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In order to clarify the gas-water two-phase flow law in horizontal wells and study the gas-water two-phase flow characteristics in
horizontal wells, firstly, the gas-water two-phase in a horizontal well is numerically simulated and analyzed, and the flow pattern
distribution under different well inclination angles and different phase separation flow rates is obtained. Secondly, a series of
production logging instruments including CAT instrument was used to conduct experimental research on gas-water two-phase
flow under different flow conditions, and the measured values of each CAT probe were extracted to reflect the local holdup under
different flow patterns. Finally, SSA-BP neural network algorithm is used to identify a gas-water two-phase flow pattern in a
wellbore by using experimental parameters such as center holdup, well inclination angle, spinner revolution, and CAT probe
measurements. The recognition accuracy of the neural network was improved from 83.75% to 91.66%, and the operation speed
was accelerated. It provides a research idea to explore the flow characteristics of gas-water two-phase flow in horizontal wells.

1. Introduction

As an unconventional natural gas, shale gas has the advan-
tages of wide geographical distribution, abundant reserves,
large development potential, and long stable production
cycle, and its development has attracted more and more
attention from the world and has a profound impact on
the global economy, politics, and military [1, 2]. China’s
shale gas resources are abundant, the degree of resource
exploration is low, and the development potential is large.
At present, horizontal well drilling technology and hydraulic
fracturing technology [3, 4] are the core technologies of
shale gas development, and production profile logging is
an effective method for postfracturing assessment of shale
gas wells, which can understand the output and reverse dis-
charge law of fracturing layer section, understand the
dynamics of downhole production, and provide a basis for
completion and production optimization [5]. The interpre-

tation of shale gas production profile logging is mainly
through the study of flow patterns and water holdup.

When the gas-water two-phase flow in the production well
flows in the pipeline, the distribution of the phase interface
changes and fluctuates with the flow process, and the flow pat-
tern is complex and changeable. As one of the most important
parameters to describe the flow characteristics of multiphase
flow, the flow pattern is of critical importance to the study of
the production well because of the limitations of environmen-
tal conditions that cannot be directly measured [6].

Scholars at home and abroad have conducted a large num-
ber of studies on the gas-liquid two-phase flow using numeri-
cal simulations. In 2008, in Schepper et al’s study, the 3D
horizontal tube model was established, the CFD software
VOF model and PLIC reconstruction method were used to
simulate the flow state of air and water flow in the horizontal
pipe, and the flow pattern diagram of the horizontal well was
predicted to verify the horizontal well flow pattern distribution
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of the Baker chart [7]. In 2011, Kou et al. used the FLUENT
software VOF model to simulate the flow pattern distribution
of different gas-liquid phase apparent velocity horizontal tubes
and compared it with Mandhane’s classic horizontal well flow
pattern diagram [8]. In 2012, Zhao et al. used VOF multiphase
flow to simulate the two-phase flow of gas and liquid in a ver-
tical rectangular flow channel at a high flow rate, observed the
flow pattern conversion of bubble flow-elastic flow-agitation
flow-annular flow in the rectangular channel, established the
change of cross-sectional gas content and flow pattern, and
analyzed the distribution law of the gas-liquid two-phase gas
content rate of the rectangular channel [9]. In 2016, Xu used
the VOF model of FLUENT software and RNG k-¢ turbulence
to simulate the gas-liquid two-phase flow state of the near-
horizontal tube with different inclination angles of 20 mm
and analyzed the variation of the gas-liquid two-phase flow
pattern, holdup, and flow rate of the inclination angle to the
horizontal tube [10]. In 2022, Mo-yan et al. used similar prin-
ciples to establish a theoretical calculation model of horizontal
well gas-water two-phase flow and applied multiphase flow
simulation software to conduct numerical simulation analysis
of the accumulation process of horizontal wells [11].

In order to clarify the flow law of gas-liquid two-phase flow,
a large number of physical experiments on gas-liquid two-
phase have been carried out. In 1974, Beggs and Brill used a
two-phase mixture of air and water as a fluid medium to con-
duct experimental studies on the flow characteristics of gas and
liquid in vertical tubes and transparent tubes with different tilt
angles of 0° to 90° and divided the flow patterns into three
types: dispersed bubble flow, intermittent flow, and separation
flow [12]. In 1980, Taitel et al. explained and predicted the
transition conditions between different flow patterns based
on the physical experimental data, proposed the corresponding
mathematical model of the two-phase flow pattern transition of
gas and liquid in the vertical tube, established the vertical gas-
liquid two-phase flow pattern diagram with a pipe diameter
of 25 mm and 50 mm, and further subdivided the bubble flow
into a dispersed bubble flow [13]. In 2001, Kaya et al. summa-
rized and revised the mechanical model of gas-liquid two-
phase flow on the basis of previous research and predicted
the flow pattern and flow characteristics of gas flow in inclined
wells [14]. In 2010, Lu Jing et al. established a simulated flow
loop similar to that of underground production. Experimental
flow patterns were observed and divided into experimental
flow patterns using a string of production logging instruments,
which were instrumentally measured and simulated for the
mixed flow of gas and water under different flow conditions
[14]. In 2011, Hongwei et al. carried out an experimental study
on the flow pattern of the large pipe diameter gas-water two-
phase pipe flow under inclined and horizontal conditions, with
the intention of starting from the fluid flow state inside the
wellbore and studying the relationship between the three main
flow parameters (total flow, water holdup, and well bevel) and
flow pattern of the production logging measurement [16]. In
2020, in order to study the two-phase flow of gas and liquid
in the inclined channel under nonlinear vibration conditions,
Bo et al. combined the vibration device with the experimental
circuit of gas-liquid two-phase flow, conducted experimental
studies by changing the channel inclination angle and vibration
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parameters, and concluded that the two-phase flow of gas and
liquid under nonlinear vibration conditions and steady-state
conditions is different, and increasing the inclination angle
and vibration parameters will lead to changes in the flow type
conversion boundary [17].

The use of numerical simulation and experimental simula-
tion of human observation of flow patterns is inevitably
affected by subjective factors, it is difficult to achieve objective
identification of flow patterns and online identification, and in
order to identify stream types online, many scholars have
begun to try to identify flow patterns by other methods. In
2001, Bofeng et al. used a CPN neural network to automati-
cally identify the flow pattern of air-water two-phase flow in
the vertical ascending section of a U-shaped pipe by combin-
ing the fast Fourier transform coefficient of the pressure fluc-
tuation process [18]. In 2005, Yunlong and Sun Bin analyzed
the pressure difference fluctuation signal of the air-water
two-phase flow in the horizontal tube to obtain the relevant
parameters, and the improved BP neural network of the adap-
tive learning rate of the eigenvector input of the flow pattern
can realize the objective identification of the unknown flow
pattern through the learning of the training samples [19]. In
2021, Qichao et al. used a full noise-assisted aggregation
empirical mode decomposition algorithm combined with a
probabilistic neural network to identify the flow pattern of
gas-liquid two-phase flow under fluctuating vibrations [20].
In 2022, Edmord linked several circular flow patterns observed
in the experiment to pressure gradients measured during the
water-air and water-carbon dioxide composite flows, using
artificial neural network ANN and K-means clustering
methods for well surge prediction [21].

However, the traditional optimization algorithm has great
limitations in the face of complex and difficult optimization
problems, the BP neural network algorithm is very sensitive
to the initial weight, and it is easy to converge to the local min-
imum, so in view of the above problems, this paper first carries
out the gas-water two-phase numerical simulation to obtain
the horizontal well gas-water two-phase flow pattern. Then,
the gas-water two-phase flow physical experiment was carried
out, the high-speed camera was used to observe the gas-water
two-phase flow pattern, and the flow pattern experimental
data were obtained. The time-flow pattern analysis was per-
formed on the experimental data, and it was found that the
conversion of the gas-water two-phase flow pattern was
related to the well inclination angle (CATROT), center hold-
ing rate (CWH), number of revolutions (CFB), and CAT
probe measurement value (NCAP01-NCAP12), according to
the above experimental data. An SSA-BP neural network algo-
rithm is proposed (this method takes into account the advan-
tages of the sparrow algorithm and the gradient descent
algorithm in global and local search for very small points,
respectively, which has certain guiding significance for the
identification of air-water two-phase flow patterns).

2. Numerical Simulation

2.1. Model Construction. In this paper, a horizontal well pipe
geometry model (as shown in Figure 1) is established
according to the inclination angle of -10°, -5°, -2°, 0, 5,
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FiGure 1: Horizontal pipe geometry.

15°, and 45°, with a pipe diameter of 124.0 mm and a pipe
length of 20 m.

The left side of the model is a gas-liquid two-phase flow
inlet, the right side is an outlet, the outer wall of the pipe is a
transparent plexiglass tube, the overall calculation domain of
the pipeline is 124 mm*20000 mm, and the model is meshed
by software (as shown in Figure 2) The mesh is divided using
the sweep method, the network type is set to all triangles,
and the number of divided meshes is 1407856.

2.2. Numerical Calculation Methods. In this paper, the VOF
method is used to track and capture the gas-water interface.
The VOF model is a surface tracking method built on a fixed
Euler grid. In this method, incompatible fluid components
share a set of momentum equations and track the interphase
interface within the computational domain by introducing a
variable a, the phase volume fraction, where the volume of a
phase is represented by «, the ratio of the volume of the
mesh it is in [22].

(1) a=0 gas phase
(2) 0 <a <1 gas/liquid mixed phase
(3) a =1 liquid phase

The volume fractional equation (continuity equation),
which tracks the interface between phases, is accomplished
by solving a continuous equation for the volume ratio of
one or more phases:

0% | SVa=0 (1)

_ veVx = s

ot

where « is the volume fraction and v is the speed, m/s.
The density of the mixed-phase fluid p, which appears in

the transport equation, is determined by the separation

phases present in each control volume. Assuming that in a

two-phase flow system, the phases are represented by sub-

scripts 1 and 2, and if the volume fraction of the second

phase is tracked, then the density in each cell is

p=ap, +(1-a)p,. (2)

In general, for n-phase systems, the average density of
the volume ratio takes the following form:

=8Py (3)

In the momentum equation, by solving a single momen-
tum equation over the entire region, the resulting velocity
field is shared by each phase, and the momentum equation
depends on the volume ratio of all phases through the attri-
bute p and p.

%(pv)w.(pw) =W+ [u(ve+vi")| +pg + F
(4)

wherein p is the pressure, Pa; y is the dynamic viscosity, Nes/
m?; and F is the equivalent volume force of the surface ten-
sion, Nes/m?.

The energy equation is shared among the phases.

2 (PE) Ve [H(pE + P)] = VelkVT) £ 5, (5)

where k. is the effective thermal conductivity; S, is the
source items, including radiation and other volumetric heat
sources; and E is the total energy.

The turbulence model used in this article is the standard
k-&¢ model.

The standard k-e model consists of two equations: turbu-
lence kinetic energy k and turbulent dissipation rate &, where
the turbulence viscosity g, is a function of k and &:

kZ
[’ltzpcpt?' (6)

The equations of the standard k-¢ model can be
expressed as

Bpk)  alpku) [ ([ wi\ ok
a o |\PTo)ox

! 7

+ Gy

+Gy—pe-Y +I,

d(pe) _ O(pew;) _ 0 p ) o¢
ot " ox ox |\"Ta)ox

1

82

&
+ CISE (GK + C3£Gb) - CZSP? + Qs’
(7)

wherein Ok is the turbulent velocity plant number of turbu-
lence kinetic energy k and Oe is the turbulent velocity plant
number of turbulence kinetic energy & Gy is a turbulent
term caused by a velocity gradient; G, is a turbulent term
caused by buoyancy; Y, indicates the effect of compressible
turbulence pulsation expansion on the total dissipation rate;
u, is the turbulence viscosity coefficient; C,,, C,,, C;, are
empirical constants; &, &, are user-defined source items.

2.3. Simulation Results and Analysis. Numerical simulation of
the flow of gas-water in horizontal wells (near-horizontal
wells) can analyze the different flow pattern characteristics
produced by different inclination angles, apparent velocity
changes, and moisture content of the two phases. The fluid
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FIGURE 2: Schematic diagram of horizontal pipe meshing.

media used in this numerical simulation are air (density of
1.29kg/m’ and viscosity of 1.79*107° pa-s) and water (density
of 998.4kg/m’ and viscosity of 0.0116* 107> pa-s). The model
inlet is set to the velocity inlet, and the outlet is set to the pres-
sure outlet. The moisture content of the mixed phase is 10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. The total flow
is 100m’/d, 200 m*/d, 400 m*/d, and 800 m*/d. Four typical
flow patterns were simulated separately, namely, smooth strat-
ified flow, waveform stratified flow, bubble flow, and segment
plug flow, as shown in Figure 3, where blue represents the gas
phase, and red represents the water phase. And the simulation
results were in good proportion with the flow pattern charac-
teristics in the literature [16], which verified the correctness
and feasibility of the model.

Figure 3 shows a numerical simulation of the gas-water
two-phase flow in horizontal wells and large inclined wells.
In this paper, numerical simulations adjust the magnitude
of the mixed mass flow rate and the content of the gas-
water two-phase at the inlet of the gas-liquid two-phase flow
to analyze the different popular characteristics of the appar-
ent velocity change of the gas-water two-phase flow [23].
According to the degree of dispersion of bubbles in the hor-
izontal well, the size and quantity of bubbles, the flow type of

gas-water two-phase flow is divided: stratified smooth flow,
stratified wavy flow, bubble flow, and slug flow.

(a) Stratified Smooth Flow. As shown in Figure 3(a), the
gas phase and the water phase are completely sepa-
rated, with a clear interface between them, and the
gas phase flows above the pipe

(b) Stratified Wavy Flow. As shown in Figure 3(b), the
gas phase flows at a certain speed and creates fluctu-
ations, undulations, and fluctuations at the top of the
gas-water interface, like waves pushing forward,
forming a stratified wavy flow

(c) Bubble Flow. As shown in Figure 3(c), the bubbles
are mostly in the upper part of the horizontal tubing
and less in the lower part. The distribution of bub-
bles tends to be more uniform as the flow rate of

the liquid phase increases

(d) Slug Flow. As shown in Figure 3(d), on the basis of
the wave flow, as the gas phase flow rate increases,
the disturbing waves in these wave flow waves hit

the upper surface of the flow channel, forming



Geofluids

©0.00e+00 1.00e-01 =2.00e-01 300e-071 400e-01 500e-01 600e-01 7.00e-01 =S00e-01 900e-01 1.00e+00

(a) Stratified smooth flow

(b) Stratified wavy flow

(c) Bubble flow

(d) Slug flow

FIGURE 3: Numerical simulation flow pattern diagram of horizontal and inclined gas-water two-phase flow.
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FI1GURE 4: Multiphase flow simulation experimental platform. This setup includes (1) gas-water separator tank, (2) water tank, (3) gas tank,
(4) water pump, (5) gas pump, (6) water flow meters, (7) water gate control valve, (8) gas flow meters, (9) gas gate control valve, (10) gas-
water mixing chamber, (11) deviation regulator, (12) U-turn test pipe, and (13) emulate a workstation.

warhead-shaped large bubbles. In horizontal well
conduits, water is in a continuous phase, while gas
flows in the form of a segment plug

3. Experiment

3.1. Experiment Setup. The experiment was conducted on
the multiphase flow simulation experimental platform of
the production logging center of Yangtze University [16].
Figure 4 is a brief diagram of the multiphase flow simulation
experimental platform.

The simulated wellbore device on the multiphase flow
experimental platform has an inner diameter of 124 mm
and a total length of 12m, the main body of the wellbore
is composed of a transparent plexiglass round tube with a
length of 10m (which is convenient for flow pattern and

instrument experimental observation), and the two ends
are 1 m long stainless-steel pipe [16]. The simulated wellbore
can be set to any angle from horizontal to vertical. The
experiment used an array logging instrument string includ-
ing an array capacitance retention meter CAT. The experi-
mental medium is air and tap water (at 16°C, standard
atmospheric pressure are all Newtonian fluids, and gas and
water densities are 0.0012g/cm’ and 0.992g/cm’, respec-
tively). The multiphase fluids in the experimental wellbore
are measured by the simulation workstation for their well
angle, water holdup, flow pressure, etc. and stored in the
database of the data acquisition system.

The experiment used an array logging instrument devel-
oped by GE (Figure 5). The probe array is designed to allow
the instrument to simultaneously measure 12 fluids on a
flow cross-section, and the measurement results



FIGURE 5: Array capacitance retention meter CAT.
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F1GURE 6: Classification of flow patterns of two phases of horizontal
well gas-water flow.

comprehensively reflect the asymmetrical characteristics of
the media distribution on the flow cross-section [15].

3.2. Analysis of Experimental Data. The experiment adopted
five total flows from low to high, namely, 50, 100, 200, 400,
and 800m’/d; the corresponding horizontal direction of
the well angle was set to 0, 5, 15, -2, -5, -10, and 45°; and
the moisture content under each total flow rate was set to
0%, 10%, 30%, 50%, 70%, and 90%, respectively.

During the experiment, the flow control system on the
flow loop adjusts and stabilizes the total supply flow rate and
ratio of the gas-water two phases to the various well conditions
in the above experimental scheme, and after the development
of the gas-water two-phase flow pattern in the horizontal well-
bore is stable [15], the well logging instrument is used to mea-
sure the gas-water mixed flow in the simulated wellbore, and
the transparent wellbore gas-water two-phase flow pattern is
observed and recorded with photographic equipment.

Through visual inspection during the test process, com-
bined with the results of previous research and the analysis
of photographic data, from the characteristics of the gas-
water interface, the distribution of the air-water two phases
in the horizontal and inclined tubes can be divided into five
flow patterns as shown in Figure 6, namely, the five main
flow types of smooth stratified flow, wave-like stratified flow,
bubble flow, segment plug flow, and cyclic flow.

4. Flow Pattern Identification

4.1. Time Series Analysis. It is assumed that during the log-
ging process, the fluid in the wellbore will not change the
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flow state due to temperature and pressure changes in a
short period of time. Analyze the relationship between the
measured value of each CAT probe and the flow pattern in
the wellbore, and extract a section of the original data
(extracted according to the fluctuating value, each working
condition takes 1s-2s, the general speed measurement inter-
val is 0.01 s, and when the speed measurement is 0, the inter-
val is 0.1s). Based on the raw data, the time-flow pattern
plate composed of the local water retention rate and time
relationship of each CAT probe, and the distribution of each
CAT probe (the first probe is 0 at the top, counterclockwise)
is drawn.

The time-flow pattern plate plotted from the original
data of the test shows that in pure water, the probe measure-
ment is a single value in pure gas, 1 in water and 0.1 in gas,
with slight fluctuations.

Figure 7(a) shows that the water cut of this set of data is
0.7, the flow rate is 50 m> /day, and the well slope is 0°. It can
be seen that part of the probe is soaked in water (3, 4, 5, 6, 7,
8,9, 10, and 11 probe values are 1), and part of the probe
bubbles in the air (1, 2, and 12 probe values are 0.1). At this
time, the performance of the time-flow pattern curve is part
of the curve and remains at 1, with little change over time,
and the other part of the value remains at 0.2, which does
not change much with time. The curve value has obvious
boundaries and remains stationary over time, and it can be
seen that the flow pattern of this group of data is a stratified
smooth flow by comparing the probe position map with the
local water retention rate-time relationship of the probe.
This group of data flow type is a stratified smooth flow.

Figure 7(b) shows that the water cut of this set of data is
0.5, the flow rate is 400 m3/day, and the well slope is -5°. It
can be seen that part of the probe is soaked in water (6, 7,
and 8 probe values are 1), a part of the probe bubbles in
the gas (1, 2, 3, 11, and 12 probe values are 0.1), and another
part of the probe fluctuates with time in water and gas (4, 5,
9, 10). The boundary of the curve value is obvious but some
probes fluctuate, because the probe position is on the divid-
ing boundary of the gas-water interface, and by comparing
the probe position map with the local water retention rate-
time relationship of the probe, this group of data flow type
is a stratified wavy flow.

The water cut of this set of data shown in Figure 7(c) is
0.9, the flow rate is 200 m3/day, and the well slope is 45°. It
can be seen that the probe is basically soaked in water (1,
2,3,4,5,6,7, 8,9, 10, 11, and 12 probe values are 1), and
the probe changes with time to show regular fluctuations,
but the fluctuation is not large, may be due to the time that
is too fast. The water holdup is 0.9, and by comparing the
probe position map and the probe local water holdup-time
relationship, this group of data flow type is bubble flow.

Figure 7(d) shows that the water cut of this set of data is
0.3, the flow rate is 800 m*/day, and the well slope is 15°. It
can be seen that the probe is basically soaked in water (1,
2,3,4,5,6,7,8,9, 10, 11, and 12 probe values are 1), but
the probe changes with time to show regular fluctuations.
Fluctuations are larger, and some probe values fluctuate to
the median value of pure gas (1, 2, 11, and 12 probe part
value is 0.1), possibly due to changes in time. The probe
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F1GURE 7: Time-flow pattern plate.

passes through segment plug-like bubbles, and the time is
slightly longer. By comparing the probe position map with
the probe local water retention rate-time relationship, this
set of data flow type should be slug flow.

Under different flow patterns, the local water holdup
value measured by CAT probes changes with time, and it

can be concluded that the time-flow pattern analysis method
can provide a basis for dividing the flow pattern without
relying on the field graphic.

4.2. Flow Pattern Identification Based on SSA-BP. When gas-
water two-phase flow in production wells flows in the
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wellbore, the distribution of the phase interface changes and
fluctuates with the flow process, resulting in complex and
variable gas-water two-phase flow patterns. At present, there
are two main methods to identify the flow pattern of gas-
liquid two-phase flow: one is the human observation method
and the other is the use of field flow parameters combined
with the existing flow pattern transformation guidelines or
flow pattern diagram judgment method, both of which are
inevitably subject to subjective factors to achieve objective
identification of the flow pattern [18]. In addition, due to
the conditions in the production wells, direct measurement
of the flow pattern is not effective. Therefore, this paper pro-
poses SSA-BP neural network algorithm to identify gas-
water two-phase flow patterns.

4.2.1. BP Neural Network. The learning process of a BP neu-
ral network consists of two processes: forward propagation
of signals and backpropagation of errors [23]. When propa-
gating forward, the input sample is passed in from the input
layer, processed layer by layer by hidden layer, and then
passed to the output layer. The BP network [24] consists of
an input layer, an output layer, and a hidden layer, [25] with
N1 being the input layer, Nm being the output layer, and the
rest being the hidden layer. The structure of the BP neural
network is shown in Figure 8.

(1) Forward Propagation Process. Output layer functions:

1
1+e*

flx)= (8)

Let X1,X2---, XN be the input variable, y be the out-
put variable, u; the output of the hidden layer neuron, and
f be the mapping relationship of the activation function.
Set v;; for the weight of the input variable i and the neu-
ron in the jth hidden layer, and let 6 be the threshold of
the jth neuron in the hidden layer (or called the bias term,
which is equivalent to the constant term and intercept in
the multivariate linear regression). You can write out u;
expression:

<Zvuxl+6”> j=1,2,-,m. 9)

Let w; be the weight of the jth neuron connected to y,
and 6 is the bias of y, which can be obtained:

yzf(iwjuj+9y>.

i

(10)

(2) Backpropagation Process. Let x be the true characteris-
tic of the data, the true value output value is y, and y is
the value predicted by the neural network. The goal we
ultimately want to get is as little error as possible between
the true value and the predicted value over the network,
and the objective function is set to

7=3 (s -yb)"
K

u is the learning rate, y is the goal, w is the parameter
to be optimized, and the gradient 0] U‘)/awj of the w; is
found:

(11)

oy :
=22y - ylh
w, =200 )y 12

Find the gradient 0] ®)/90” of 0

a7k .
T (0 ),
30’ (y 4 )
N

. represents the input of the ith feature. Find the
gradient a1<k>/av,j of v;;:

(13)

Find the gradient 0] U‘)/BH}‘ of 0}‘:

o ®

86” —2<y(k) y(k))wjuj(l—uj). (15)

4.2.2. Sparrow Search Algorithm. SSA is a new swarm
intelligence optimization algorithm, mainly inspired by
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sparrow foraging behavior and antipredation behavior
[26], with a strong global optimization-seeking ability not
dependent on gradient information, good parallelism, and
fast convergence speed [28].

The general flow of the sparrow search algorithm is as
follows:

(1) Initialize the number of sparrow populations and
define the values of their relevant parameters

(2) Output the global optimal position and global opti-
mal fitness value of the current sparrow

(3) When the current number of iterations is less than
the maximum number of iterations, the fitness
values are ranked to find the current best and worst
individuals

Throughout the sparrow foraging process, all sparrows
were divided into two categories: discoverers and joiners.
The discoverers themselves are highly adapted and search a
wide range, guiding the population to search and forage.
The joiners follow the discoverers to forage for better adap-
tation. At the same time, to improve their predation rate,
some joiners will monitor the discoverer to facilitate food
competition or foraging around it. When the whole popula-
tion is threatened by a predator or realizes the danger, it will
immediately engage in antipredation behavior [27].

The population consisting of n sparrows can be
expressed as

1.2 d
X1 X X
X, X x
X = : (16)
1.2
xl’l xi’l xn

where d denotes the number of dimensions of the variables
of the problem to be optimized and n denotes the number
of sparrows. In the subsequent optimization problem, d
denotes the number of parameters in the BP neural network
to be optimized, i.e., the total number of weights and devia-
tions. The fitness values of all sparrows can be expressed as

([

=,
N——— ——
I

F = f xéxgn.xZ (17)

x L E >

B

LS ([ ])

where f denotes the adaptation degree value. According to the
above principle of the sparrow search algorithm, the optimiza-
tion objective function can be established as follows:

f = argmin <§Z<oi—pi>2>, (18)

where N denotes the total number of training sets and o; and
p; are the true and predicted values of the ith data, respectively.
The fitness function indicates that we eventually want to get a
network with the minimum error on the training set.

(1) Discoverer Location Update. During each iteration, the
position of the discoverer is updated as follows:

i
X. .- -— ), ifR, < ST,
b eXp( oc.itermax> T (19)

X,;+Q-L if R, > ST.

t+1 _
Xt =

In equation (19), t denotes the current iteration number;
iter ., denotes the maximum iteration number; X; ; denotes
the position information of the ith sparrow in the jth dimen-
sional space; « is a random number from 0 to 1; R,(R, € [0
,1]) denotes the warning value; ST(ST €[0.5,1]) denotes
the safety value; Q denotes a random number obeying nor-
mal distribution; L denotes a 1 X d unit matrix.

(2) Joiner Location Update. The location of the joiner is
updated in the following manner:

t t

X - X
" Q-exp (%) ,if i > n/2,
Xt = (20)

X514 ‘Xf .~ X4 A*, Lotherwise.

In equation (20), X, denotes the optimal position of the
current discoverer; X, . denotes the current global worst
position; A denotes a 1 x d matrix where each element is

randomly assigned to 1 or -1 and A* = AT(AAT)_l.

(3) Vigilante Location Update. In addition, there is a part of
the sparrow as a sentry alarm duty, generally accounting for
10% to 20% of the population. The location of this type of
sparrow vigilante position updates in the following manner:

t t t
Xbest + ﬁ : ‘Xi,j - Xbest

AEf S,
(21)

t+1 _
Xi,j = ’Xf’j _xt

worst

(fi_fw)+£

X +K- A fi=1,

In equation (21), Xy, denotes the current global optimal
position; 3 denotes the step control parameter, which is a
normally distributed random number with mean 0 and var-
iance 1; K is a random number between [-1,1]; f, denotes the
adaptation value of the ith sparrow; f, and f, are the
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FIGURE 9: SSA-BP neural network flow pattern recognition flow chart.

optimal and worst adaptation values of the current sparrow
population, respectively; € is a constant, which serves to
avoid the denominator being zero.

4.2.3. Flow Pattern Recognition and Results Based on SSA-BP
Neural Network. BP neural networks are widely used in
many fields because of their nonlinear mapping, arbitrary
accuracy approximation, strong generalization ability, and
self-adaptive learning ability, but because the initial weights
and thresholds in BP neural network models are randomly
assigned, even though the model will continuously adjust
the weights through the error backpropagation algorithm
so as to find the optimal weights and thresholds, they often
have the problem of falling into local minima and conver-
gence is slow [29]. In this paper, the sparrow search algo-
rithm [26] is used to optimize it. SSA can optimize the
weights and thresholds of the BP neural network by using
its own powerful local and global search ability and fast con-
vergence ability to get the optimal initial weights and thresh-
olds [30], which avoids the risk of premature convergence to
a minimal point during the training of the BP network. The
SSA-BP neural network gas-water two-phase flow pattern

identification method is formed. The flow chart of SSA-BP
neural network flow pattern identification is shown in
Figure 9.

Based on the results of time-flow pattern analysis, the 15
characteristic quantities of well slope angle (CATROT), cen-
ter holdup (CWH), number of revolutions (CFB), and mea-
sured values of each CAT probe (NCAPO1-NCAPI12)
obtained from the experiment were used as input, and the
flow pattern was used as output to establish the SSA-BP neu-
ral network flow pattern recognition model.

Based on the BP basic neural network structure pro-
posed in Section 4.2.1, a neural network structure dedicated
to gas-water two-phase flow type recognition is built, as
shown in Figure 10.

In this paper, 139 samples were collected in the gas-
water two-phase flow experiments: 59 groups of stratified
smooth flow (SF), 30 groups of stratified wavy flow (SWE),
38 groups of slug flow (SLF), and 12 groups of bubble flow
(BF), based on visual inspection and analysis of images taken
by high-speed cameras.

115 sets of training samples and 24 sets of test samples (6
sets randomly selected from each class of flow patterns, 24
sets in total: 1-6 for SF, 7-12 for SWF, 13-18 for SLF, and
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FIGURE 11: BP network prediction versus actual type.

19-24 for BF) were used as the sample set for the SSA-BP
neural network model [31].

The parameters of the system prediction model were set,
the number of individuals in the sparrow population was 50,
the maximum number of iterations was 100, the proportion
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FIGURE 12: SSA-BP network prediction versus actual type.

of discoverers to the total population was 0.7, the rest were
followers, the proportion of vigilantes to the total population
was 0.2, and the vigilance value was 0.6. The upper and
lower boundaries of the weight threshold were -10 and 10.
The number of BP neural network training was 1000 times,
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TaBLE 1: Comparison of real and predicted categories of gas-water two-phase flow type.

Prediction Actual BP prediction SSA-BP prediction  Prediction Actual BP prediction SSA-BP prediction

set category category category set category category category

1 SF SF SF 13 SLF SLF SLF

2 SF SF SF 14 SLF SLF SLF

3 SF SF SF 15 SLF SLF SLF

4 SF SF SF 16 SLF SLF SLF

5 SF SWF SF 17 SLF SLF SLF

6 SF SF SF 18 SLF SLF SLF

7 SWF SWF SWF 19 BF SLF BF

8 SWF SWF SWF 20 BF BF BF

9 SWEF SWF SWF 21 BF BF BF

10 SWEF SWF SWEF 22 BF BF BF

11 SWF SWF SF 23 BF BF SLF

12 SWF SF SWF 24 BF BF BF

BP accuracy: 87.5%; SSA-BP accuracy: 91.66%.

and the learning efficiency was 0.1. The training target min-
imum error was set to 0.001.

The results of BP neural network flow pattern identifica-
tion are shown in Figure 11, and the results of SSA-BP neu-
ral network flow pattern identification are shown in
Figure 12. The comparison table of the real category of air-
water two-phase flow pattern with the BP prediction cate-
gory and SSA-BP prediction category is shown in Table 1.

BP accuracy: 87.5%. SSA-BP accuracy: 91.66%.

According to the graph and table analysis, it can be con-
cluded that the correct rate of BP neural network flow pat-
tern recognition is 0.875, and the correct rate of SSA-BP
neural network flow pattern recognition is 0.9166. By com-
paring the display to visually show the flow pattern predic-
tion results and the actual category results, it can be
concluded that both BP neural network algorithm and
SSA-BP neural network can be used for gas-water two-
phase flow pattern recognition. The introduction of the
SSA algorithm can improve the accuracy of the BP neural
network for flow pattern recognition and can effectively
avoid the risk of convergence to local minima very early in
the BP network training process.

5. Conclusions

(1) In this paper, a three-dimensional numerical model
under the conditions of gas-water two-phases was
established by using the FLUENT plate in ANSYS
large finite element analysis software, and the flow
of gas-water in horizontal wells and near-horizontal
wells was investigated. The gas-water two-phase flow
type can be divided into stratified smooth flow, strat-
ified wavy flow, bubble flow, and slug flow

(2) The holdup logging curve data and flow data of the
typical flow pattern of gas-water in horizontal wells
and near-horizontal wells are obtained by means of
array logging instruments (array capacitance reten-
tion rate meter CAT), and the gas-water two-phase

flow pattern is obtained based on the visual inspec-
tion of the test and the images taken by the high-
definition camera

(3) Itis proposed to draw the local water holding capac-
ity measurement and time of each CAT probe to
obtain a time-flow pattern analysis method to ana-
lyze the flow law of gas-water two-phase, which can
be used to divide the convection pattern when there
is no on-site image

(4) It is proposed to use the SSA-BP neural network
algorithm to identify the gas-water two-phase flow
patterns and obtain the accurate flow pattern catego-
ries, and the classification accuracy is 91.66%.
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