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It is difficult to optimize the drilling parameters, which makes it difficult to reduce drilling costs in the process of drilling shale gas
wells in the Fuling region of Chongqing, China. This paper takes the optimization combination of drilling parameters in drilling
engineering as the research object and uses a saw-tooth genetic algorithm to perform the objective function. To solve the problem,
the algorithm proposes a variable population size with periodic reinitialization, which follows a saw-tooth scheme with unequal
amplitude and change period (saw-tooth GA), which can optimize the drilling parameters under constraints. According to the
actual situation of the wells in the Fuling region, the three algorithms are compared for the vertical section’s drilling
parameters. Example calculations show that the algorithm can achieve the best economic benefits at different revolutions per
minute and WOB to reduce drilling costs. Compared with other methods, this algorithm has the characteristics of fast
convergence, is easy to understand, and is simple to implement. The proposed algorithm is tested for the drilling parameter
optimization of shale gas wells and from which it becomes evident that the saw-tooth scheme enhances the overall
performance of GAs.

1. Introduction

Optimization of drilling parameters means that in the dril-
ling operation process of an oil and gas field, the optimal
combination of various parameters is comprehensively cal-
culated according to the actual situation (bit wear, ROP,
etc.), and the normal drilling operation is carried out at a
lower cost per unit length to maximize the economic benefits
of the whole project.

Several methods for optimizing drilling control parame-
ters are put forward in the literature, including the function
extremum method, pattern search method, particle swarm
optimization method, and genetic algorithm. According to
the description in Okoro Research [1], it can be seen that
the mathematical derivation and calculation process of the
function extremum method is complicated, with a long
design cycle and low efficiency. The pattern search method
has great advantages in solving nonlinear problems, but its

global search capability is weak. Particle swarm optimization
(PSO) and genetic algorithm (GA) have problems of poor
stability and local convergence, which limit their search effi-
ciency and accuracy [1]. Self et al. [2] put forward a method
of combining particle swarm optimization algorithm with a
permeability model and conducted in-depth research on
the optimization of dynamic drilling parameters to minimize
the total cost of each well. Abbas et al. [3] for the first time, a
genetic algorithm was used as an ROP optimizer. In order to
determine the optimal controllable drilling parameters, the
traditional genetic algorithm was improved, but its searching
efficiency and accuracy needed to be improved [3]. Khaleel
et al. [4] studied the combination of multiple regression
analysis technology and a genetic algorithm, analyzed the
field data, and established the equation related to permeabil-
ity by using the results. As a result, WOB was optimized, the
best penetration rate was achieved, the drilling time and cost
were effectively reduced, and the drilling problem was
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alleviated [4]. Toreifi et al. [5], by improving the inappropri-
ate particle swarm optimization algorithm, a new leakage
technology was realized, the applicable drilling parameters
were improved and selected, and the drilling leakage predic-
tion model was optimized, which minimized leakage and
made the prediction accuracy higher. Antil et al.’s [6] parti-
cle swarm optimization (PSO) algorithm is used to solve the
objective function of drilling parameter optimization of
polymer matrix composite (PMC) bit. This algorithm is sim-
ple, with few parameters, and it can get good results, but it is
easy to fall into local optimization [6]. Zheng et al. [7], based
on the multiobjective optimization drilling parameter opti-
mization model of penetration rate, bit life, and bit specific
energy, a multiobjective optimization particle swarm optimi-
zation algorithm was proposed. In the process of modeling,
it is assumed that the effects of the hydraulic purification fac-
tor and pressure difference are ideal, which simplifies the
model and facilitates the algorithm to solve [7]. Pandey [8]
proposed a multiobjective-improved computer-aided genetic
formula, which is used to solve the recast layer, heat-affected
zone, and microcracks supported by the drilling parameter
model, optimized many quality characteristics, and improved
drilling quality. Saw et al. [9], combining an adaptive neuro-
fuzzy reasoning system and genetic algorithm, the optimiza-
tion model of drilling parameters was deeply studied. Li and
Cheng [10] proposed a hybrid artificial intelligence model
based on an improved genetic algorithm (IGA) and an artifi-
cial neural network (ANN) to optimize drilling technology.
The algorithm has the advantages of fast convergence, high
precision, good stability, and strong robustness, which further
deepen the application of the genetic algorithm in drilling
parameter optimization [10].

Based on the above research, this paper proposed a saw-
tooth genetic algorithm (saw-tooth GA) to solve the drilling
parameter optimization problem by analyzing and investi-
gating the related evolutionary algorithms, aiming at ensur-
ing strong global search ability and greatly improving local
optimization accuracy.

2. Optimization Model Design of
Drilling Parameters

2.1. Determine the Objective Function. The process of opti-
mizing drilling parameters by the genetic algorithm is shown
in Figure 1.

There are many functions to measure the overall techni-
cal and economic indicators of the drilling process. The
more commonly used and intuitive is to use the drilling unit
footage cost as an evaluation index for drilling parameter
optimization [11], and its expression is:

Cpm = Cb + Cr t + ttð Þ
H

: ð1Þ

In the formula, Cpm is the footage cost (unit), yuan/m;
Cb for the drilling cost, yuan; Cr for drilling rig operation
cost, yuan/h; t for drilling time; tt for the time of tripping
and connecting, h; and H for the drill footage.

Formula (1) is to analyze and solve the problem only
considering the cost of the drill bit and drilling rig operation,
without considering the cost of drilling fluid and drilling tool
combination.

The modified drilling rate equation of the F. S. Young
model is as follows:

vpc = KCpCH W −Mð Þnλ 1
1 + C2h

: ð2Þ

In the formula, vpc is the rate of penetration, m/h;W and
M are the WOB and threshold WOB, respectively, kN; n is
the speed, r/min; K is the formation drillability coefficient;
Cp and CH are the pressure difference influence coefficient
and hydraulic purification coefficient, respectively; λ is the
speed index; C2 is the bit tooth wear coefficient; and h is
the amount of tooth wear, 0 ≤ h ≤ 1.

Formula (2) can be converted into the relationship
between the working time of the drill bit and the footage
of the drill bit.

dH = KCpCH W −Mð Þnλ 1
1 + C2h

dt: ð3Þ

Drill tooth wear equation expression:

dh
dt =

Af a1n + a2n
3À Á

Z2 − Z1Wð Þ 1 + C1hð Þ : ð4Þ

That is

dt = Z2‐Z1Wð Þ 1 + C1hð Þ
Af a1n + a2n3ð Þ dh: ð5Þ

In the formula, Af is the formation abrasive coefficient;
a1 and a2 are the rotational speed influence coefficients,
which are determined by the bit type; Z1 and Z2 are the
influence coefficients of WOB, which are related to the
diameter of the drill bit; and C1 is the tooth wear reduction
coefficient.

The above formula integral change, let tE = Cb/Cr + tt ,
the objective function containing three variables of drilling
pressure (W), rotation speed (n), and bit wear (hf) during
drilling is obtained.

Cpm =
Cr tEAf a1n + a2n

3À Á
/ Z2 − Z1Wð Þ + hf + h2f C1/2

h i
CHCpKd W −Mð Þnλ hf C1/C2 + ln 1 + C2hf

À Á
C2 − C1ð Þ/C2

2
Â Ã

ð6Þ

In the formula, tE is the conversion time of the drill bit
and tripping cost, h; hf represents the final amount of tooth
wear, that is, the amount of tooth wear corresponding to the
life of the drill bit. It can be seen from formula (6) that the
values of CH and Cp should be as large as possible when
optimizing drilling parameters.
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According to the above parameters, find the relevant
drilling parameter combination when the cost per unit
length Cpm is the minimum value; that is, find the optimal
parameter combination when the objective function formula
(6) takes the minimum value. According to classical optimi-
zation theory, when the partial derivative of the function on
its variables is equal to 0, the minimum value exists, so the
point meeting the extreme value condition of the drilling
objective function is the minimum point of the objective
function. In the objective function determined by formula
(6), it is necessary to consider the five variables of W, n, hf
, Cp, and CH . When the values of Cp and CH tend to be 1,
the drilling cost is the lowest. After determining the optimal
values of Cp and CH , the minimum condition can be
expressed as:

∂Cpm
∂W

= 0,

∂Cpm
∂n

= 0,

∂Cpm
∂hf

= 0:

ð7Þ

2.2. Constraint Condition. The independent variables con-
tained in the objective function obtained above must have
certain constraints under the actual drilling engineering field
conditions, including the value range of independent vari-
ables and the relationship between them. Constraints set
on variables in objective function formula (6) [12]:

(1) WOB (weight on bit)W:M <W < Z2/Z1, andW > 0
(2) Revolutions per minute n: 0 < n < nmax, nmax is the

maximum revolution per minute of the drilling unit

(3) Amount of bit wear hf : 0 < hf < 1
(4) The bit pressure and revolutions per minute meet

the constraints ðW · nÞ < PD (PD is the maximum
allowable value recommended by the bit manufac-
turer; (W · n) can be obtained from the operating
manual provided by the bit manufacturer)

(5) Bearing wear Bf : 0 ≤ Bf ≤ 1

2.3. Determine the Fitness Function. When the objective
function formula (6) gets the minimum value under the con-

straint condition, it is the optimal parameter combination of
drilling parameters, which is converted into a mathematical
problem, that is, the inequality nonlinear programming
problem is solved under the constraint condition, and its
mathematical model [13–15] is as follows:

f =min Cpm W , n, hf
À Á

M <W ≤
Z2
Z1

,

W > 0,
0 < n < nmax,
0 < hf < 1,
0 ≤ Bf ≤ 1,
W•nð Þ < PD:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð8Þ

The higher the fitness of the fitness function, the closer it
is to the optimal solution of the objective function. The indi-
vidual fitness function F selected in this study is

F = F f½ � = 1
f
: ð9Þ

3. Saw-Tooth Genetic Algorithm

3.1. Characteristics of Improved Saw-Tooth Genetic
Algorithm. The probability of individual I being selected in
the improved saw-tooth genetic algorithm (GA) is

Pi =
Fi

∑N
j=1Fj

, ð10Þ

where Fi is the fitness value of an individual I; N is the num-
ber of individuals in the population.

The modified saw-tooth genetic algorithm proposes a
variable population size with periodic reinitialization, which
follows a saw-tooth variation scheme with unequal ampli-
tude and variation period; that is, the population size
decreases linearly in each period, and the randomly gener-
ated individuals are added to the population at the beginning
of the next period, so it is called a saw-tooth genetic
algorithm.

Variable population size can change the population size
between successive generations, only affecting the selection
operator of the genetic algorithm. nt and nt+1 are the popu-
lation sizes of current and future generations, respectively.

Mechanical rock breaking 
parameters (WOB, revolutions 

per minute, bitwear) etc.)
Optimal combination of

drilling parameters

Data preprocessing

Genetic algorithm

Figure 1: Application of the genetic algorithm to optimize drilling parameters.
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Individual selection is the repeated process of the nt+1 gen-
eration selection operation, and Pj is the probability of
selecting the jth individual. For most selection operators
(such as fixed proportion selection and competitive selec-
tion with substitution), the selection probability Pj remains
constant for the nt+1 generation selection operation. The
expected copy number of the selected jth individual can
be expressed as

m j, t + 1ð Þ =m j, tð ÞPjnt+1: ð11Þ

In the formula,mðj, tÞ is the copy number of the t
generation of the j generation individual. The expected
number of jth generation individuals is proportional to
the population size of the offspring. Therefore, the group
part related to the individual after selection [16] can be
expressed as

ρ j, t + 1ð Þ = m j, t + 1ð Þ
nt+1

=
m j, tð ÞPjnt+1

nt+1
=m j, tð ÞPj: ð12Þ

The condition of the selected population and popula-
tion size independent of offspring is that the change in
population size is not enough to modify the probability.
However, compared with the constant population size
genetic algorithm with the same calculation cost (equal
average population size), the genetic algorithm with
reduced population size has a larger initial population size
and a smaller final population size. This prediction
method is beneficial because the larger population size at
the beginning provides a better initial signal for the evolu-
tion process of the genetic algorithm. However, smaller
population size is sufficient at the end of the operation,
and the genetic algorithm can converge to the optimum.

3.2. Population Initialization of the Saw-Tooth Genetic
Algorithm. To study the effect of population reinitialization,
the constant population size algorithm proposed in Section
3.1 is compared with the genetic algorithm that reinitializes
8 times every 20 generations, instead of mutations in the
20th, 40th, …, and 180th generations, which is established
by using the same average number of modified bits as Gold-
berg and Richardson’s [17] multimodal functions by the fol-
lowing relation

tmaxnpml = 8n′pm ′l, ð13Þ

where tmax = 200 is the total number of generations, n = 100
is the population size, pm = 0:019 is the probability of
mutation [17], l is the length of the chromosome. In
addition, n′ is the number of individuals with a new
replacement at each reinitialization, and each bit is chan-
ged with probability pm ′ = 0:5.

Solving relation (8) with respect to n′, the following
relation is obtained:

n′ = tmaxnpm
8p′m

: ð14Þ

The population variation scheme of the saw-tooth GA is
shown in Figure 2.

3.3. Interlace Operation. Biologically, the crossover of genes
can be understood as the DNA at a certain position of the
two chromosomes is cut off and the two strings are crossed
to form two new progeny chromosomes, also known as gene
recombination or hybridization. The individuals in the GA
population are paired in pairs, and one or a certain gene seg-
ment is crossed and exchanged so that the excellent genes of
the parent generation are retained and inherited by the next
generation. In this paper, the real number is used to encode
the individual, and the crossover operation is carried out by
the real number crossover method. The crossover operation
method of the k chromosome ak and the l chromosome al at
the j position is as follows:

akj = akj 1 − bð Þ + aljb,
alj = alj 1 − bð Þ + akjb:

ð15Þ

In formula (15), b is a random number in the interval
[0,1] [18].

3.4. Variation Operation. Some individuals were randomly
selected from the population, and the mutation probability set
during initialization was used to make the specific genes located
on chromosome loci mutate. According to formula (16), the j
-gene aij variation of the ith individual [19] is as follows:

aij =
aij + aij − amax

À Á
•f gð Þ, r ≥ 0:5,

aij + amin − aij
À Á

•f gð Þ, r < 0:5:

(
ð16Þ

In formula (16), amax is the upper bound of gene aij and amin
is the lower bound of gene aij. The expression is

f gð Þ = r2 1 −
g

Gmax

� �2
: ð17Þ

In formula (17), g is the current iteration number, r2 is a
random number, and Gmax is the maximum number of
iterations.

4. Comparative Analysis

4.1. Simulation Experiment. According to the objective func-
tion of formula (6) and the rock strength, hydraulic, and bit
parameters in Table 1, we programmed to compare the saw-
tooth GA with other GAs [20] for simulation calculation.

The genetic algorithm (GA), improved adaptive genetic
algorithm (IAGA), and saw-tooth genetic algorithm (saw-
tooth GA) are used to solve the problem, and the drilling
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parameters are optimized and combined with the goal of
cost per unit length. Under the same conditions given in
Table 1, different algorithms are used to solve the objective
function, and the optimized combination data of drilling
parameters obtained by program simulation are shown in
Table 2.

It can be seen from Table 2 that the results obtained by
the basic genetic algorithm and the improved adaptive
genetic algorithm are similar, and the cost Cpm obtained by
the IAGA method is slightly higher, indicating that the
improved adaptive genetic algorithm has a strong local opti-
mization ability, but the global optimization effect is poor,
easy to fall into local optimum, and unable to achieve the
global optimum. The final unit footage cost Cpm obtained
based on the zigzag genetic algorithm is slightly lower, and
the convergence speed is significantly improved. After only
70 population evolutions, the maximum fitness degree, that
is, the minimum value of the objective function, can be

obtained. This algorithm can be used to complete the dril-
ling parameter optimization design task.

Furthermore, the saw-tooth GA has calculated the WOB,
revolutions per minute combination, and optimal cost under
different bit wear, and the results are shown in Table 3.

In the calculation process, record the optimal objective
function value and population average function value of
each generation in the iterative process, and the trend line
is shown in Figure 3.

It can be seen from Figure 3 that the fluctuation amplitude
of the saw-tooth GA is attenuated; the solving process is rela-
tively stable, it approaches the optimal solution after less than
100 iterations, and the convergence speed is fast. Combined
with Table 2 simulation results, the advantage of using the
saw-tooth GA is that it cannot only improve the running
speed but also the optimization results of drilling parameters
(WOB, rotational speed) are closer to the actual situation
and can obtain higher stability and convergence speed.

Insertion of randomly
generated individuals

Mean 
population

size n

Generation t

Population
Size n (t)

D

D

T T T

Figure 2: Population variation scheme of saw-tooth GA.

Table 1: Rock strength parameters, hydraulic parameters, and bit parameters.

Rock strength parameters
Hydraulic
parameters

Bit parameters

Kd Af λ C2 CH Cp Bit diameter/mm Z1 Z2 a1 a2 C1 C2

0.0023 2:28 × 10−3 0.68 3.68 0.9 0.8 251 0.0146 6.44 1.5 6:53 × 10−5 5 3.68

Table 2: Comparison of simulation results.

Algorithms Cost per unit length (Cpm)/(yuan⋅m
-1) WOB/kN Revolutions per minute/(r⋅min-1) The rate of convergence

GA 81.43 323.34 60 160

IAGA 85.50 340.00 62 100

Saw-tooth GA 79.80 305.00 85 70

Table 3: Optimal results of different bit wear.

Bit wear(hf ) WOB/kN Revolutions per minute/(r⋅min-1) Cpm/(yuan⋅m
-1) Optimal numbers of convergence

0.75 305.00 85.0 79.8 75

0.80 305.00 85.0 79.0 65

0.90 310.68 95.0 77.8 70

1.00 313.47 102.3 77.0 72
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In Figure 4, a three-dimensional cost diagram of revolu-
tions per minute (n) in [60,100] and WOB (W) in [220,320],
which is an optimal revolution per minute-WOB optimiza-
tion surface [21] with cost as the objective function, can ana-
lyze a more suitable WOB(W) interval ([220,320]). It can be
seen from Figure 4 that there is only one optimal solution of
the objective function, which will appear at the bottom, and
the WOB and revolutions per minute on the optimal solu-
tion can be obtained on the three-dimensional diagram.
Under the same objective function, the cost per unit length

solved by the saw-tooth GA is the lowest, which shows that
the saw-tooth GA proposed in this study not only has a
strong local optimization ability but also has a good global
optimization effect and the shortest convergence time.
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Figure 3: Variation process of saw-tooth GA calculation evolutionary (termination = 200).
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Figure 4: Optimized surface at optimal revolutions per minute and WOB.

Table 4: Bit parameters.

Bit diameter/mm Z1 Z2 a1 a2 C1

311.2 0.0131 7.15 0.5 2:18 × 10−5 2
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4.2. Calculation of Shale Gas Wells in the Jiaoshiba Area. A
well in the Jiaoshiba of Fuling region, with a depth of
675~1 357m, is composed of the Feixianguan Formation
of the Lower Triassic, Changxing Formation, and Longtan
Formation of the Upper Permian, Maokou Formation,
Qixia Formation, and Liangshan Formation of the Lower
Permian. The lithology is mainly gray limestone and
marlstone, and the formation has poor drillability and
strong abrasiveness. Abrasive coefficient Af = 2:89 × 10−3.
The design uses a three-cone bit with a diameter of
φ311.2mm for drilling [22], and the parameters of the
bit are found. The WOB influence coefficients Z1 =
0:0131, Z2 = 7:15, revolutions per minute influence coeffi-
cients a1 = 0:5, a2 = 0:218 × 10−4, teeth wear slowdown
coefficient C1 = 2, bit cost Cb = 56,000 yuan/piece, cost of
drilling rig daily Cd = 88,000 yuan/d, and cost of drilling
rig operation Cr = 3667 yuan/h.

The constraint conditions of the objective function are
M <W ≤ Z2/Z1 and W > 0; 0 < n < 100; 0 ≤ hf ≤ 1. Accord-
ing to the field drilling data and related data, the values of
each coefficient in the penetration rate equation can be
determined. The three roller bits are selected from this inter-
val to participate in the drilling. The bit parameters are
shown in Table 4, and the actual drilling parameters are
shown in Table 5.

After determining the above coefficients and constraints,
the improved saw-tooth GA is used to optimize the drilling
parameters of each bit working section, and the optimal
WOB (W), optimal rotation speed (n), and optimal bit wear
(hf) are obtained. The results are shown in Table 6.

In Table 6, Wopt is the optimal WOB, nopt is the optimal
rotation speed, Cpm is the unit footage cost after the optimi-
zation of the well section, and Cpma is the actual unit footage
cost of the well section.

It can be seen from Table 6 that the optimized unit foot-
age cost is lower than the actual site cost, the optimized
WOB is higher than the average value of the actual WOB,
and the optimized revolution per minute is lower than the
average value of the actual revolutions per minute. It can
be seen that the mode of “High WOB-low revolutions per
minute” is suitable for drilling in this section, which is con-

sistent with the drilling design scheme of this well before
drilling. The optimized rate of bit wear is higher than the
actual rate of bit wear, so the drill bit should achieve a rela-
tively high rate of bit wear without considering the influence
of hydraulic parameters, and the cost per unit length can be
significantly reduced when the value of hf reaches 0.8~0.9.

To sum up, drilling with reference to the optimized dril-
ling parameters can achieve the lowest unit drilling cost and
achieve the purpose of reducing costs and increasing effi-
ciency in the drilling engineering design of shale gas wells.

5. Conclusion

(1) The optimization model of drilling parameters in oil
and gas fields constructed by the evolutionary
modeling method was studied, and several GAs were
compared to determine the optimal revolutions per
minute and WOB. In the solution process, a saw-
tooth GA is used. The optimization results of drilling
parameters are closer to the actual situation, and the
convergence speed is fast. It is suitable for complex
drilling parameter optimization and can solve the
timeliness problem of the algorithm. Compared with
the simulation results, the saw-tooth GA effectively
solved the problem of drilling parameter optimiza-
tion and could get the best combination scheme of
revolutions per minute and WOB at the lowest cost
per unit footage

(2) In the simulation experiment, when the WOB (in the
interval [220,320] kN) or the rotational speed (in the
interval [60,100] r/min) is relatively stable, increas-
ing the rotational speed or WOB can reduce the unit
footage cost, but when it is increased to a certain
amount, that is, these two parameters exceed the
optimal WOB and rotational speed value, the cost
will not be reduced due to factors such as imperfect
bottom hole purification and too fast bit wear

(3) The saw-tooth GA algorithm is verified according to
the drilling data in the Jiaoshiba area of Fuling,
Chongqing. The results show that the optimization

Table 5: Actual drilling parameters.

The serial number of bits Running depth of well/m Trip-out depth/m Average bit pressure/kN Average drilling rate/r·min-1 hf
5 683 886 250 65 0.65

8A 1056 1254 240 55 0.75

9B 1403 1480 240 55 0.60

Table 6: Drilling parameters optimization calculation results of each bit.

The serial number of bits Wopt/kN hf nopt/ r ⋅min−1
À Á

Cpm/ yuan ⋅m−1À Á
Cpma/ yuan ⋅m−1À Á

5 256 0.85 42 2 150

2 2388A 259 0.80 56 1 271

9B 265 0.90 40 1 259
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method can be used to optimize the drilling param-
eters. The optimized WOB is slightly higher than
the average value of the actual WOB, the optimized
rotation speed is slightly lower than the average
value of the actual rotation speed, and the optimized
bit wear is larger than the actual bit wear. If the bit is
pulled out when the bit wear reaches 0.8~0.9, the bit
utilization rate can be improved, and the unit footage
cost can be reduced to a certain extent
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