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Cryogenic LN2 fracturing is one of the environmentally friendly waterless fracturing technologies that promote the fracture
complexity of shale gas reservoir. The water-ice phase transition under freezing condition causes frost heave in saturated shale.
The effect of moisture in shale should be taken into account during cryogenic damage process. Therefore, the differences of
cracking characteristics between dry and saturated shales were studied in this paper. A laboratory triaxial and high temperature
fracturing system was developed for nitrogen fracturing dry and saturated shale after LN2 injection. The influence of moisture
on breakdown pressure was studied under different confining pressures (3MPa, 6MPa, 9MPa, and 12MPa) and bedding
directions (parallel bedding and vertical bedding). The experimental results demonstrated that when the confining pressure
increased from 3MPa to 12MPa, the breakdown pressure of dry parallel bedding after LN2 preconditioning decreased
7.12MPa, 6.06MPa, 4.58MPa, and 3.11MPa, respectively. Therefore, LN2 preconditioning could damage shale resulting in a
lower breakdown pressure, but the effect of cryogenic damage decreased with the confining pressure increasing. The moisture
in shale had little impact on nitrogen fracturing without LN2 injection because the breakdown pressure difference between
dry and saturated shales was small. However, the breakdown pressure of saturated shale after LN2 preconditioning was
always lower than that of dry shale. The breakdown pressure of saturated parallel bedding shale after LN2 injection
decreased 8.62MPa, 7.67MPa, 6.08MPa, and 4.63MPa, respectively, with the confining pressure increasing from 3MPa to
12MPa. The breakdown pressure difference between dry and saturated shales was impacted by the migration of unfrozen
water and frost heave. In addition, the extent of cryogenic damage varied substantially between different bedding
directions. When the confining pressure was 3MPa, the breakdown pressure of saturated parallel bedding shale reduced by
69.18% after LN2 preconditioning, but that of saturated vertical bedding shale only decreased by 22.49%. The tensile
strength of shale had a greater influence on the breakdown pressure. According to the Brazilian disc test results, the
tensile strength of matrix was much higher than that of bedding planes. As a result, it is useful to wet the shale in order
to reduce the breakdown pressure. The fracturing direction of horizontal drilling should be consistent with the bedding
direction for better cryogenic fracturing effect.

1. Introduction

Shale gas is plentiful and extensively spread throughout
China, which exceeds 2:2 × 1013 m3 [1]. The production
of shale gas increased rapidly from 2 × 108 m3 in 2013 to

1:5 × 1010 m3 in 2019 [2]. The exploitation of shale gas reser-
voirs has always been restricted by the ultralow permeability,
significant in situ horizontal stress differential, enormous
burial depth, and low brittleness index [3]. Hydraulic frac-
turing has been used to stimulate the unconventional gas
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reservoir for enhancing the complexity of fracture system
[4, 5]. The merits of hydraulic fracturing technology
include its low cost and convenient availability [6]. How-
ever, the shortcomings are obvious in the process of frac-
turing. First, shale gas reservoir contains clay minerals.
These minerals are prone to swelling, resulting in water
lock. Meanwhile, the mineral hydration takes place, result-
ing in a reduction of effective permeability [7]. Second,
water-based fracturing fluids contain chemical impurities
and toxic compositions. These synthetics inevitably linger
in gas reservoirs and threaten clean water resources [8].
Moreover, the purification treatments increase the devel-
opment cost. Third, water usage for hydraulic fracturing
ranges from 1400m3 to 33900m3 per horizontal well [9,
10]. The shale gas reservoirs are located in hilly and arid
regions, such as Wuning area and Sichuan Basin in China

[11]. Therefore, novel waterless fracturing fluids have been
drawn attention to solve the water-related issues.

There have been many studies on waterless fracturing
fluids, such as liquefied petroleum gases [12–14], supercriti-
cal carbon dioxide or liquid carbon dioxide [15–17], high
energy gas [18, 19], nitrogen foam [20, 21], and LN2 [6,
11]. These waterless fracturing technologies have been
applied. The burial depth of recoverable shale gas reservoirs
ranges between 1000m and 5000m. The shale reservoir tem-
perature is high [22]. LN2 fracturing technology has received
more concentration among waterless fracturing technolo-
gies. For example, the reservoir temperature of Cooper Basin
reaches 150°C at the burial depth of 3500m [23]. When LN2
is delivered to the shale gas reservoir, a sharp thermal gradi-
ent of more than 300°C is generated in the local area of shale
formation. The high local thermal stress induces primary
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Figure 1: Mineralogy analysis of shale sample.
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Figure 2: Sample preparation.
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fractures and promotes secondary development of preexist-
ing fractures [24]. Laboratory studies demonstrated that
the injection pressure decreased 40% under LN2 fracturing
[25, 26]. The shortage of LN2 fracturing is the high equip-
ment cost. The drilling pipelines and fracturing pumps bear
the burden of adapting the high pressure and low viscosity
characteristics of LN2 [27]. A novel fracturing technology
proposed that LN2 was utilized as assist-gas fluid to cryo-
genic damage of the reservoir, and nitrogen was used as
fracturing fluid to improve the fracture complexity [28].
Both LN2 and nitrogen are easy to flowback and friendly
towards the environment [29, 30].

The effect of cryogenic damage after LN2 precondition-
ing is affected by not only the environmental factors such
as reservoir temperature, ground stress, and moisture con-
tent but also the internal structure factors such as mineralog-
ical composition, microcracks, and bedding orientation [31,
32]. The cryogenic damage extent of frost heave is controlled
by initial moisture content [33]. When water freezes, its vol-
ume expands by 9%. Besides, the unfrozen water is repelled
by disjoining force and moves to the growing ice. More
microcracks develop under the freezing condition [34].
Numerous studies have investigated the mechanisms of frost
heave and established models to explain the microcrack
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Figure 3: (a) Vacuum-saturated device. (b) Moisture content-time curve of shale sample.
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generation and the process of ice crystallization [35–37].
However, the studies on the cryogenic damage of low-
permeability rocks by frost heave need to be further
improved. For example, the breakdown pressure variation

of saturated shale after LN2 preconditioning is neglected
because of the low moisture content.

In this paper, the cracking characteristics of dry and sat-
urated shales after LN2 preconditioning were studied by
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performing lots of laboratory experiments. First, X-ray dif-
fractometer (XRD) was assisted in the mineralogy analysis
on the shale. Second, a laboratory triaxial and high-
temperature fracturing system was developed. The nitrogen
fracturing after LN2 preconditioning tests was performed
at confining pressure (3MPa, 6MPa, 9MPa, and 12MPa)
and high temperature (100°C) to investigate the breakdown
pressure characteristics between dry and saturated shales.
Thirdly, the fracture surface of shale was observed by optical
microscope to study its macroscopic damage fracture char-
acteristics. Finally, the tensile strength was tested to explain
the breakdown pressure difference between different bed-

ding directions. The experimental investigation evaluates
the cryogenic damage effect between dry and saturated
shales after LN2 preconditioning. The analysis of frost heave
provides insight into cryogenic LN2 fracturing technology.

2. Experimental Preparation and Methods

2.1. Materials. The shale blocks were collected from the
Wuning area, Jiangxi Province, China. It belongs to the
Upper Ordovician Xinkailing Formation [38–40]. An X-ray
diffractometer (XRD) was used to investigate the mineral
composition of shale. The result is plotted in Figure 1. The

Table 1: Experimental scheme.
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primary constituents of shale were quartz, clinochlore, cal-
cite, muscovite, and albite. The siliceous minerals of shale
sample include quartz and albite, accounting for 40.9% of
the main components. These minerals offer the benefits for
the formation of organic-rich shale [41]. High siliceous con-

tent is also favorable for fracturing shale reservoir [42–44].
Inorganic micropores in shale are readily preserved in the
process of deposition and conducive to hydrocarbon storage
[45]. The formation of inorganic micropores is related to
clay minerals [46]. The clay mineral of shale sample was
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Figure 6: The nitrogen fracturing curves of dry and saturated parallel bedding shales without LN2 injection under different confining pressures:
(a) confining pressure = 3MPa; (b) confining pressure = 6MPa; (c) confining pressure = 9MPa; (d) confining pressure = 12MPa.

6 Geofluids



clinochlore, accounting for 21.2% of the main components.
Therefore, the Upper Ordovician Xinkailing Formation
shale has development potential.

2.2. Shale Sample Preparation. Shale is one of the sedimen-
tary rocks with many alternating beddings of thin and thick
layers. These beddings greatly affect the mechanical proper-
ties of shale. Therefore, two bedding angles (β = 0 ° , 90°, as
shown in Figure 2) were selected in the experiments. The
shale block was cored as cylinders following the ASTM stan-
dard [47, 48]. A borehole was drilled for LN2 precondition-
ing and nitrogen fracturing in triaxial high-temperature
system. The diameter of borehole was 6mm and the length
was 60mm.

The cylinders were heated in a 110°C oven until the
weight no longer changed. The dry shale mass wasmd . Then,
the dry samples were placed into a vacuum container. The
vacuum saturation method was used to prepare saturated
samples. The pressure of the container was maintained at
-0.1MPa for one hour. Air was expelled from the shale pores
under negative pressure. Then, open the water inlet until the
dry samples were submerged, as shown in Figure 3(a). The
negative pressure was maintained during the process of
water injection. The wet sample was weighed every two
hours and recorded as ms. The moisture content (ω) can
be simply estimated by Equation (1). The wet sample was
saturated when the moisture content no longer increased.
The moisture content variation is illustrated in Figure 3(b).
There were two curves of moisture content between different
bedding directions. The mean moisture content of the satu-
rated samples with parallel bedding was 0.530%, while that
with vertical bedding was only 0.313%. The average shale
mass of dry vertical bedding shale samples was 528.91 g,
but that of dry parallel bedding shale was 520.48 g. The shale

sample with vertical bedding was denser with fewer micro-
pores and microcracks.

ω = ms −md

md
× 100%: ð1Þ

2.3. Experimental Methods. An experimental device was
designed for nitrogen fracturing shale in the in situ condi-
tion as shown in Figure 4(a). The device is capable of heating
sample to 300°C and exerting triaxial pressure (up to
60MPa). There are four experimental units in the device: a
LN2 injection unit, a high-temperature and triaxial pressure
unit, a nitrogen fracturing unit, and a real-time data collec-
tion unit as shown in Figure 4(b). The detailed introduction
of experimental device was published on another articles
[28, 49, 50].

The axial pressure was kept at 30MPa to prevent gas
leakage during the injection of LN2 and nitrogen fracturing.
The sample temperature was set to 100°C for simulating the
in situ temperature. The experimental variables are listed in
Table 1. The cracking characteristics of dry and saturated
shales after LN2 injection were investigated by the six exper-
imental groups under different confining pressures and bed-
ding orientations.

2.4. Experimental Procedure. The experiment was mainly
divided into two stages: the cryogenic damage stage by LN2
injection and the fracturing stage by nitrogen injection.
The injection of LN2 was as follows:

(1) The assembly sample was installed into the triaxial
pressure chamber. The radical seal plate, shale sam-
ple with borehole, permeable plate, and antieccentric
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device were assembled together, as shown in
Figure 5(a)

(2) The experimental axial pressure was applied to
30MPa using the pressure pump. The confining

pressure was adjusted to the target values (3, 6, 9,
and 12MPa) according to the experimental scheme.
The temperature of heating device was maintained
at 100°C for 2 h before the injection of LN2. As a
result, the shale sample could be heated to 100°C
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(3) Before LN2 preconditioning, the nitrogen valves
(TV1 and TV4) were closed, and the LN2 valves
(TV2 and TV3) were turned on to facilitate the injec-
tion of LN2 into the specimen for cryogenic damage

(4) LN2 was delivered into the borehole of shale sample
by the LN2 pump. The injecting rate was controlled
at 0.2 L/min. The residual LN2 was discharged from
the LN2 outlet valve (TV3)
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(5) The process of LN2 preconditioning lasted 15min.
The injection pressure and outlet temperature were
monitored by computer

The temperature variation of the LN2 outlet (TV3) is
illustrated in Figure 5(b). There were three stages in the pro-
cess of LN2 preconditioning. The outlet temperature
increased from 26.0°C to 37.6°C in the warming stage. LN2
was completely vaporized and extracted heat from the shale
surface. The temperature of outlet decreased from 37.6°C to
-53.3°C during the cooling stage. The rate of the shale tem-
perature reduction was greater than the thermal compensa-
tion rate of heating device. The outlet temperature
remained steady at -53.3°C in the freezing stage. A water-
ice phase transition occurred, resulting in frost heave.

The procedures of nitrogen fracturing were as follows:

(1) The nitrogen inlet and outlet valves (TV1 and TV4)
were turned on to facilitate the injection of nitrogen
into the specimen borehole, while the LN2 inlet and
outlet valves (TV2 and TV3) were turned off

(2) The nitrogen pressure regulating valve was used to
inject nitrogen into the shale borehole. The rate of
pressurization was 50 kPa/s. The variation of injec-
tion pressure was monitored by pressure sensor.
When the nitrogen flowed out of the nitrogen outlet
valve (TV4), the shale specimen was split into halves.
The peak pressure was the breakdown pressure of
shale

3. Experimental Results

3.1. The Breakdown Pressure Characteristics of Dry and
Saturated Shales before LN2 Preconditioning. Comparing
the experimental results between group 1 and group 3, the
nitrogen fracturing curves for dry and saturated parallel bed-
ding shales without LN2 preconditioning are plotted in
Figures 6(a)–6(d). The increase of injection pressure was
approximately linear by pressure regulating valve during
nitrogen fracturing. The end signal of nitrogen fracturing
was a sharp reduction of injection pressure. Therefore, the
peak of injection pressure was the breakdown pressure
(BP) of shale.

When the confining pressure increased from 3MPa to
12MPa, the average breakdown pressures of dry samples
were 12.98MPa, 16.01MPa, 18.96MPa, and 22.26MPa,
respectively, and those of saturated samples were
12.46MPa, 15.63MPa, 18.52MPa, and 21.91MPa, respec-
tively. The breakdown pressure variation and the average
breakdown pressure differences between dry and saturated
shales are plotted in Figure 7. The increase in average break-
down pressure was approximately linear in relation to the
increase in confining pressure. In addition, there was little
variation between dry and saturated shale samples without
LN2 preconditioning. The differences of average breakdown
pressures were 0.51MPa, 0.38MPa, 0.44MPa, and 0.35MPa
with the confining pressure increasing. Therefore, the soft-
ening influence decreased with the confining pressure
increasing, and the effect of softening was small on the
breakdown pressure without LN2 injection.
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3.2. The Breakdown Pressure Characteristics of Dry and
Saturated Shales after LN2 Preconditioning. The nitrogen
fracturing curves of dry and saturated parallel bedding shales
after LN2 injection are plotted in Figures 8(a)–8(d), when
the experimental results between group 2 and group 4 were
compared. Most curves of injection pressure were approxi-
mately linear by pressure regulating valve during nitrogen
fracturing, but there was one special sample that underwent
two fracturing processes. When the confining pressure was
12MPa, the D-8-3 sample was not completely split into
two halves at the first peak pressure. The injected nitrogen
remained in the shale borehole and could not be exhausted

through the nitrogen outlet. The nitrogen continued to be
injected into the D-8-3 sample by the nitrogen pressure reg-
ulating valve until the sample was finally fractured. The sec-
ond peak pressure was lower than the first peak pressure.
The fracture closed rapidly under the high confining pres-
sure during the first fracturing stage. Therefore, the high
confining pressure was not conductive to the propagation
of macrocracks.

The average breakdown pressures of dry shale with LN2
preconditioning were 5.85MPa, 9.92MPa, 14.38MPa, and
19.14MPa, respectively, and those of saturated shale were
3.84MPa, 7.96MPa, 12.44MPa, and 17.27MPa as the

Borehole crack

1000 𝜇m

Ratio: ×20.0

(c)

Primary crack

Borehole
crack

Ratio: ×20.0

1000 𝜇m

(d)

Figure 12: The crack propagation around the borehole: (a) dry and parallel bedding shales; (b) saturated and parallel bedding shales; (c) dry
and vertical bedding shales; (d) saturated and vertical bedding shales.
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confining pressure grew. Therefore, the cryogenic damage
effect was significant by LN2 injection. The breakdown pres-
sure of dry and saturated shales both decreased after LN2
injection compared to the experimental results of group 1
and group 3.

After LN2 preconditioning, the curves of average break-
down pressure differences between dry and saturated shales
are plotted in Figure 9. The average breakdown pressures of
saturated shale decreased 2.01MPa, 1.99MPa, 1.94MPa,
and 1.88MPa, respectively, compared to those of dry shale.
The water-ice phase transition under freezing condition
causes frost heave in saturated shale. The effect of frost heave
was at least 3.9 times more than that of softening. When the
confining pressure increased, the average breakdown pres-
sure difference after LN2 injection still decreased.

3.3. The Breakdown Pressure Characteristics of Dry and
Saturated Shales between Different Bedding Directions after
LN2 Preconditioning. The nitrogen fracturing curves of dry
and saturated vertical bedding shales are plotted in
Figures 10(a) and 10(b). The average breakdown pressure of
dry vertical bedding shale without LN2 preconditioning was
19.69MPa, and that of saturated vertical shale was
19.12MPa. There was only 0.57MPa reduction under the
moisture content. After LN2 preconditioning, the average
breakdown pressure decreased by 14.12% and 22.49% between
dry and saturated shales. The difference of average breakdown
pressure between dry and saturated vertical bedding shales
was 2.09MPa after LN2 preconditioning. Therefore, the mois-
ture in shale promoted the effect of LN2 preconditioning.

The average breakdown pressures between parallel and
vertical bedding shales at the confining pressure of 3MPa
are shown in Figure 11. The bedding direction had a great
influence on the nitrogen fracturing. The average breakdown
pressures of vertical bedding shale were all higher than those
of parallel bedding shale. Moreover, the average breakdown
pressure difference between parallel bedding and vertical
bedding shales increased after LN2 preconditioning.

New microcracks of shale were formed during the process
of LN2 preconditioning, and the cracks spread by nitrogen
injection. The propagation of cracks around the borehole after
LN2 preconditioning is illustrated in Figures 12(a)–12(d). The
number of cracks on saturated fracture surface was more than
that on dry fracture surface. There were only a few single pri-
mary cracks around the dry borehole. However, many second-
ary cracks were generated around the saturated borehole,
forming a complex fracture network. The number of cracks
on parallel bedding fracture surface was more than that of
vertical bedding fracture surface. Therefore, saturated parallel
bedding shale was easy to fracture after LN2 preconditioning.
In addition, the cracks preferred to propagate along the bed-
ding direction.

4. Discussions

According to the observations of the nitrogen fracturing dry
and saturated parallel bedding shales after LN2 precondi-
tioning, the curves of breakdown pressure under different
confining pressures are depicted in Figure 13. The break-
down pressure difference between dry and saturated shales

Figure 13: Average breakdown pressure of dry and saturated parallel bedding shales under different confining pressures.
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without LN2 preconditioning was small. There were musco-
vite and clay minerals in shale. The hydration and expansion
stress lead to the fragmentation and disintegration of min-
eral particles. Although these minerals hydrate with water

in pores and macrocracks and expand in volume, there
was only 0.53% moisture content in the saturated parallel
bedding shale. Therefore, the effect of softening on break-
down pressure was small.

The effect of LN2 preconditioning was significant, as
shown in Figure 13. When LN2 was delivered to the shale
sample at 100°C, a sharp thermal gradient approaching
300°C was generated in the local area. The local thermal
stress is the main reason of the cryogenic damage of shale,
as shown in Figure 14. There are two types of crack propaga-
tion caused by the local thermal stress:

(1) Shale consists of different mineral grains, such as
quartz, albite, and muscovite. These mineral particles
have different thermophysical and mechanical char-
acteristics. The adjacent mineral particles deform to
different degrees during LN2 preconditioning [51],
as shown in Figure 14(a). Intergranular cracks
develop as the cementitious strength of minerals is
lower than the tensile stress [52]

(2) A violent heat transfer occurs around the borehole,
forming a low-temperature zone with LN2 injection.
The zone of low temperature cannot shrink freely
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Figure 14: (a) Diagram of mineral particle shrinkage after LN2 preconditioning. (b) Diagram of temperature field around the borehole
during LN2 preconditioning.
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Figure 15: The propagation of spherical pore and primary macrocracks under frost heaving.
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Figure 16: Diagram of shale in the nitrogen fracturing test.
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Figure 17: Continued.
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because of the restrictions imposed by the surround-
ing rock, resulting in the local tensile stress, as shown
in Figure 14(b). When the local tensile stress exceeds
the shale matrix’s tension stress, new cracks form

The damage characteristics of saturated shale samples
are more complicated after LN2 preconditioning, compared
to the dry shale samples. When the shale samples were pre-
treated by LN2, there was a clear difference between dry and
saturated shales, as shown in Figure 13. The water in pores
and macrocracks was frozen during LN2 preconditioning.
More cracks were produced due to the frost heave. Further-
more, the effect of frost heave would not decrease with the
confining pressure increasing.

There are two mechanical mechanisms of shale fracture
driven by ice growth, as shown in Figure 15:

(1) Shale has low permeability; thus, water is hard to
flow out the pores in the matrix [53]. If the spherical
pores are entirely filled with water as shown in
Figure 15, the water will freeze under LN2 precondi-
tioning. The volume expansion of ice acting on the
spherical pore walls causes frost heave. The micro-
cracks develop around the pores when the expansion
stress of ice exceeds the tensile stress of pore

(2) Water exists not only in the pores but also in the
cracks. There are many interconnected natural
cracks. The freezing point of different volume cracks
varied due to the capillary effect. The water in the
larger crack is more likely to freeze [54]. Therefore,
the water in the primary crack freezes under LN2
preconditioning. When water freezes, its volume
expands by 9%. The volume of primary crack keeps
growing with the volume expansion of ice. In the fro-
zen fringe, water migrates continuously to ice when
the pressure of crack decreases [55]. The water in
the secondary cracks migrates to the unfrozen area
of primary crack due to the surface-energy effect
[56]. Meanwhile, the secondary cracks lose water
and shrink during LN2 preconditioning. The crack
deformation is restricted by shale matrix, creating a
localized tensile stress. The local tensile stress around
the cracks is conductive to the propagation of cracks.

Therefore, the migration of water is favorable for the
expansion of primary crack

According to the observations of the cracking character-
istics between different bedding directions after LN2 precon-
ditioning, there was wide variation in the average breakdown
pressure. As shown in Figure 16, the tensile stress induced by
nitrogen injection was applied to the shale borehole. When
the injection pressure was greater than the crack initiation
pressure, the crack would occur around the shale borehole.
The crack propagation tended to spread along the maximum
principal stress direction. The axial pressure (30MPa) was
always higher than the confining pressure (3MPa-12MPa)
during the nitrogen fracturing test. Therefore, the axial
direction was the direction of crack. The bedding was one
of the discontinuities in shale. When the bedding direction
coincided with the direction of fracture propagation, the
shale was split along the bedding orientation. The shale
matrix was split by the injection pressure while the fracture
propagation was vertical to the bedding orientation. There-
fore, the reason for the variation of the average breakdown
pressure was the different tensile strengths between shale
bedding and matrix.

The Brazilian disc tests of dry and saturated shales were
conducted to study the different tensile strengths between par-
allel and vertical bedding directions. The stress-displacement
curves of parallel bedding shale are depicted in Figures 17(a)
and 17(b). The mean tensile strength of dry parallel bedding
shale without LN2 preconditioning was 5.90MPa, and that
of saturated shale was 5.48MPa. The difference between dry
and saturated shales was small because the moisture in shale
had a little influence on the tensile strength. When the parallel
bedding shale samples were pretreated by LN2, the mean ten-
sile strength of dry shale decreased 1.66MPa and that of satu-
rated shale decreased 2.73MPa. Therefore, the reduction of
tensile strength caused by the frost heave was 1.07MPa. The
frost heave was beneficial for the cryogenic damage. The fail-
ure of parallel bedding specimen was a typical splitting mode
as shown in Figure 17(e). An approximate linear central frac-
ture was formed along the bedding and split the specimen into
halves. Therefore, the tensile strength depended on the bed-
ding cementation.

The stress-displacement curves of vertical bedding shale
are depicted in Figures 17(c) and 17(d). Compared to the

(e) (f)

Figure 17: The stress-displacement curve of dry and saturated shales: (a) parallel bedding shales without LN2 preconditioning; (b) parallel
bedding shales after LN2 preconditioning; (c) vertical bedding shales without LN2 preconditioning; (d) vertical bedding shales after LN2
preconditioning. The failure pattern of shale in the Brazilian disc test: (e) parallel bedding shale; (f) vertical bedding shale.
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tensile strength of parallel bedding shale, that of vertical bed-
ding shale was higher. The mean tensile strength of dry ver-
tical bedding shale without LN2 preconditioning was
16.06MPa, which was 2.72 times greater than that of dry
parallel bedding shale. The difference of tensile strength
between dry and saturated shales was 0.43MPa. Therefore,
the moisture effect on the shale was minimal. After LN2 pre-
conditioning, the mean tensile strength of dry vertical bed-
ding shale was 13.12MPa and that of saturated shale was
11.04MPa. Although the frost heave reduced the tensile
strength by 1.65MPa, the mean tensile strength of vertical
bedding shale was still higher than that of parallel bedding
shale. The failure of vertical bedding specimen included
splitting failure and shear slide modes as shown in
Figure 17(f). The propagation of fracture deviated from the
loading direction, forming an arc. Moreover, the fractures
occurred on the bedding plane, splitting the specimen into
slices. Therefore, when the stress loading direction was ver-
tical to the bedding direction, the tensile strength depended
on the cementitious force of the matrix, and the bedding
direction had an influence on the propagation of fracture.
In conclusion, the cementation of bedding was weaker than
that of the matrix, and the fracturing direction should be
consistent with the bedding direction for relieving the equip-
ment burden and forming more complex fracture network.

5. Conclusions

According to the characteristics of LN2, we proposed a cryo-
genic fracturing technology where LN2 is used as an assisted
fluid to cool the shale gas reservoir and nitrogen is used as a
fracturing fluid to form more complex crack system. In this
paper, the cracking characteristics between dry and satu-
rated shales after LN2 injection were studied. The subse-
quent four conclusions are as follows:

(1) The clay minerals offer the benefits for the formation
of inorganic nanopores. The inorganic nanopores
are readily preserved in the process of deposition
and conducive to hydrocarbon storage. The siliceous
minerals are also favorable for fracturing shale reser-
voir. The siliceous minerals and the clay minerals
account for 62.1 percent of the main components
of shale. Therefore, the Upper Ordovician Xinkailing
Formation should be further researched for efficient
exploration and exploitation

(2) Although there were muscovite and clay minerals in
shale that hydrate with water in pores and macro-
cracks and expand in volume, the average breakdown
pressure difference between dry and saturated shales
without LN2 preconditioning was small. The reason
for the phenomenon was the low moisture content
of shale. The moisture content of parallel bedding
shale was 0.530%, and that of vertical bedding shale
was only 0.313%. The average shale mass differential
between two bedding directions resulted in varying
moisture content. LN2 preconditioning is beneficial
for reducing the breakdown pressure of shale. When

the shale surface experiences violent heat transfer,
local thermal stress is generated in the temperature
gradient direction, causing the crack development.
Meanwhile, the breakdown pressure of dry shale with
LN2 preconditioning decreased 7.12MPa, 6.06MPa,
4.58MPa, and 3.11MPa, respectively, as the sur-
rounding pressure grew. Therefore, the effect of LN2
preconditioning was constrained by the surrounding
pressure

(3) After LN2 preconditioning, the average breakdown
pressures of saturated shale decreased by 69.19%,
50.09%, 32.85%, and 21.17% with the confining pres-
sure increasing from 3MPa to 12MPa. The frost
heave and migration of unfrozen water are conduc-
tive to more microcracks generated and weaken the
cementation between bedding planes. Therefore,
the LN2 preconditioning effect of saturated shale is
better than that of dry shale. Wetting shale around
horizontal drilling before LN2 preconditioning can
facilitate the cryogenic damage effect on the break-
down pressure

(4) The cracking characteristics of vertical bedding shale
are influenced by the shale matrix, whereas the bed-
ding plane significantly determines the cracking
characteristics of parallel bedding shale. After LN2
preconditioning, the tensile strength of dry vertical
bedding shale was 3.09 times than that of dry parallel
bedding shale, and the tensile strength of saturated
vertical bedding shale was 4.01 times than that of
saturated parallel bedding shale. The frost heave
increased the tensile strength difference between
dry and saturated shales. The breakdown pressure
of vertical bedding shale was also higher than that
of parallel bedding shale. Therefore, the fracturing
direction of drilling should be parallel to the bedding
direction in order to achieve better fracturing effect
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