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Fast and rigorous well performance evaluation is made possible by new solutions of the pressure diffusion equation. The derived
Gaussian pressure transient (GPT) solutions can be practically formulated as a decline curve analysis (DCA) equation for history
matching of historic well rates to then forecast the future well performance and estimate the remaining reserves. Application in
rate transient analysis (RTA) mode is also possible to estimate fracture half-lengths. Because GPT solutions are physics-based,
these can be used for production forecasting as well as in reservoir simulation mode (by computing the spatial and temporal
pressure gradients everywhere in the reservoir section drained by either an existing or a planned well). The present paper
focuses on the physics-based production forecasting of so-called “unruly” wells, which at first seem to have production
behavior noncompliant with any DCA curve. Four shale wells (one from the Utica, Ohio; one from the Eagle Ford Formation,
East Texas; and two from the Wolfcamp Formation, West Texas) are analyzed in detail. Physics-based adjustments are made
to the Gaussian DCA history matching process, showing how the production rate of these wells is fully compliant with the rate
implied by the hydraulic diffusivity of the reservoir sections where these wells drain from.

1. Introduction

Recovery of energy from subsurface reservoirs has signifi-
cantly shifted over the past two decades towards applying
multistage fracturing technology to maximize the rate of
fluid extraction [1]. However, operators of geothermal, oil,
and gas wells still face challenges when appraising the
expected ultimate recovery of future wells to be drilled [2,
3]. Many wells behave unruly (see Section 2.3), which is
why appraisal is still a tedious undertaking, especially when
needed for financing the cost of drilling and completing
more new wells. The operator needs a high rate of cash from
financing activities, because the operational income for
many shale leases is insufficient to cover the cost of new
wells to be drilled [4]. Companies listed on the New York
Stock Exchange (NYSE) have the additional requirement of
reporting compliance with SEC reserves reporting rules

and guidelines, which means the proved reserves of both
ruly and unruly wells in undrilled locations must be esti-
mated using approved methods (either deterministic or
probabilistic) for reserve estimation [5, 6].

To meet the requirement of reliable estimation of proved
reserves and associated probable and possible categories, as
well as the mandatory valuation of the net present value
(NPV) of the proved reserves as per the reporting date (dis-
counted at 10%, so-called NPV10 values), a variety of tools
can be used for reserve estimation and production forecast-
ing (in combination with discounted cash flow analysis).
Two principal approaches can be applied: (1) phenomeno-
logical decline curve analysis (DCA methods) and/or (2)
physics-based reservoir simulations. Both tool sets require
the methods must history match certain reservoir and well
performance data to calibrate the models and ensure the
quality of the subsequent production forecasts and reserve
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estimations will be meaningful. Unruly wells is a term intro-
duced here to distinguish certain wells from ruly wells. For
ruly wells, the production data can be immediately fitted with
a variety of DCA methods, as well as history matched by a
variety of numerical reservoir simulators. However, so-called
unruly wells occur inmany shale plays (see case studies in Sec-
tion 3 of this paper) and can commonly not be fit simply by
any method without amendments to the procedure.

The two principal classes of well performance evalua-
tion methods commonly used are DCA and full reservoir
models. The relative benefits and pitfalls of these methods
have been extensively reviewed in prior work [1, 7–9].
While DCA methods are easy to use and fast in execution
with negligible software license fees, traditional DCA
methods are not physics-based and therefore unsuitable
to predict how undrilled wells without production data
will perform [10–12], especially when the design parame-
ters of new wells to be drilled are to be improved. On
the other hand, the more advanced physics-based simula-
tors immediately are more complex to use, have higher
license fees, and require more input parameters than just
well production data to provide meaningful output [13].
As a result, most operators of geoenergy extraction wells
today still predominantly rely on DCA methods for well
performance forecasting and reserve estimation. They use
reservoir simulations sparingly, usually only on a subset
of wells for the acreage to be developed.

The main focus in this paper is on how a relatively
new Gaussian DCA method (see Section 2.1) can be
applied to accommodate history matches of unruly wells.
Foremost, all DCA methods have great practical value
because they can history match real-world well rate data
from the past months to constrain the shape of a type
curve, which can then be used to forecast the production
rate of the well for future remaining months in the eco-
nomic well life. The advantage is that no detailed reser-
voir data are needed to provide estimates for the
remaining reserves from a given date forward. Combined
with the historical cumulative production, DCA tools give
acceptable results for the estimate ultimate recovery
(EUR) of shale wells. As pointed out at length in prior
work related to the Gaussian DCA method [14, 15], it
differs from existing DCA formulas in that it is physics-
based and only uses the hydraulic diffusivity as a match-
ing parameter while resulting in excellent history
matches. The appendix explains separately that the
Gaussian DCA should ideally be applied to the total fluid
produced. Exclusion of certain fluid volumes in wells pro-
ducing liquids may lead to curve matches that appear
poor, and this arises because the Gaussian method is
physics-based and all fluid lifted by the well should be
included and accounted for.

This paper highlights the strengths of the Gaussian solu-
tion of the diffusivity equation [14, 15], as a newly developed
hybrid method for production forecasting and advanced res-
ervoir modeling, which combines ease of use with fast
results. Using the basic GPT methodology, the new case
studies presented here highlight in detail how even the pro-
duction behavior of so-called unruly wells can be readily

described by the new production forecasting and reserve
estimation method. Four such case study wells are analyzed,
from three different US shale plays (one well in the Utica
Formation, Ohio; one in the Eagle Ford Formation, East
Texas; and two wells producing from the Wolfcamp Forma-
tion, West Texas). The solutions at the basis of GPT applica-
tions have been published in open source peer-reviewed
journals [14, 15], due to which no license fees are due in
principle. However, for corporate applications requiring a
slick interface and back-office support, new products are
under development accompanied by efforts to found an
organization that can serve corporate clients and others as
a non-for-profit foundation.

2. Methodology

This section briefly states the key equations (Section 2.1) and
provides a brief overview of the GPT applications (Section
2.2). The final section explains the difference between ruly
and unruly wells (Section 2.3). The remainder of this study
(Sections 3 and onward) is dedicated to the fleshing out of
what happens in such unruly wells and how Gaussian
DCA can still be applied without any real impediments, once
the root causes of the apparent unruliness have been
explained.

2.1. Key Equations. The traditional well testing equation for
a radial well is given by [16, 17]

qW = P0 − P r, t k
μ

2πh
B

Ei
−r2

4Dht
1

This solution used in well testing uses the (radial) pres-
sure transient, P r, t , in the reservoir as a function of the
estimated diffusivity, Dh, and an assumed constant well rate,
qW , as measured during brief flow tests. Ambient parameters
are the formation volume factor, B; fluid viscosity, μ; perme-
ability, k; initial reservoir pressure, P0; payzone height, h;
and well radius, r.

The recently derived GPT solution for a vertical well in
radial coordinates is [15]

qW t = P0 − PBH
2Dht

k
μ

2πh
B

r2e−r
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PBH is the assumed constant bottomhole pressure in the
well. Equation (2) is a drastic departure from the classical
well testing Equation (1), because in the new solution of
Equation (2), the well rate is not used (nor needed) to find
the pressure advance. Reconciling the well test Equation
(1) and the new GPT solution of Equation (2) is not possible:
the GPT solution assumes as a constant PBH through the
well life, while the well test Equation (1) assumes the PBH
drops according to P r, t . However, the GPT solution can
solve for the spatial and temporal pressure transient advance
everywhere in the reservoir.

The shape of the pressure transient advance is controlled
by the shape of the source (Figure 1). As the flow is into the
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fracture surface from both sides, we can translate Darcy flux
qD into well head rate using qw = 2A qD/B with single-sided
fracture area A and formation volume factor B. For the 1D
diffusion of a pressure change imposed on a reservoir region
by a hydraulically fractured well system, the well rate is then
given by the following equation [15]:

qw t = 2nY f h
k
μB

P0 − PBH
Dht

xe− x2/4tDh 3

We only consider the half-length Y f of the fracture that
is effectively propped (Figure 2), such that approximately
infinite conductivity is achieved. The well rate is computed
based on influx at x = 1 unit length from the diffusion
source.

In case field units are used as inputs, as is the case in US
petroleum industry, one needs to make sure to use Equation
(3) with the following conversion factors:

qw t = C1C2
C3

2nhkY f P0 − PBH
μBDht

xe−x
2/4Dht 4

The conversion factors have the following values:
C1 = 0 178108 bbls/ft3. This factor arises because the

input units in feet on the right-hand side lead to cubic feet,
which needs conversion to oil bbls (for subsequent multipli-
cation with the volume factor in bbl/stb to end up with stb
for the left-hand side well rate). The required conversion fac-

tor is 1 ft3 = 0 178108 bbls. If we work with gas wells, the
conversion factor C1 = 0 001Mcf/ft3, because 1 ft3 = 0 001
Mcf, and the produced gas volume will be expressed in Mcf.

C2 = 1 06235E − 14 ft2/mD. This factor is needed to con-
vert square feet units of permeability and prorated for inputs
in mD. The required conversion factor is 1mD = 1 06235 ×
10−14 ft2.

C3 = 1 67868E − 12psi·day/cPoise. This factor is needed
if the viscosity input is in cPoise; then, conversion of viscos-
ity to psi·day will result in output for well rate in stb/day.
The required conversion factor is: 1 cPoise = 1 67868 ×
10−12 psi·day.

Another major step for the purpose of the current anal-
ysis is to assume the initial well rate qi starts when the initial
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Figure 1: Two fundamental modes of pressure diffusion occur in well systems. (a) 2D diffusion prevails in vertical wells. (b) 1D diffusion
prevails in hydraulically fractured well systems.
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Figure 2: Principle sketch showing the fracture area (A) that is
effectively propped is given by the product of twice the fracture
half-length and the height of the payzone.
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time t = t1 expended the first unit of time (for example, 1 day
in the case of daily production rates, as was used in all the
case studies of this paper) and is given by [15, 18]

qi = 2nY f h
k
Bμ

P0 − PBH
t1Dh

xe− x2/4t1Dh 5

Taking the ratio of Equations (3) and (5) gives [15, 18]

qw t = qi
t1
t
e x2/4Dh 1/t1 − 1/t 6

Equation (6) can be normalized using t ′ = t/t1 and Dh ′ =
Dht1/x2 to give [15, 18, 19]

qw t = qi
1
t ′
e 1/4Dh ′ 1− 1/t ′ 7

The Gaussian DCA solution can conveniently start with
qi = 1 production unit/day and then adequately solve for
the hydraulic diffusivity, Dh, by history matching the daily
production data of a well. The asterisked values in Equation
(7) can be readily dimensionalized, because 1 nondimen-
sional length unit is equal to 1 dimensional length unit. Like-
wise, 1 nondimensional diffusivity unit is equal to 1
dimensional diffusion unit.

2.2. Principal Applications. The Gaussian method has been
validated and deployed in a variety of detailed topical studies
ranging from basic DCA applications [18, 19] to coupled
models requiring the pressure transient as an informer of
the local pressure state with consequent geomechanical
response, such as principal stress reversals during hydraulic
fracturing, surface uplift during fluid injection (including
applications in carbon dioxide-sequestration projects), and
surface subsidence due to fluid extraction from subsurface
reservoirs. Table 1 lists the topics where GPT-based solu-
tions have been implemented in practical applications.

2.3. Unruly Wells. The main focus of the present study is to
analyze in detail how GPT-based Gaussian DCA can still be
applied to fluid extraction wells with apparently “unruly”
production performance. To clarify what is meant by such

“unruly” wells, Figure 3 shows the historic production rate
evolution for a “ruly” well, without any major operational
noise. The Gaussian DCA curve (or any other DCA curve
by other methods) can closely match the historic data of
such wells. Our previous work has demonstrated how the
Gaussian DCA method is both more accurate and faster
than any other traditional DCA method, especially because
early production data are honored. The Gaussian DCA
method is physics-based, unlike the other DCA methods,
and has been tested on numerous ruly shale oil and shale
gas wells in recent studies [18, 19].

However, unruly wells typically behave as in Figure 4,
where the irregular and volatile trend in the time series of
the production data seems to initially preclude a close
DCA curve match. The remainder of this study is aimed at
showing how such unruly wells can still be adequately
described by Gaussian DCA, provided that one takes into
account some corrections for the operational effects causing
the (apparent) unruliness of the production rate trend.

3. Gaussian DCA Applied to Unruly Wells

In an effort to refine the Gaussian method, this section pre-
sents a series of brief case studies of wells that at first appear
less conformal to DCA matches when analyzing their his-
toric production data. However, after a detailed assessment
of the well data, one can readily explain how these wells
can still be history matched with the Gaussian DCA method,
in spite of the initial impression of apparently “unruly”
behavior of these wells. Concluding that these wells would
be “unsuitable” for Gaussian DCA history matches would
be technically incorrect. The wells studied show that valu-
able data can indeed be inferred from these apparently
unruly wells, like from any other—initially more conformal
appearing—hydraulically fractured well. Four shale wells
are analyzed in details: one from the Utica, Ohio (Section
3.1); one from the Eagle Ford Formation, East Texas (Sec-
tion 3.2); and two wells from the Wolfcamp Formation,
West Texas (Section 3.3). Physics-based adjustments are
made to show how the flow behavior of these wells is fully
compliant with the hydraulic diffusivity and Gaussian
DCA method of the reservoir sections where these wells
are drained from.

Table 1: Practical applications of GPT-based solutions.

Applications Key references

Hydraulic diffusivity estimations for shale formations [18, 19]

Probabilistic reserve estimation and production forecasting [18]

Establishing relative importance of molecular and pressure diffusion in shale [19]

Quantifying stress reversals during hydraulic fracturing [∗]

Computing surface uplift during CO2-sequestration in subsurface reservoirs [∗]

Computing flow paths in the drained reservoir space [∗]

Estimation of fracture half-lengths [∗]

Computing and visualizing pressure interference effects due to fracture spacing and well spacing reduction [∗]

Shale acreage development optimization based on full field model [∗]

[∗] References removed on request of publisher to reduce self-citations.
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Figure 3: Ruly well with typical steady decline in historic daily production rates (a), which can be snuggly matched with Gaussian DCA
curve. Similarly, the historic cumulative production of the well (b) can be tightly matched with the Gaussian DCA method. Historic data
plotted are from Well U4 in the hydraulic fracturing test site (HFTS-1) in the Permian Basin.
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3.1. Dry Gas Well Case Study—Utica Formation (Ohio). The
Utica shale is a dry gas play in the state of Ohio, US [20, 21].
Analysis of daily production data from one of five subparal-
lel parent wells completed from the same well pad reveals
how operational issues may affect the history matching of
such wells. For example, the DCA match to the historic pro-
duction data for a central shale gas well (Figure 4) at first
appeared as apparently a very poor match.

Close inspection of the daily production data reveals that
during the first 250 days of production, the well rate of Well
2H appears to be artificially constrained by the production
system. In fact, the operator reported that the production
(initiated in Q2-2016) for the 5 wells combined was initially
constrained to ~6200Mcf/day [20]. Figure 5(a) annotates for
the specific well how the production rate was constrained to
200Mcf/day, neglecting the operational noise in the data
causing the wriggling.

Fitting the Gaussian DCA curve to the daily production
data after about day 250 (when the well was put on constant
BHP control) honors the boundary assumption of a constant
BHP for the Gaussian well model [14]). In fact, the Gaussian
DCA curve (Figure 5(a)) shows how the well would have
behaved during the first 250 days of production without
the choking constraint on the production system, assuming
the BHP would have been rapidly established to its later con-
stant value. However, in reality—and due to the cho-
king—the well only reached the constant BHP later in the
first year of operation (Figure 6). The smooth BHP profile
indicates that the well did not suffer from any operational
complications.

Other reasons for the early plateau in the well rate, rather
than facility constraints, could have been natural choking
due to selection of a small tubing size or a maximum choke
diameter limiting critical gas flow velocities, but this is not

the case for the production system of the well in
Figures 5(a) and 5(b). Completion limitations on maximum
drawdown (initial reservoir pressure, sand production,
gravel packs, etc.) are not involved either. Another motiva-
tion for manual choking could be avoidance of flaring and
profound delay in gas sales due to low gas prices, but this
did not apply to this well either. The main reason for chok-
ing at the well head was the limited compressor capacity of
the separator unit on the well site.

The evident plateau in the early daily production data
(Figure 5(a)) can at first be neglected for the Gaussian
DCA fit but then needs to be reimported to correct for the
downward shift in the actual cumulative production profile
(Figure 5(b)). A realistic and accurate cumulative production
profile can still be predicted with the Gaussian method by
shifting the Gaussian cumulative downward (grey curve in
Figure 5(b)), simply by using for the first 250 days the actual
production data (not using the Gaussian cumulative that
shows how the well would have behaved without the con-
straint on the production system). This approach gives the
adjusted (grey curve) cumulative forecast (Figure 5(b)).

When applying Arps to history match such data, the first
250 days would also have to be unweighted to obtain mean-
ingful forecasts. However, the advantage of using the Gauss-
ian DCA method over Arps’ method is that the former uses
only one unknown parameter (the hydraulic diffusivity) in
the history match to the actual well rates. The hydraulic dif-
fusivity can be readily determined by history matching the
production data as shown in Figure 5(a), which then pro-
vides a sound basis for reliable production forecasts and
EUR estimations (Figure 5(b)) over the remaining well life.
Moreover, the Gaussian DCA method is founded in reser-
voir physics (movement of the pressure transient) and can
be readily applied in forward models to constrain the
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fracture half-lengths, after first determining the hydraulic
diffusivity for the reservoir section of interest with the
Gaussian DCA method.

History matching well rates with a reservoir simulator
suggested that in case an arbitrary high permeability of
850nD is adopted, the fracture half-length would be 75 ft;
for lower adopted permeability of about 25 nD, the fracture
half-length would be longer [21].

3.2. Black Oil Well Case Study—Eagle Ford Formation (East
Texas). Another shale well, from the black oil maturity win-
dow in the Eagle Ford shale formation, was analyzed in detail

because it exhibited a seemingly imperfect DCA fit (Figure 7).
The well of concern is located in leasehold owned by the Texas
A&M University System. The production performance and
recovery rates of this well (Well H1) and nearby wells in the
same leasehold have been extensively studied in prior work
by our group. For further details, see [22].

Figure 7(a) shows the least square error fit of the Gauss-
ian curve on 48-month historic production data. All daily
data are used as provided by the operator; the incident of a
negative well rate at day 400 of production (Figure 7(a))
likely was a malfunction of the data transmission. Nonethe-
less, the corresponding Gaussian fit on the cumulative
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Figure 5: (a) Daily production rate of gas in Well H2, Utica shale formation, Ohio. Facility constraints choke the early well rate (blue dots),
capping the gas flow during the first 250 days of production to 200Mcf/day (yellow plateau). The Gaussian DCA curve can be fit snuggly
(purple curve) using Equation (7) in least square error regression fit to the historic production data for the unconstrained decline after 250
days of production (blue points). (b) The cumulative production plot serving as a basis for estimation of ultimate recovery (EUR) and
reserves. The Gaussian DCA curve (purple) is too high but can match the early production data (blue curve) and predict the forward
trend after a simple adjustment (grey curve).
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production data (Figure 7(b)) seems reasonable, albeit
slightly overmatching the actual cumulative production
curve (grey, Figure 7(b)). The region where the mismatch
is largest occurs during the first 200 days of production
and is magnified in Figure 8.

Careful inspection of Figure 8 shows that a jump in the
daily rate of production occurs after 90 days after the earlier
production developed premature decline in the well rate.
The premature decline in the well rate is reflected in the grey
curve (actual cumulative production) which is overmatched

by the Gaussian cumulative (red curve, Figure 8) as was
already apparent in Figure 7(b).

If we next inspect the well report in detail, it appears that
there was an adjustment in the choke setting precisely at day
90 of production, as is seen in the plot of Figure 9, which
plots original daily production volumes and the tubing head
pressure on the same timescale. The abrupt drop in tubing
pressure at day 90 is now recognized as being caused by a
manual adjustment of the choke setting from 18/64″ to 30/
64″. Notwithstanding the occurrence of overestimation for
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Figure 7: (a) Daily production data in shale oil Well H1, Eagle Ford Formation, Brazos County, East Texas. Gaussian DCA regression curve
(purple) fit on the historic production data (blue dots). (b) Corresponding cumulative production curves.
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the cumulative due to the early choke constraints, the Gauss-
ian fit shown in Figure 7(b) is assumed to give reliable long-
term performance data. Additionally, the estimated hydrau-
lic diffusivity is assumed to be a characteristic for the reser-
voir section drained by the well.

3.3. Volatile Oil Well Case Study—Wolfcamp Formation
(West Texas). A shale well from leasehold by the Texas Per-
manent University Fund in the Permian Basin (West Texas)
was analyzed in detail in a prior study [23]. Here, we history

match the production data of this key well for the first time
with the Gaussian DCA method. The daily production data
(Figure 10(a)) shows a sudden jump at day 350 of produc-
tion similar to what was seen in the well of Figure 4(a) at
day 250 of production. Likewise, the cumulative history
match shows overmatching after the excellent match on
the first hundred days of production (Figure 10(b)). The
overmatch can be seen in detail in Figure 11.

The premature production decline seen during the early
days of production of Well 4H can again be attributed to a
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suboptimal choke setting. This means the Gaussian curve
shows that the production that could have been realized
was the choke setting not constraining the well rate. Adjust-
ment of the choke setting after a brief period of well shut-in
for pressure communication tests was reported by the well
operator and explains the attenuation of the well rate seen
in both the daily (Figure 10(a)) and cumulative production
plot (Figure 10(b)). In spite of the imperfect match of the
Gaussian cumulative and the actual well rate, the mismatch
can be entirely attributed to the well interventions.

A second well studied, also from the oil maturity window
in the Wolfcamp Formation (West Texas), was part of the
HFTS-1 field experiment of the US Department of Energy.
This was the only well out of the eleven wells matched with
the Gaussian DCA in a prior study [18] that did not allow
for a near-perfect history match (Figures 12(a) and 12(b)).
The other 10 wells matched very closely the original produc-
tion data [18].

The daily production of HFTS-1 Well U8 could not be
matched snuggly by the Gaussian curve using any con-
stant-valued hydraulic diffusivity (Figures 12(a) and 12(b)).
However, if the diffusivity was allowed to behave time-
dependent, the Gaussian DCA curve will closely match to
the historic production data (Figures 12(c) and 12(d)). The
residual overmatch of the cumulative is due to the peak rate
at early times in the Gaussian curve, but which was not
occurring in reality (due choke settings and other opera-
tional constraints). The Gaussian curve (Figures 12(a) and
12(b)) simply shows what would have been the well’s perfor-
mance without operational constraints.

The time dependency of the hydraulic diffusivity is
accounted for (Figures 12(c) and 12(d)) by introducing frac-
tional decrease of its value with time. The physical mechanism

responsible for the reduction of the hydraulic diffusivity is in
this well assumed to occur due to chemical scaling processes.
Note that the residual overmatch in Figures 12(c) and 12(d)
could be corrected for applying the same curve shifting proce-
dure using actual production data for early time as described
for the well of Figures 5(a) and 5(b).

4. Discussion

4.1. Gaussian DCA in Unruly Wells. The production perfor-
mance of oil and gas wells with unsteady production rate
data that could not be matched with Gaussian DCA curves
without adjustments (so-called unruly wells) has been ana-
lyzed in detail. From this analysis, it became apparent how
big the impact on cumulative production is when the well
rate is constrained not by the reservoir deliverability (suc-
cinctly captured by the hydraulic diffusivity) but by opera-
tional constraints (such as natural and or manmade
choking in the production system). In one well, time depen-
dency of the hydraulic diffusivity was inferred to occur,
because otherwise the historic production data could not
be matched. The time dependency was assumed to be due
to formation damage caused by scaling. Another potential
cause could be the extensive treatment with radioactive
tracers injected in this particular well.

One may conclude that the hydraulic diffusivity of the
reservoir section to be drained is a powerful and succinct
predictor of how a shale well (or a well in any other porous
rock formation) will perform. The hydraulic diffusivity rep-
resents how geology shaped the pore space connectivity
(permeability), storativity (porosity), and matrix compress-
ibility, as well as capturing the nature of the hydrocarbon
maturation process (fluid viscosity and fluid compressibility.
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If the well draining the reservoir is underperforming, one
cause may be the overall diffusivity is rather low. Our history
match estimations of the hydraulic diffusivity for each of the

unruly wells are summarized in Table 2. These values are
close to those estimated in our previous work for ruly shale
gas wells [19] and black oil wells [18].

Table 2: Wells with hydraulic diffusivity estimations based on history matching in this paper.

Well name Formation County
Hydraulic diffusivity
field units (ft2·day-1)

Hydraulic diffusivity
SI units (m2·s-1) Figure number

HFTS-1-U4 Wolfcamp Reagan, TX 0.02178 2 34 × 10−8 1

2H Utica Harrison, OH 0.02320 2 49 × 10−8 2

H1 Eagle Ford Brazos, TX 0.02340 2 52 × 10−8 7

4H Wolfcamp Upton, TX 0.02182 2 35 × 10−8 10

HFTS-1-U8 Wolfcamp Reagan, TX 0.0230 (max) 2 47 × 10−8 12
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Figure 12: Production analysis plots for Well U8, HFTS-1 (Wolfcamp Formation, Permian Basin, West Texas). Neither daily (a) nor
cumulative plot (b) can be matched by the Gaussian DCA regression curve when a fixed value is used for the hydraulic diffusivity. (c, d)
Reasonably snug fit becomes possible using time-dependent diffusivity. Overfitting in (d) due to early peak mismatch attributed to
production system choke can be adjusted using the procedure described in Figure 5(b).
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4.2. Operational Recommendations. Separately, our evalua-
tion of unruly wells reveals how important operational
excellence is. The suboptimal well rate early in a well’s his-
tory is profoundly impacting the cumulative production vol-
ume, which will reduce the net present value and internal
rate of return of the well. This should be avoided at all times
(unless the operator has deliberate reasons to choke the well
due to separator capacity limits, or the wish to delay produc-
tion sales when low product prices would render a well sub-
economic). If occurring unplanned, a review of the well
design and choke optimization procedure is highly recom-
mended to avoid undue loss of future revenues.

5. Conclusions

This study made a distinction between rule and unruly shale
wells, based on production analysis criteria. Ruly wells
exhibit little operational noise and their production data
can be readily matched by a variety of established history
matching tools. However, unruly wells, with apparently
irregular and volatile trend in their production profiles, have
long been discarded as being either ill-suited or unsuitable
for production analysis with traditional methods. This poses
a problem for operators of shale acreage, because such wells
are frequently encountered.

A new, fast method based on a new solution of the pres-
sure diffusion equation, termed the Gaussian pressure tran-

sient (GPT) solution, gives reasonable regression fit curves
on both ruly and unruly shale wells. This assertion was sub-
stantiated in this study after analyzing the production data
of four unruly shale wells, sampled from three major US
shale plays (Eagle Ford, Utica, and Wolfcamp Formations).
By demonstrating the effective use of the new GPT-based
solutions the Gaussian DCA mode (and highlighting other
possible application modes, see Table 1), the hope is this per-
spective paper will accelerate the dispersion of the new
method in both industry for operational applications and
in research institutions for continued validation.

Appendix

Gaussian DCA History Matches on Total Fluid
Production versus Oil Only

The Gaussian DCA should ideally be applied to the total
fluid produced. Exclusion of certain fluid volumes produced
leads to curve matches that may appear poor. The reason
being that the Gaussian method is physics-based, so all fluid
lifted by the well should be included and accounted for.
Examples of how the matches may appear poor at first are
given here using four parent wells from an Eagle Ford lease
[22]. The relative position of the parent wells is given in lon-
gitudinal vertical section view, well map, and gunbarrel

(a) Longitudinal section
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Figure 13: Layout of case study wells: (a) longitudinal section of typical wellbore in the Eagle Ford landing zone; (b) map view showing the
lateral extend of the 4 parent wells (R, O, H1, and M, completed in fall 2013) and 2 infill (so-called child) wells (H2 and H3, completed in fall
2017); (c) gunbarrel view of the 6 wells.
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Table 3: Effective lateral length, fracture spacing, fracture number, and total proppant injected for the Eagle Ford field data.

Well
name

Effective lateral
length

Number of completion
stage

Completion stage
spacing

Number of
fractures

Fracture
spacing

Total
proppant

— ft — ft — ft lbs

R 8,630 35 250 139 63 12,282,550

O 2,942 13 240 52 60 4,090,160

H1 6,550 22 300 131 50 10,664,970

H2 7,905 51 45-180 433 18

H3 7,359 50 56-177 413 18

M 5,950 20 300 119 50 9,398,600
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Figure 14: Well H1: (a) Gaussian match on historic daily oil rate only; (b) corresponding match on cumulative oil production; (c) improved
Gaussian DCA match on total fluid produced; (d) corresponding match on cumulative production data (total fluid).
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views of Figure 13. The basic completion attributes are sum-
marized in Table 3.

The historic daily rates and cumulative for each of the
four wells (Well H1, M, R, and O) were first matched using
oil production rates only, and then, improved Gaussian
DCA history matches were possible when the total fluid pro-
duction was used (Figures 14–17). The hydraulic diffusivity
are given in Table 4, which were established using least
square error fits, with Excel’s goal seek function, altering
the diffusivity until the optimum matches were obtained.
The graphical matches are given in Figures 14–17 and
explained in some detail below.

The daily and cumulative historic production data of
Well H1 matched with Gaussian DCA, initially using oil
production rates only (Figures 14(a) and 14(b)). Visual
inspection suggests that the Gaussian DCA curves give poor
matches. However, if we use water and oil production rates
combined, the matches improve substantially and appear
satisfactory (Figures 14(c) and 14(d)). Close matches of the
historic production date thus appear possible with the
Gaussian DCA, in spite of the well having choke setting
adjustments after 90 days of production that would jeopar-
dize DCA match quality of most other DCA methods. Well
H1 is discussed in some more detail in Figures 7–9 of the
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Figure 15: Well M: (a) Gaussian match on historic daily oil rate only; (b) corresponding match on cumulative oil production; (c) improved
Gaussian DCA match on total fluid produced; (d) corresponding match on cumulative production data (total fluid).
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main text. Note that the single day negative data point (due
to a meter transmission error) shown in Figure 7 has been
removed in the analysis of Figures 14 and 15.

The other three parent wells were also subjected to the
same analysis, comparing the history match quality using par-
tial (oil only) with those obtained using total fluid production
volumes. Figures 15(a)–15(d) show how the history matches
on Well M daily and cumulative historic production data
improved when the total well rates were used. The total daily
fluid rates and cumulative production can be matched snugly
with the Gaussian DCA curves (Figures 15(c) and 15(d)).
However, if oil rates only are used, the matches appear poor

(Figures 15(a) and 15(b)). The reason is that early in the well
life, there is significant water production (partly retarded flow-
back water), such that matching of the oil rates only, using a
single diffusivity throughout the well life, results in the poor
matches, especially early in the well life (Figure 15(a)).

Figures 16(a)–16(d) show how the history matches on
Well R production data also improved substantially when total
well rates were used. The historic total daily fluid rates and
cumulative production can be matched snugly (Figures 15(c)
and 15(d)). However, if only oil rates and cumulative historic
production of oil only are used, the matches appear poorer
(Figures 16(a) and 16(b)). The reason again is that early in
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Figure 16: Well R: (a) Gaussian match on historic daily oil rate only; (b) corresponding match on cumulative oil production; (c) improved
Gaussian DCA match on total fluid produced; (d) corresponding match on cumulative production data (total fluid).
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the well life, there is significant water production (including
some flowback water), such that matching oil rates with a sin-
gle diffusivity throughout the well life results in poorer
matches (Figure 16(a)).

Figures 17(a)–17(d) show the history matches for Well
O. Using total daily fluid rates leads to improved Gaussian
DCA matches of the historic production data
(Figures 17(c) and 17(d)). However, if oil rates only are used,
poorer matches appear (Figures 17(a) and 17(b)).

In a final check, history-matched well rates, generated
with CMG-IMEX, were matched with the Gaussian method
(Figure 18). Although the simulator data are free from oper-
ational noise, simulator history matches are nonunique and
should therefore never be taken as more reliable than field
production data. The CMG simulations cannot account for
all the water production such as resulting from flowback.
The main focus of such simulations is on the oil rate perfor-
mance. Using the CMG best fit of oil rate only forWell H1, the
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Figure 17: Well O: (a) Gaussian match on historic daily oil rate only; (b) corresponding match on cumulative oil production; (c) improved
Gaussian DCA match on total fluid produced; (d) corresponding match on cumulative production data (total fluid).
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fit with Gaussian DCA gives again rather poor history
(Figure 18). However, the Gaussian DCA invariably gives
excellent fits to real well data, provided total fluid rates are
used. Figures 14–17 give a good sense of the systematic error
that may arise if only oil rate data is used. Figures 14–17 also
give a good sense of the systematic error that may arise. Com-
paring the results of Figures 14 and 18 reveals the relative off-
sets. One take away from doing this check is that using CMG
oil-only output for benchmarking the Gaussian method may
be misleading. One should not doggedly try to match every
aspect of the CMG curves. Besides, the CMG simulation used
a black oil assumption due to which some minor multiphase
flow effects also may affect the production rate output from
the simulator platform.

In conclusion, it appears that history matching with
Gaussian DCA of the oil rates only and using a single diffu-
sivity throughout the well life, for all of the four wells ana-
lyzed as well as using CMG simulator output, results in
poorer matches (especially for the early rate data)
(Figures 14(a) and 14(b)–17(a) and 17(b) and 18). However,
if the total fluid production is used, as recommended here,
the Gaussian DCA appears to match the historic real well
data with reasonable certainty (Figures 14(c) and 14(d)–
17(c) and 17(d)). For the CMG simulation, only a constant

water-cut ratio was used, so attempts to Gaussian match
oil plus water rates from the simulator will not improve
the results of Figure 18.

For the estimation of oil reserves with the Gaussian DCA
method, the following procedure is recommended. First, for
shale wells producing liquids, one should apply the Gaussian
DCA method to history match the total fluid production,
which will give excellent matches. Next, one can obtain the
remaining oil reserves to be produced from a given day for-
ward, by prorating the forward production (based on total
fluid rate matches) for water-cut ratio, which then gives
reserve estimations with the SEC-required reasonable cer-
tainty. For dry gas wells, the water production will be negli-
gible, and excellent matches have been obtained using gas
rates only [19].
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Table 4: Hydraulic diffusivities obtained for the history matches of Wells H1, M, R, and O (Figures 14–17).

Well name Oil only (ft2/day) Oil only (m2/s) Total fluid (ft2/day) Total fluid (m2/s)

H1 0.02362 2 54 × 10−8 0.02340 2 52 × 10−8

M 0.02450 2 63 × 10−8 0.02376 2 56 × 10−8

R 0.02278 2 45 × 10−8 0.02230 2 40 × 10−8

O 0.02580 2 77 × 10−8 0.02500 2 69 × 10−8
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Figure 18: Well H: (a) Gaussian match on CMG history-matched daily oil rate only; (b) corresponding match on CMG output of
cumulative oil production (oil only).
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