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This study investigated the supporting mechanism of the retaining piles and prestressed anchor cables of a deep foundation
pit in alpine regions during the spring thaw. A numerical model was developed based on a subway project in Changchun
City. Field monitoring data and the numerical model were used to analyze the variations in the ground settlement,
horizontal displacement of the pile tops, and axial force of the anchor cables during the spring thaw under different
working conditions. The results demonstrated that changes in the ground settlement primarily occurred in the late stages
of the spring thaw with no obvious settlement phenomena because of the thaw. The pile top displacement of most piles
remained stable. The axial force of the anchor cables gradually decreased and then sharply increased early in the spring
thaw and then slowly decreased in the middle and late stages. Increasing the pile length decreased the pile top
displacement to a certain point. Moreover, increasing the pile length increased the axial force of the first anchor cable but
decreased the axial force of the lower four anchor cables. Furthermore, increasing the pile spacing increased the pile top
displacement and axial force of the five anchor cables. Increasing the incident angle of the anchor cables decreased the
pile top displacement and increased the axial force of the first, third, and fourth cables. The axial force of the second
cable was minimized at an incident angle of 14°, and the axial force of the fifth cable was minimized at incident angles of
16° and 18°.

1. Introduction

In regions with seasonally frozen soil, the air temperature
often cycles below and above the freezing point of water dur-
ing the spring thaw, which accelerates the frequency of
changes in the water volume in the soil. For foundation pits
in such regions, the soil cannot effectively discharge the
thawed water, which causes frost heaving and results in
severe pressure on the pile-anchor system of the foundation
pit [1–3]. Luo et al. reported that freeze thaw cycles increase
the internal microporosity of concrete, which causes cracks
to accumulate, grow, and eventually lead to concrete failure
[4]. Gong et al. suggested adding fibers to improve the cohe-
sion and internal friction angle of concrete, but the effective-

ness gradually decreased as the number of freeze thaw cycles
increased [5]. Jin et al. established a freeze thaw damage
model with fractal dimensions as the independent variable
and quantified the relationship between the concrete damage
degree, damage parameters, and durability coefficient on the
microscale [6]. They conducted experiments and demon-
strated that the influence of freeze thaw cycles on interfacial
shear behavior could be attributed to water migration and
the formation and accumulation of an ice film [7]. Mo and
Lou considered the coupling effects of water, heat, force,
capillary action, and membrane water migration to study
the distribution law of frost heave in the basement soil of a
structure with a concrete lining and composite geomem-
brane [8]. Yuan et al. examined the degradation in
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anchoring performance of grouted bolts subjected to freeze
thaw cycles and established a model [9]. They observed that
the maximum anchoring stress occurred in the middle of the
bolts, where shear failure possibly occurs. Liu et al. studied
the damage to the shotcrete microstructure because of freeze
thaw cycles and its evolution law [10]. Cui et al. demon-
strated that the temperature field and mechanical properties
of a reinforced retaining wall depend on the ambient tem-
perature and number of freeze thaw cycles [11]. In particu-
lar, the top settlement and horizontal displacement of the
retaining wall increased with the number of freeze thaw
cycles. Li et al. performed a number of tests to study the frost
heave mechanism of saturated coarse-grained soil with dif-
ferent fine grain contents and proposed a finite element
model based on the Takashi equation [12]. Zhan et al. ana-
lyzed the variations in the temperature field, liquid water
migration, solid ice accumulation, and frost heave deforma-
tion of frozen soil slopes [13]. Dong and Yu proposed a
numerical model to simulate the frost heave and stress of
water pipes and performed experiments to confirm the reli-
ability of the model at simulating the temperature distribu-
tion and volume variation [14]. Chou et al., Zhao et al.,
Han et al., and Feng et al. used the software Geo-Studio
and demonstrated that the thawing depth of slopes subjected
to freeze thaw cycles increased with the freezing depth and

that a closed loop isotherm formed on the slope [15–19].
Other researchers have used onsite monitoring, indoor
freeze thaw tests, thermal parameter tests, and numerical
simulations to examine embankments, cut slopes, rock
masses, and tunnels in cold regions [20–30].

However, there has been little research on the reliability of
a retaining system comprising piles and prestressed anchor
cables for deep foundation pits in seasonally frozen regions
both at home and abroad. Moreover, the evolution law for
the deformation of the retaining piles and axial force of the
prestressed anchor cables is not clear. Thus, the designmethod
for pile-anchor systems of deep foundation pits in cold regions
with seasonally frozen soil lacks a rational and scientific basis.
To address this gap in the literature, this study focused on a
construction project for a subway station in Changchun City.
Field monitoring data and numerical simulations were used to
consider the coupled effects of water, heat, and forces on the
foundation pit and clarify the supporting mechanism of the
pile-anchor system during the spring thaw.

2. Materials and Methods

2.1. Site Overview. The subway station is located in Chang-
chun, Jilin Province. The station has a length of 245.7m,
standard section width of 20.5m, and buried depth for the
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Figure 1: Project overview: (a) construction site and (b) structural profile [19].

Table 1: Design parameters of the prestressed anchor cables.

Anchor
cable

Length of anchor cable (m)
Steel
strand

Diameter of
anchoring body

(mm)

Horizontal
inclination (°)

Axial force
standard value

(kN)

Preaxial
force (kN)

Overall
length

Length of
anchorage
section

Length of
free section

First 21.0 13.0 8.0 3 × 7φs13:5 250 15/13 77.8 60

Second 23.0 16.0 7.0 3 × 7φs13:5 250 15/13 169.8 122

Third 27.0 20.0 7.0 5 × 7φs13:5 250 15/13 329.1 244

Fourth 24.0 17.0 7.0 6 × 7φs13:5 250 15/13 453.1 325

Fifth 15.0 10.0 5.0 5 × 7φs13:5 250 15/13 312.0 256
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floor of 19.1m. The foundation pit was excavated from top
to bottom through layers of silty clay (average thickness:
15.3m), fully weathered sandstone (average thickness: 2.4m),
highly weathered mudstone (average thickness: 6.1m), and
medium weathered mudstone (average thickness: 34.3m).
The stable water level had a buried depth of 3.44~4.90m
and elevation of 221.53~222.67m. The foundation pit had
a length of 240.5m, width of 22.9m, and excavation depth
of 19.7~20.1m. The retaining structure for the standard sec-
tion of the foundation pit combined bored cast-in-place
piles with prestressed anchor cables, and the retaining struc-
ture at both ends of the foundation pit combined bored
cast-in-place piles with steel pipes as internal support. The
piles had a diameter of 800mm, length of 25m, and spac-
ing of 1.3m. The retaining structures were built using C35
concrete and HRB400 steel reinforcement, as shown in
Figure 1 [19].

The anchor cables were anchored into the stable rock
mass, and the free ends were fixed between the retaining
piles with anchorage. Five anchor cables were set from top
to bottom between the piles, and the horizontal spacing of
the anchor cables was 1.3m. The anchor cables comprised

twisted steel strands with a standard tensile strength of
1860MPa. Table 1 presents the design parameters. Chang-
chun City has a temperate continental semihumid to semi-
arid monsoon climate, and the spring thaw takes place
from March to May.

To examine the variations in deformation and stress of
the pile-anchor system during the spring thaw, four param-
eters were monitored: the site temperature, surface settle-
ment, pile top displacement, and axial force of the anchor
cables. Figure 2 shows the layout of the measurement points.
The measurement points for the surface settlement were
symmetrically arranged along the south and north sides of
the foundation pit. On each side, the distance between mea-
surement points was 10m. Moreover, the distance between
each measurement point and the free surface of the founda-
tion pit was set to 2, 5, or 8m. The monitoring frequency
was about once every 24 h. The measurement points for
the pile top displacement were arranged symmetrically along
the south and north sides of the foundation pit at the top of
the piles. On each side, the distance between measurement
points was 10m. The monitoring frequency was about once
every 24 h. The measurement points for the axial force of the
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Figure 3: Three-dimensional numerical model: (a) soil and (b) pile-anchor system [19].
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anchor cables were symmetrically arranged along the south
and north sides of the foundation pit. On each side, the dis-
tance between measurement points was 30m. Each measure-
ment point monitored the axial forces of 10 anchor cables on
the south and north sides of the foundation pit, which corre-
sponded to the cross-section of the measurement point. The
monitoring frequency was about once every 24 h, and the
measured value and change in the axial force were recorded.
The surface subsidence of the bottomless foundation pit was
monitored from March to June 2021 at 2, 5, and 8m from
the excavation surface, with a frequency of 24h. The moni-
toring points are shown in Figure 2. Measuring points 1
and 2 are located at the north and south sides of the founda-
tion pit and are 2, 5, and 8m away from the free surface and
are denoted as LS(1/2)-(N/S)-(2/5/8).

2.2. Numerical Model. The finite element software ABA-
QUS was used to establish a 3D numerical model of the
pile-anchor structure supporting the foundation pit, as
shown in Figure 3 [16]. The model had a length of
182.5m, width of 5.2m, and height of 60m. The piles
had a diameter of 0.8m, length of 25m, and spacing of
1.3m, and the crown beam height was 1m. To facilitate
numerical calculation, the bending stiffness equivalent
principle was used to simplify the piles into an equal-
thickness diaphragm wall. The equivalent thickness of the
rear diaphragm wall was calculated to be ~0.486m. The
anchor cables from top to bottom had lengths of 21, 23,
27, 24, and 15m, respectively. The distances between the
anchor cables from top to bottom and the top of the foun-
dation pit were 1.5, 5.0, 8.6, 12.2, and 16.0m, respectively.
The anchor cables had an incident angle of 14°. The mod-
ified D-P constitutive model was adopted for the soil, and
Table 2 presents the calculated material parameters. An
equivalent ground wall was constructed using
temperature-displacement coupled 3D solid elements

(C3D8T) with an elastic model. The density was 2500 kg/
m3, Poisson’s ratio was 0.2, and the elastic modulus was
31GPa. The prestressed anchor cables were represented
by a beam element (B31) and elastic model. The density
was 7693 kg/m3, Poisson’s ratio was 0.3, the elastic modu-
lus was 195GPa, and the expansion coefficient was 1 ×
10−5 W/ðm · KÞ.

The contact between the ground-linked wall and the
soil is selected as face-to-face contact, with the divergent
behavior defined by the friction coefficient and the
expected behavior set as hard contact. The contact
between the prestressing anchor cable and the ground
connection wall is achieved through the binding restraint
of the free section of the anchor cable to the ground con-
nection wall. In contrast, the contact between the prestres-
sing anchor cable and the soil is achieved through the
embedded restraint of the anchor cable anchorage section
to the ground.

3. Results and Discussion

3.1. Onsite Monitoring

3.1.1. Surface Settlement. The variation in settlement at the
measurement points at different distances from the foun-
dation pit was recorded in March~June 2021. The moni-
toring data are plotted in Figures 4 and 5. Measurement
points 1 and 2 were denoted as LS1 and LS2, respectively.
The north and south sides were denoted as N and S,
respectively. The distances of 2, 5, and 8m from the foun-
dation pit were denoted as 2, 5, and 8, respectively. Thus,
as an example, the measurement point 1 on the north side
and at a distance of 2m from the foundation pit was
denoted as LS1-N-2.

At most measurement points, the change in accumulated
settlement primarily occurred late in the spring thaw. This
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Figure 4: Cumulative settlement of the foundation pit at measurement point 1: (a) north side and (b) south side.
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can be attributed to the foundation pit being excavated east
of LS1 and the construction that was taking place near
LS2. The effect of the excavation had some lag. During the
spring thaw, the cumulative settlement was greatest at a dis-
tance of 2m from the open surface, followed by the settle-
ments at 5 and 8m. Moreover, LS2-N-8 changed from the
settlement state to the uplift state late in the spring thaw,
while LS2-S-8 was in the uplift state throughout the spring
thaw. This may be attributed to asymmetric stacking or
dynamic loading in the foundation pit. Early in the spring
thaw, the average temperature cycled above 0°C in the after-
noon and below 0°C at night. As the soil thawed, water pen-
etrated downward. At night, the soil froze again. Thus, the

soil in the foundation pit was subjected to freeze thaw cycles
for about a month before thawing fully. However, the
accumulated settlement demonstrated no obvious trends
early in the spring thaw. The top surface of the foundation
pit demonstrated no obvious phenomena throughout the
spring thaw.

3.1.2. Pile Top Displacement. The displacement of the retain-
ing piles was monitored in the X and Y directions, and the
monitoring data are plotted in Figures 6 and 7. The piles at
measurement points 1 and 2 were denoted as BP1 and
BP2. The north and south sides of the foundation pit were
denoted as N and S. Thus, as an example, the pile at
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Figure 6: Cumulative displacement of piles in the X and Y directions: (a) BP1-N and (b) BP1-S.
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Figure 5: Cumulative settlement of the foundation pit at measurement point 2: (a) north side and (b) south side.
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measurement point 1 on the north side was denoted as BP1-
N. The displacement in the X direction is positive in the due
east direction and harmful in the standard west order. In
contrast, the displacement in the Y direction is set to be pos-
itive in the expected north direction and negative in the due
south direction.

Except for BP2-S in the X direction, the retaining piles
maintained a relatively stable state during the spring thaw.
During the spring thaw, the absolute cumulative displace-
ment on the north side of the foundation pit (i.e., BP1-N
and BP2-N) was greater in the X direction than in the Y
direction. However, the absolute cumulative displacement
on the south side (i.e., BP1-S and BP2-S) was similar in the

X and Y directions. The X direction displacement on the
north side of the foundation pit remained negative (i.e.,
westward) throughout the spring thaw. Nevertheless, the X
direction displacement on the south side remained positive
(i.e., eastward) throughout the spring thaw. The Y direction
displacement on the north side changed from positive to
negative during the spring thaw, and the pile tops gradually
moved inside the foundation pit. However, the Y direction
displacement on the south side demonstrated different
trends. BP1-S demonstrated outward displacement while
BP2-S demonstrated inward displacement. Except for BP2-
S in the X direction, the cumulative displacement of the piles
did not show obvious changes during the early spring thaw
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Figure 8: Measured axial force of the anchor cables at measurement point 1: (a) north side and (b) south side.
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Figure 7: Cumulative displacement of piles in the X and Y directions: (a) BP2-N and (b) BP2-S.
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when freeze thaw cycles were occurring. One possible expla-
nation is that the retaining piles were connected by a crown
beam, which may have constrained their horizontal dis-
placements. Furthermore, prestressed anchor cables were
being constructed near measurement points 1 and 2, which
improved the stability of the retaining pile system. Finally,
the pile-anchor system had a better enclosure effect during
the spring thaw, which maintained the horizontal pile top
displacement in a stable state during the freeze thaw cycles
and the spring thaw.

3.1.3. Anchor Cable Axial Force. The variation in the axial
force of the anchor cables was monitored at different heights
of the same measurement point. The results are shown in
Figures 8 and 9. Measurement point 1 (PAC1) had five
anchor cables each (1~5) on the north (N) and south (S)
sides of the foundation pit, and measurement point 2
(PAC2) had three anchor cables (1~3) each on the north
(N) and south (S) sides. Thus, as an example, the first cable
at measurement point 1 on the north side was denoted as
PAC1-N-1. PAC2 had three cables completed by early
March; therefore, only the monitoring data for these three
cables were analyzed at this measurement point to ensure
data integrity, unlike the five cables monitored at PAC1.

The axial force was similar for all of the anchor cables.
The axial force gradually decreased early in the spring thaw,
increased sharply, and then decreased. However, the
decrease in the axial force demonstrated certain differences
among the anchor cables. The axial force of most anchor
cables demonstrated a relatively slow decreasing trend in
the middle and late stages of the spring thaw. At measure-
ment point 1, the axial force was highest at PAC1-N/S-5,
followed by at PAC1-N/S-4, PAC-N/S-3, PAC-N/S-2, and
PAC-N/S-1. At measurement point 2, the axial force was
highest at PAC2-N/S-3, followed by at PAC2-N/S-2 and
PAC2-N/S-1. Thus, the axial force increased from top to
bottom.

Early in the spring thaw, the foundation pit soil experi-
enced freeze thaw cycles for about a month. At this time,
the water in the soil behind the pile could not be effectively
discharged but accumulated at the boundary between the
frozen and unfrozen layers. When the ground temperature
at the boundary surface dropped to <0°C, this water refroze,
which caused frost heave. This significantly decreased the
bearing capacity of the soil and significantly increased the
force exerted by the soil on the retaining piles. This further
strengthened the movement of the cantilever end of the
retaining piles to inside the foundation pit. The horizontal
movement of the retaining piles caused tensile deformation
of the free ends of the anchor cables that were fixed to the
waist beam on the retaining piles. This caused a sudden
increase in the axial force of the anchor cables early in the
spring thaw. In the middle and late stages of the spring thaw,
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Figure 10: Pile top displacement during the spring thaw with
different pile lengths.

0 10 20 30 40 50 60 70 80 90 100 110 120
0

100

200

300

400

500

Time (d)

–60

–40

–20

0

20

40

PAC2-N-1
PAC2-N-2

PAC2-N-3
Average temperature

A
ve

ra
ge

 te
m

pe
ra

tu
re

 (°
C)

0°C reference line

A
xi

al
 fo

rc
e o

f p
re

str
es

se
d 

an
ch

or
 ca

bl
e (

kN
)

(a)

PAC2-S-1
PAC2-S-2

PAC2-S-3
Average temperature

0 10 20 30 40 50 60 70 80 90 100 110120
0

100

200

300

400

500

Time (d)

–60

–40

–20

0

20

40

0°C reference line

A
ve

ra
ge

 te
m

pe
ra

tu
re

 (°
C)

A
nc

ho
r a

xi
al

 fo
rc

e (
kN

)

(b)

Figure 9: Measured axial force of the anchor cables at measurement point 2: (a) north side and (b) south side.
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Figure 11: Axial force of anchor cables during the spring thaw with different pile lengths: (a) first, (b) second, (c) third, (d) fourth, and (e)
fifth cables.
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the soil was almost completely thawed, and therefore, the
soil properties and working state of the pile-anchor system
tended to stabilize. Thus, the axial forces of most anchor
cables began to slowly decrease.

3.2. Simulation Results

3.2.1. Influence of Pile Length. The 3D numerical model of
the pile-anchor system in the deep foundation pit was used
to simulate pile lengths of 24, 25, 26 (i.e., actual length),
27, and 28m. The effects on the horizontal pile top displace-
ment and axial force of the anchor cables were examined.
Figure 10 shows the changes in horizontal displacement of
the pile tops during the spring thaw. In general, the pile
top displacement gradually decreased and then rapidly
increased early in the spring thaw, after which it slowly
increased in the middle and late stages. The pile top dis-
placement significantly decreased as the pile length was
increased from 24 to 25m and from 25 to 26m. Increasing
the pile length further had no obvious influence on the pile
top displacement.

Figure 11 shows the changes in the axial force of five
anchor cables during the spring thaw with different pile
lengths. The axial force of the first (i.e., topmost) anchor
cable initially increased and then rapidly decreased early
in the spring thaw. It continued to decrease in the middle
stage and then stabilized in the late stage. The axial force
of the second anchor cable initially decreased gradually
and then sharply increased early in the spring thaw. It
then decreased in the middle stage and stabilized in the
late stage. The axial forces of the remaining three anchor
cables gradually decreased and then increased early in
the spring thaw before stabilizing in the middle and late
stages.

In the late stage of the spring thaw, changing the pile
length had different effects. For the first anchor cable, the
axial force gradually increased with an increasing pile length
while the variation in the axial force tended to decrease. For

the second anchor cable, the axial force gradually decreased
with an increasing pile length while the variation in the axial
force gradually increased when the pile length was <25m or
>26m. For the remaining anchor cables, the axial force
decreased with an increasing pile length, although the effect
weakened with increase in pile length.

3.2.2. Influence of Pile Spacing. The 3D numerical model was
used to simulate the effect of varying the pile spacing to 1.1,
1.2, 1.3, 1.4, and 1.5m. The effects on the horizontal pile top
displacement and the axial force of the anchor cables during
the spring thaw were studied. Figure 12 shows the changes in
the pile top displacement with different pile spacings. The
changes were generally consistent with the results for differ-
ent pile lengths. Increasing the pile spacing gradually
increased the pile top displacement. Differences in the pile
top displacement gradually increased during the spring thaw
when the pile spacing was <1.2m or >1.3m. However, the
increase in variation was slower when the pile spacing was
>1.3m.

Figure 13 shows the change in axial force of the
anchor cables during the spring thaw with different pile
spacings. The axial forces of the first, second, and third
anchor cables gradually increased with an increasing pile
spacing. The amplitude of the variation in the axial force
peaked between the pile spacings of 1.2 and 1.3m. The
axial force of the fourth anchor cable gradually increased,
and the amplitude of the variation gradually decreased as
the pile spacing increased. However, the decrease in the
amplitude of the variation was relatively slow when the
pile spacing was >1.3m. The axial force of the fifth
anchor cable gradually increased as the pile spacing was
increased.

3.2.3. Influence of the Incident Angle of the Anchor Cables.
The 3D numerical model was used to simulate the effects
of changing the incident angle of the anchor cables to 10°,
12°, 14°, 16°, and 18°. The effects on the pile top displacement
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Figure 12: Pile top displacement during the spring thaw with different pile spacings.
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Figure 13: Continued.
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and the axial force of the anchor cables during the spring
thaw were studied. Figure 14 shows the changes in the pile
top displacement with different incident angles. The pile
top displacement gradually decreased as the incident angle
was increased. The difference in the pile top displacement
increased gradually during the spring thaw when the inci-
dent angle was <14° or >16°. The variation in the pile top
displacement was only 0.003% when the incident angle was

increased from 14° to 16°. In other words, the amplitude of
the variation was minimized between the incident angles of
14° and 16°.

Figure 15 shows the change in axial force of the anchor
cables during the spring thaw at different incident angles.
The incident angle had different effects on the various
anchor cables. The axial forces of the first, third, and fourth
anchor cables all increased as the incident angle was
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Figure 13: Axial force of anchor cables during the spring thaw with different pile spacings: (a) first, (b) second, (c) third, (d) fourth, and (e)
fifth cables.

4

8

12

16

20

24

28

H
or

iz
on

ta
l d

isp
la

ce
m

en
t o

f p
ile

 to
p 

(m
m

)

0 10 20 30 40 50 60 70 80 90 100 110 120
Time (d)

Angle of incidence of 10°
Angle of incidence of 12°
Angle of incidence of 14°
Angle of incidence of 16°
Angle of incidence of 18°

Figure 14: Pile top displacement during the spring thaw with different incident angles of anchor cables.
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increased. The axial force of the second anchor cable was
minimized at an incident angle of 14°. The axial force of
the fifth anchor cable was minimized at incident angles of
16° and 18°. The minimum amplitudes of the variation in
axial force for the first, second, and fourth anchor cables
were possibly at incident angles of 14°~16°. The peak ampli-
tude of the variation in axial force of the third anchor cable
was possibly at an incident angle of 12°~16°. The amplitude
of the variation in the axial force of the fifth anchor cable
was greatest at the incident angles of 12°~16°. The incident
angle had a greater effect on the axial force variation of the
first and second anchor cables than that of the remaining
three anchor cables under the working conditions consid-
ered. Therefore, the recommended incident angles for the
first, second, third, fourth, and fifth anchor cables are
12°~14°, 14°~16°, 12°~14°, 12°~14°, and 16°~18°, respectively.

4. Conclusions

(1) The cumulative settlement of all measurement
points demonstrated no apparent trends during the
freeze thaw cycles early in the spring thaw. Most of
the changes in compensation occurred late in the
spring thaw. There was no significant thawing at
the top of the pit throughout the spring thaw. The
accumulated pile top displacements demonstrated
no apparent trends during the freeze thaw cycles
early in the spring thaw, excluding the X direction
displacement of BP2-S. The pile top displacements
showed relatively stable fluctuations during the
spring thaw. BP1-N and BP2-N gradually move from
outward movement to inward movement during the
spring thaw. Furthermore, BP1-S demonstrated con-

tinuous outward movement, while BP2-S demon-
strated constant inward movement

(2) The axial forces of all anchor cables demonstrated
similar trends. The axial force gradually decreased
and then sharply increased early in the spring thaw
and then gradually decreased at different rates. In
the middle and late stages, most of the anchor cables
demonstrated a relatively slow decrease in their axial
forces

(3) In the simulation considering pile lengths of
24~28m, the horizontal pile top displacement
decreased as the pile length was increased from 24
to 26m. Furthermore, increasing the pile length
increased the axial force of the first anchor cable
but reduced the axial force of the following four
anchor cables. Increasing the pile spacing gradually
increased the horizontal pile top displacement and
the axial force of the five anchor cables. Increasing
the incident angle gradually decreased the horizontal
pile top displacement and increased the axial forces
of the first, third, and fourth anchor cables. The axial
force of the second anchor cable was minimized at
an incident angle of 14°, and the axial force of the
fifth anchor cable was minimized at incident angles
of 16° and 18°

Data Availability

The data used to support the findings of this study are
included in the article.
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