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Structural fractures generally develop in the upper crust strata and are usually distributed in a convergent pattern, forming
structural fracture zones with a specific strike. Fracture zones control the reservoir seepage system and seriously affect the
migration and accumulation of oil and gas in tight sandstone reservoirs. Therefore, characterizing the characteristics of the
fracture zones for tight oil exploration and development effectively is essential. In this paper, the variable scale fractal method
is introduced to calculate the petrophysical log, and a new curve H is built. An intensity log is to characterize the intensity of
structural fracture development. The H curve is in a good linear relationship with the intensity curve after the comparison of
the H curve and intensity curve in 32 wells. A quantitative relationship between H and the intensity curve is established. Based
on the parameters obtained from the core and image logs, the discrete fracture network model was established using H curves
from more than 300 wells, and the structural fracture zone was analyzed. The model shows that the fracture zones formed by
structural fractures are in S-N and NW-SE directions in the study area. The orientation of the structural fracture zone is
consistent with that of the fractured fault zone and fault, and the development of the fractured zone is consistent with the
regional tectonic evolution characteristics. The characteristics of the fracture zone explain the distribution law of oil
accumulation and groundwater salinity in the study area.

1. Introduction

Fractures, on a large or small scale, are commonly seen
within the earth’s crust and form complex discrete fracture
networks (DFN) [1, 2]. The complex DFN made up of frac-
ture zones transfers a concentration of fractures into a nar-
row tabular zone, in which the structural fractures are at
stable attitude [3–7]. Fractures control hydrocarbon accu-
mulation, and oil and gas reservoirs are easy to develop in
the dominant strike direction of fracture zones. This phe-
nomenon is more prominent in tight sandstone reservoirs

[8–11]. Therefore, understanding the spatial distribution of
fracture zones is essential to the effective exploration and
rational development of tight sandstone oil and gas
resources [8, 12, 13].

Fractures can probably be detected directly or indirectly
using outcrop or core description, petrophysical logs, seis-
mic interpretation, etc. [14–16]. However, these data are
usually collected from lower dimensional limited exposures,
e.g., borehole logging (one-dimensional (1D)) and outcrop
mapping (two-dimensional (2D)). Seismological data is not
effective when detecting medium and small fractures due
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to its resolution [17, 18]. Therefore, a complete measure-
ment of a 3D fracture system is difficult, and the description
of fractured zones has to largely rely on extrapolations,
which use statistics from 1D/2D to 3D and from small sam-
ples to the whole study area. The stochastic DFN modeling
uses an object-oriented geostatistical modeling method to
construct the overall fracture system according to the occur-
rence, location, and interrelationship of various fracture
groups in a 3D space, and the method provides a reasonable
network for finite-sized fracture population evaluation in
unknown areas [19, 20].

As small samples usually lead to misleading interpreta-
tions in the modeling, any direct or indirect data increasing
the understanding of fracture properties is highly valuable.
In the borehole, the structural fracture network is crosscut
by the “line” (the well itself), forming a point sequence. Pet-
rophysical logs are commonly available, and they help to
collect the response from fractures. Therefore, it is vital to
know how to use petrophysical logs to detect fractures and
predict fracture distribution. Most of the previous studies
were either too theoretical or too data processing. They sug-
gested that any single petrophysical logs could not unequiv-
ocally indicate the presence of fractures [21, 22]. More data
processing methods were proposed to extract more informa-
tion from petrophysical logs, such as wavelet transform and
wavelet decomposition [23–25], factor analysis [26], regres-
sions analysis [27], and deep learning and neural networks
[28]. However, most of the methods were developed for sev-
eral limited wells or specific geological conditions, and the
previous studies were either inadequate in data or lacked val-
idation [29]. Thus, it is difficult to generalize and generate
the DFN model with those methods [30]. In recent decades,
fractal geometry has been applied in the analysis of geologi-
cal phenomena and geophysical data processing [31–35].
For example, the linear density of fractures (P10) can be
characterized by the calculation of the fractal dimension of
geophysical logging data, and the variable bandwidth R/S
method was introduced to evaluate the linear density of frac-
tures [36–38].

In this paper, we take the Upper Triassic Yanchang For-
mation of the Jiyuan area in Ordos Basin, China, as an
example. A fractal geometry method-rescaled windowed R/
S analysis is presented to estimate fractured zones with pet-
rophysical logs (acoustic logging and natural gamma ray
spectral log), simple linear estimators established between
the results of the proposed methodology, and the intensity
logs obtained from image logs. More than 300 vertical wells
were analyzed by this methodology, and the results were
applied to a geostatistically derived density field to build
DFN. A large volume of data has been applied, which
enables us not only to check the accuracy of the method
but also to study the possibility of its generalization [27, 39].

2. Geology Setting

Ordos Basin is multiple superimposed basins of Paleozoic
and Mesozoic and is an east-to-west dip monocline with
and dip angle of less than 1° [40]. Structural fractures are
popular in Mesozoic of the basin, with stable attitude and

convergent distribution. The structural fractures on the out-
crop consist of a wide range and regular development of
structural fractured zones and constitute a good fracture net-
work system [5]. According to 24 image logs and 627.6m
core observations from 42 wells, the structural fractures in
the Jiyuan area are mainly distributed in tight sandstone for-
mations with four dominant strike directions: NEE-SWW,
NW-SE, NNW-SSE, and NE-SW. NEE-SWW and NW-SE
and NNW-SSE and NE-SW constitute two groups of conju-
gate shear fractures, in which the conjugate shear fractures
in NEE-SWW and NW-SE orientation are dominant
(Figure 1(a)) [41–44]. The dip angle of fractures is mainly
distributed between 80° and 90°, and the proportions of high
angle (>75°), oblique angle (45°~75°), and low angle (<45°)
fractures were 73.7%, 14.6%, and 11.7%, respectively. Frac-
tures are mainly controlled by rock strata, and the height
of fractures in the borehole of 0.05~2.5m accounts for
97%. The fracture opening is mainly concentrated in
0~1mm, while more than 70% of the fractures are not filled
by other minerals, and most of the rest are half-filled or par-
tially filled, still retaining part of the void [45].

The study area is located in the Mahuangshan-Hon-
gjingzi-Hongliugou-Fengdigou area in the northwest of the
Jiyuan region. Faults in the northern part of the study area,
presenting an NE-SW strike direction, gradually weakened
from the northwest to the study area. In the study area, faults
are void, and nose structures are generally developed
(Figure 1(b)). The modeling area contains more than 300
petrophysical logs and three image logs. By comparing H
curves from 24 wells in the Jiyuan area with intensity logs,
which identify fracture zones and the number of fractures
in each fracture zone (fracture density), we obtained fracture
density estimating for fracture zones that can be generalized
to all wells. Calculations from more than 300 conventional
logs were used to analyze the distribution characteristics of
tectonic fractures in the DFN region.

3. Methods

DFN modeling contains two consecutive steps. First, the
geometric parameters of the individual fractures must be
determined. These parameters are the foundation for the
modeling [48]. The most important geometric parameters
are the fracture length distribution, the attitude of the frac-
tures, their aperture, and the spatial density of fracture mid-
points. The first three parameters can be obtained from core
and image logs, and the variable bandwidth R/S method was
introduced to evaluate the linear density of fractures while
image logs are not valuable. Second, the network is gener-
ated using a fracture modeling software program. In this
study, we use Petrel to build discrete fracture network
modeling [48, 49].

3.1. The Variable Bandwidth R/S Method. The R/S method
defines the ratio of the maximum cumulative deviation R
(the value defined in (1)) to the standard deviation S (the
value defined in (2)) of a time series as the relative fluctua-
tion intensity of the time series; the Hurst index is deter-
mined by linear regression of all possible sets of values of
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log n against log R/S (the value defined in (3)) [50]. The
Hurst index represents the drastic change in reservoir dis-
charge, and it can quantitatively evaluate the complexity of
one-dimensional time series simply and effectively. Petro-
physical log curves of oil wells are fixed in sampling frequen-
cies and self-similar fractal characteristics, so they can be
regarded as one-dimensional time series, and the rough-
nesses of the curves can be measured via the R/S method.
It is found that too many or too few log R/S and log n
data sets in the R/S method are not able to effectively mine
the nonlinear and discrete characteristics of structural frac-
tures [48, 51]. In addition, if the calculation interval is not
constrained, the back data will participate in the calculation
in each calculation process, resulting in an excessive repeti-
tion of the calculation process. Meanwhile, the calculation
result of the rear data will affect the calculation result of
the H index.
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where Z is the time series where R/S analysis needs to be
performed, n is the total number of log data sampling points,
u is a sample point that begins to increase between 0 and n,
and i and j represent the variables of the number of sample
points [52, 53].

R/S = R n
S n

3

Using the variable bandwidth R/S method, firstly, the
profile of length L is divided into windows or “bands” of
width m, and the H value of the band is calculated. The mid-
dle point depth (t) is taken as the depth of the H value of the
band. R t, n,m is the R/S value of the petrophysical log
within a scaled window m, t is the depth of the scaled win-
dow, n is the point number of one step (or the step length),
and m is the point number petrophysical signals within
scaled window. Then, the H value of the next band is calcu-
lated by using n as a step size. The H values of each band are
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Figure 1: (a) Logging interpretation results and modeling area location of Triassic Yanchang Formation in Jiyuan area. (b) Location and
surrounding structural characteristics of modeling area (according to [46, 47]).
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calculated in turn, and a series of H values with a specific
depth form a one-dimensional series is called the H curve
[52, 54]. The analysis algorithm is written in MATLAB
(Figure 2).

3.2. Intensity Log and Petrophysical Log Energy. Borehole
imaging logs define the exact spatial location of fractures,
so the intersections between fracture networks and bore-
holes can be interpreted as point processes. Based on core
and image log data, the validity of 24 calculated H curves
indicating fractures was analyzed. To facilitate quantitative
comparison, an intensity log (formula (4)) was introduced
to evaluate the development degree of structural fractures.

Intensity MD = cumulative md +w/2 − cumulative md −w/2
W

4

where intensity MD is its value at the depth of md,
cumulative md +w/2 is the cumulative fracture number
at the depth of md +w/2 , and W is the interval depth
(m-1).

Evaluation of fracture development intensity log and
H curve is calculated by curve energy (EH) parameter
(formula (5)).

EH = 〠
n

i=1
Hi

2, 5

where H and n are the value of the H curve and the
number of H curves in each fractured zone, respec-
tively [27].

3.3. The Choice of Petrophysical Logs. The heterogeneity in
the downhole is usually caused by lithologic changes and
reservoir petrophysical heterogeneity. To identify fractures
by conventional logs, it is necessary to enhance fracture

responses and eliminate nonfracture influence [55]. Porous
medium models and porous medium elastic wave theories
have been developed to use acoustic data to detect fractures
because the presence of fractures leads to anomalies in
acoustic waves [56, 57].

Sonic log (DT) measures a formation’s interval transit
time, while pore and fracture in a formation affect the inter-
val transit time in many aspects. So DT not only reflects the
vertical heterogeneity caused by lithological changes but also
pores and fractures. Therefore, H of the DT log shows verti-
cal heterogeneity characteristics of local petrophysical
changes superimposed based on lithological changes. H of
GR reflects the vertical heterogeneity caused by lithologic
cycles. Thus, the difference between H of DT logs and that
of GR logs may represent the heterogeneity caused by frac-
tures [58, 59]. H curves are the difference between the DT
and GR Hurst index.

4. Results

First, the petrophysical logs corresponding to the image logs
of 24 wells in the Jiyuan area were standardized. According
to the height of structural fractures in image logs, the band-
widths (m) were 5m and 10m, and the step sizes (n) were
2.5m, 5m, and 10m. The R/S method with variable band-
width was used to calculate H curves from 24 wells based
on the parameter combinations in Table 1 [45].

Results calculated using different parameter combina-
tions show that the positive amplitude of ~2382, ~2430,
~2475, ~2500, ~2515, ~2555, and ~2575 in well G96 is obvi-
ous. The corresponding image logs show that the fracture
zones are developed at ~2380, ~2425, ~2470, ~2520,
~2545, ~2582, and ~2620m. Core observation results show
that 2345~2360, 2380~2390, 2410~2428, 2450~2455,
2460~2475, 2505~2545, 2505~2595, and 2615~2630 are seg-
ments during which fracture develops (Figure 3). In well
A81, ~2060, ~2086, ~2120, ~2152, and ~2166 show an obvi-
ous positive amplitude, and the corresponding image logs
show that ~2086, ~2110, ~2126, ~2150, and ~2170m are
fracture zones. Core observation results show that
2050~2094, 2108~2120, 2130~2150, 2166~2176, and
2186~2194 are fracture development sections (Figure 4).

5. Discussion

5.1. Correlation between Energy Log and Fracture Density.
Theoretically, the positive anomalous amplitude of the H
curve indicates the structural fracture zone. Compared with
the intensity logs interpreted by image logs, the H curve

Table 1: Calculation parameters of band length and step length.

Band length (m) n length (m)

The data mount

10 10

10 5

10 2.5

5 5

5 2.5

Sampling point

R(1,1,2) R(1,1,3)

R(t,n,m)

R(1,1,4)

R(2,1,2) R(2,1,3) R(2,1,4)

R(3,1,2) R(3,1,3) R(3,1,4)

8

···

···
···

···
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3
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······

Figure 2: The schematic of the calculation of H by R/S analysis
algorithm (modified according to [45]).
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calculated by the variable bandwidth R/S method with dif-
ferent parameter combinations is different in resolutions
when applied in structural fracture zones. For example, in
well A81 ranging from 2015 to 2019m, the H curve calcu-
lated by (10, 10) shows only one peak and cannot distinguish
between two fracture zones. Although (5, 2.5) can distin-
guish two fracture zones, there are multiple peak values, eas-
ily leading to wrong interpretation. (10, 2.5) reasonably
constrains the structural fracture zone, and the H curve cal-
culated by this combination is the best constraint effect on
the structural fracture zone (Figures 3 and 4). However,
because fractures are mainly at high angles, lateral detection
depth (n cm) of DT logging is several times than that of FMI
detection depth (~5.08mm). Therefore, the fracture zone
depth in the H curve may not correspond strictly to the
intensity log depth, and a difference of ±5m between them
is reasonable.

The detection result of the energy curve of the H curve
reached a 91.67% similarity with intensity logs and the

result of cores (Figure 5). This method is accurate in esti-
mating fracture density in the fracture zone. If the correla-
tion between the energy curve of the H curve and the
intensity log can be established, this method can be
extended. Tokhmechi et al. [27] studied that the DT energy
curve and fracture intensity logs had a nonlinear relation-
ship (exponential type). Therefore, the energy curve (NH)
of the H curve is positively correlated with fracture intensity
logs (FD). The H energy curve and fracture development
intensity curve of the whole well section were in linear
regression:

FD = a∗NH + b 6

Statistical analysis of the H energy curve and fracture
development intensity curve in the whole well section of 24
wells shows that the prediction accuracy of the energy curve
of the H curve is 73.3% (Figure 6).
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Figure 3: Comparison of intensity log and H curves of well G96.
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5.2. Fracture Network. The discrete fracture network model-
ing is applied by the software Petrel, and structural fractures
were set as a planar quadrilateral in modeling; attitude,
length, and breadth of structural fractures were obtained
by the statistics of the image log and core observation data.
There was a strong exponential relationship between the
length and the height of structural fractures [12, 60].
Detailed parameters of structural fractures can be found
in [45].

Constructing a DFN model in Petrel consists of the fol-
lowing steps:

(1) Data loading

The data used to create the 3D model consisted of ASCII
files with coordinates in XYZ format describing the surfaces,
47 well logs’ file containingHcurves calculated by the vari-
able bandwidth R/S method, and ASCII files with dip angel,
dip azimuth, and coordinates in XYZ format describing the
fractures obtained from imaging logging data.
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Figure 4: Comparison of intensity log and H curves of well A81.
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(2) Creation of surfaces

The first step in building a 3D model is to convert the
XYZ points into surfaces. A convergent interpolation algo-
rithm in the “Make/edit surface” process was used. The con-
vergent interpolation algorithm is an iterative algorithm
which converges on the solution (a final surface) by each
iteration [61].

(3) Creation of horizons and zones

For the surfaces to be incorporated into the 3D grid, they
needed to be transformed into horizons which was done in
the “Make horizons” process [61].

(4) Upscaling

The H curves corrected with the proposed linear rela-
tionship were used to characterize the fracture density with-
out FMI. The fracture intensity curve and tadpole map are
generated with the imported fracture data. Then, upscaling
was done to upscale the log data (intensity logs and H logs)
to the cells. Each cell being penetrated by the well was given
a single value of the property in question; the density of two-
stage group fractures was assigned to the corresponding
grids. After the cells being penetrated by the wells had been
detected, the log data falling into the cells were averaged
depending on which averaging algorithm that was chosen.
The fracture density model of the study area was calculated
by random modeling method (Figure 7).

(5) DFN simulation

The discrete fracture network is generated based on the
fracture density attribute. The fracture units with certain
spatial position, attitude, shape, and opening were randomly
located, and the fracture system satisfies two-stage group

characteristics (Figure 8).The fracture model is established
deterministically based on the fracture sheet obtained by
ant tracking. Generate fracture properties, such as fracture
porosity and permeability.

The fracture density model shows that structural frac-
tures in the modeling area form a wide and regular fracture
zone in space (Figure 7). The structural fracture zone pre-
sents S-N and NW-SE directions, which is consistent with
the strike direction of Guozhuangzi-Gufengzhuang-
Hongliugou faults in the north (Figure 1).

The experimental process of rock mechanics shows that
the fracture process is a development and evolution process
of microfractures, and the formation of structural fractures
and faults can be the material manifestation of different
stages of the evolution during the same tectonic stress. The
complex loading history and evolution of spatial heterogene-
ity in the rock result in a complex discrete fracture network
(DFN) [1, 45]. Structural fractures in the study area are
formed by horizontal tectonic stress. During late Yanshan
movement with NW-SE extrusion stress inside the basin,
the western margin of the basin is affected by the tectonic
action and formed a large number of E-W and NW-SE to
conjugate shear fractures in Gufengzhuang-Hongjingzi.
They even develop into a small fault or structural fracture
in the study area but with a smaller density. During the
Himalayan movement, S-N and NE-SW conjugate shear
fractures were formed under NE-SW regional stress com-
pression, and the S-N structural fracture zone was formed
in space. The earlier fractures were aggravated by the Hima-
layan tectonism, and the E-W and NW-SE conjugate shear
fractures were further strengthened in the study area, form-
ing faults in the area of Guozhuangzi-Gufengzhuang-
Hongliugou. Two fracture zones with dominant strike direc-
tions were formed in the study area, forming a structural
fracture system superimposed on each other (Figure 8).
Development of structural fracture zones in the study area

Figure 7: Fracture density model of the study area.
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plays a controlling role in the tight oil accumulation of
Yanchang Formation. The fracture zone communicates
shallow groundwater with oil accumulation, which signifi-
cantly reduces the salinity of the formation water in the tight
reservoir [62].

6. Conclusion

This paper proposes a variable bandwidth R/S method to
estimate fracture density in fractured zones using petrophy-
sical logs. 24 image logs and 627.6m of cores from 42 wells
in the study area were used to identify fractured zones and
fracture density. To find a better-generalized estimator, 24
intensity logs were calculated with image logs, and the corre-
sponding H curves of 24 petrophysical logs were calculated
by the variable bandwidth R/S method as the base data. Lin-
ear regression is utilized between intensity logs and H
curves. 47 H curves are applied to a geostatistically derived
density field, and the DFN model was built. According to
the results, the variable bandwidth R/S method is effective
and propagable.

In conclusion, the findings of this paper are the
following:

(1) The variable bandwidth R/S method is used to calcu-
late the acoustic time difference log (DT) and natural
gamma ray (GR) curves, and the H curves are estab-
lished by the difference between the two curves. The
comparison between the energy curve of the H curve
and the intensity curve shows that the H curve is
effective in predicting fracture density. Under the
constraints of the results of core and image log
interpretation, a simple linear relationship can be
established between H curves and intensity log,

FD = 5 8537∗NH − 2 9051. After a linear operation,
the fracture intensity represented by the H curve
can be extrapolated to establish the fracture inten-
sity model and constrain the establishment of the
DFN model

(2) In the DFN model established by the fracture density
model, the structural fractures are zonal, and the
overall structure fractures are near S-N and NW-SE
trending. Distribution characteristics of the struc-
tural fracture zone are consistent with the develop-
ment characteristics of regional faults and fractures,
verifying that the study area belongs to the weak
structural deformation area

(3) The NW-SE trending structural fracture belt was
formed during the Yanshanian tectonism, and the
S-N trending structural fracture belt was formed
during the Himalayan tectonism. NW-SE structural
fractures were strengthened during Himalayan tecto-
nism. The development of a structural fracture zone
controls the distribution of the tight oil reservoir of
the Yanchang Formation in the study area and
results in a significant difference in the formation
of water salinity in the tight oil reservoir
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