 4.

Results show that the prediction precision of attention
mechanism model (including self-attention mechanism) is
the worst. In many papers, attention mechanism improves
the score of time series prediction [32, 34–36]. However, it
is not the case in this paper. In fact, the production of a well
in a certain month does not heavily depend on one or more
certain previous months, so adding weights to different time
steps is not very helpful in forecasting. Besides, the addition
of attention mechanism greatly aggravates the training bur-
den of the model, which is another possible reason for the
low prediction accuracy of the model.

Bi-LSTM model also failed to reach the expected score,
and its performance was slightly worse than that of classical
LSTM model. Unlike the semantic recognition task such as
machine translation, changing the order of oil well produc-
tion series makes no significant difference in predicting
production, and the use of Bi-LSTM brings more complex

model structure undoubtedly, making model training more
difficult.

GRU and CNN models gain similar results, with LSTM
model having slightly higher accuracy than LSTM, but it
should be noted that the training time of GRU and CNN
was almost half of LSTM. GRU or CNN models may be
more appropriate in some less-desirable cases.

5.2. Discussion of Model Input Length. In this paper, CNN,
LSTM, and CNN-LSTM model were used to conduct con-
trast experiments, respectively, and to verify the influence
of different input length on model prediction error, as
shown in Figure 11.

It is easy to see that the performance of CNN model is
better than that of LSTM and CNN-LSTM when the input
length is short. However, with the increase of the input
length, the prediction error of CNN model also increases sig-
nificantly, while that of LSTM and CNN-LSTM is decreas-
ing. Compared with CNN and LSTM, CNN-LSTM model
seems to inherit advantages from both, better than LSTM
in short case and better than the other two in long case. Con-
sidering data characteristics, case requirements, and model
performance, the following example uses 84 months’ data to
predict monthly well production over the next three months.

5.3. Discussion of Feature Selection. To verify the effective-
ness of feature selection, two feature selection plan were used
for feature selection experiment. Plan A: input all features;
plan B: input select features. The prediction accuracy of each
model using different features is shown in Table 5.

It is found that features and algorithms have cross influ-
ence on the prediction accuracy of the model. The RNN
model has strong sensitivity to the number of features, and
the selection of the number of features can reduce its predic-
tion error. The model with convolutional layer is insensitive
to the changes in the number of features. It can be seen from
Table 5 that there is not much difference in model prediction
accuracy before and after feature selection. The analysis
shows that the RNN (LSTM/GRU) model is more inclined
to capture the connection of samples in time series, while
the convolution structure model is more inclined to analyze
and extract high-dimensional features. Therefore, prior fea-
ture selection for the LSTM model means that part of the

Table 5: Comparison of prediction accuracy of different models under different feature selection strategies (84-3).

Models (84-3)
MAE MAPE/%

Accurate/% R2
MAE Max Min MAPE Max Min

A

CNN-LSTM 17.60 123.1 0.24 6.55 34.2 0.04 93.30 0.99

CNN 22.66 125.31 0.21 7.19 38.1 0.03 88.37 0.99

LSTM 23.55 120.13 0.19 7.32 35.1 0.03 86.11 0.99

GRU 22.45 121.45 0.23 7.31 37.21 0.04 85.34 0.99

B

CNN-LSTM 17.58 120.03 0.23 6.54 35.4 0.03 93.23 0.99

CNN 22.65 125.47 0.22 7.73 37.9 0.03 88.36 0.99

LSTM 20.33 120.15 0.2 7.02 34.1 0.03 90.01 0.99

GRU 21.45 121.63 0.24 7.15 34.2 0.04 90.24 0.99

A: use all features; B: use selected features.
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feature extraction work has been completed before model
training, which reduces the difficulty of LSTM training, so
the LSTM model has higher prediction accuracy for data sets
with fewer features. CNN itself can well realize feature
extraction, and feature selection only accelerates its training
speed, but has little impact on the final prediction accuracy.

5.4. Case Verification. The proposed models are used to pre-
dict 43 wells’ production in the test set, and the results of 6

wells were selected randomly. The results are shown in
Figure 12.

Figures 12(a)–12(c) compare the prediction error of the
three outputs of the model with wells B, C, and D as exam-
ples. Obviously, the 1th outputs have the minimum error
consistent with the correlation analysis.

Figures 12(d)–12(f) compared different models’ predic-
tion results of wells E, F, and G. Similar to the results shown
in Table 4, CNN-LSTM model’s prediction is closer to the
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Figure 12: The prediction results of 6 wells in reservoir A. (a–c) The error distribution of the 3 predicted production of well A\B\C by
CNN-LSTM model. “1th-prediction” denotes the next month’s predicted production. Similarly, “2th-prediction” denotes the predicted
production of the month after next. And “3th-prediction” means the predicted production of the third month in the future. (e–f) The
comparison of real production curves and the 1th predicted production curves of well E/F/G by CNN-LSTM model, LSTM model, GRU
model, and CNN model. The absolute error between real production and production predicted by CNN-LSTM is also shown.
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real tendency, but other models also can fit the curve closely.
Another obvious phenomenon is that the predictions at ear-
lier time stages are worse compared to latter ones; in other
words, the error at high production is greater than the error
at low production. This is because production changes are
more dramatic in the early stages of the well development.

Extensive experiments show that proposed scheme
significantly improves production prediction accuracy and
enhances predict efficiency.

6. Conclusion

This paper proposes a machine learning model for predict-
ing single-well production in water flooding reservoir. The
specific conclusions are as follows:

(1) More than 60 factors of geology and development
that affect the changes of oil well production was
comprehensively considered to build the data set.
Data filling and feature extraction were carried out,
respectively, according to the characteristics of data.
Features were analyzed and selected from the per-
spective of time sequence. The data set is divided
by wells to make the sample distribution more
practical

(2) Eight models with good performance in the time
series prediction are constructed. By comparison,
CNN-LSTM model gains the best score, while the
improvement of attention mechanism and Bi-
LSTM model is limited. It also illustrates that com-
plex models that are doing well in other tasks may
not be suited to the well production prediction

(3) The Bayesian optimization is used to optimize the
hyperparameter of the models, which can greatly
improve the efficiency of hyperparameter optimiza-
tion and improve the prediction accuracy of the
models

(4) An experiment case is carried out in reservoir A, and
the results prove that the model proposed in this
paper can accomplish the prediction task of single-
well production successfully and provides a good
reference and guidance for development and pro-
duction in water flooding reservoir
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