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The Bangxi–Chenxing suture zone is an essential area from which information about the closure history of the eastern Paleo-
Tethys Ocean can be obtained. The Darongshan granitoid, which is adjacent to this suture, lies among the widely distributed
granitic rocks and few basic rocks in the southern Guangxi Province. Herein, we report the petrogeochemistry, zircon U–Pb
ages, and zircon Hf isotopic data of the Darongshan pluton in this region. The LA-ICP-MS U–Pb zircon analysis indicates
that the Darongshan pluton had formed at 249 9 ± 2 6Ma. The Darongshan granites are silica-rich (SiO2 = 65 68 – 72 91wt%,
mean = 69 89wt%) with high Na2O contents (Na2O = 0 46 – 6 58wt%, mean = 3 49), relatively high Mg (Mg# = 35 12 – 73 31,
mean = 57 73), and an average Fe2O3

T+TiO2+MnO+MgO of 4.96. These features are similar to those of the Mg-andesitic/
dioritic rock- (MA-) like tonalite–trondhjemite–granodiorites (TTGs). Chemical analyses show that all rocks are enriched in
large-ion lithophile elements (Rb, Th, and U) and light rare earth elements, with weak negative Eu anomalies
(Eu/Eu∗ = 0 27 – 0 67), and Ta, Nb, and Ti depletion, with typical arc-like affinity. The zircon Hf isotopic results show zircon

ƐHf t values ranging from -18.2 to -7.4 and the TDM2 model ages 1.74–2.41Ga. The petrogeochemistry and zircon Hf isotopic
signatures indicate the magma generation of the Darongshan granitoid with fluid/melt released from the subducted slab and the
fluid/melt assimilated and mixed with the mantle peridotite during ascent. Combining previous extant information on Permo–
Triassic subduction/collision-related magmatism in the Bangxi–Chenxing with that of the Jinshajiang–Ailaoshan–Song Ma
suture zones, the Darongshan granitoid is interpreted as a magmatic formation that was generated in an active continental
margin arc environment during the subduction of the Early Indosinian eastern Paleo-Tethys Ocean and the South China Block,
further supporting the idea that closure occurred during the Middle–Late Triassic.

1. Introduction

The Paleo-Tethys Ocean is the major ocean that formed
between the continental fragments of Southeast Asia and
the Eastern Cimmerian supercontinent, extending from the
European Alps to the Southwest China and Southeast Asia
[1–3]. In Southeast Asia, the ocean is referred to as the East
Paleo-Tethys Ocean. The remnant oceanic and subduction-
related fragments, tectonically named the East Paleotethyan
belt, extends from Nepal, India, and southwest Yunnan to
the Malay Peninsula [4–6], with the Jinshajiang–Ailaoshan–

Song Ma suture zone in Southeast Asia, an important crustal
boundary between the Indochina and South China blocks
that represents the closure of one branch of the Paleo-
Tethys Ocean (Figure 1; [7–9]). Recent research has indi-
cated that the Bangxi–Chenxing ophiolite is an eastern exten-
sion of the Song Chay suture in Northeast Vietnam [10–12]
and the easternmost segment of the Paleo-Tethys Ocean
may have been an extension of the Song Ma suture zone,
which extends through the Qiongzhou Strait to central
Hainan Island [13–16]. However, the current understanding
of the subduction and collisional processes differs, and it
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remains unknown whether (1) the closure of the eastern
Paleo-Tethys Ocean occurred in the Middle Permian (269–
263Ma; [17]), Late Permian–Earliest/Middle Triassic [15,
18, 19], or Middle Triassic [8, 20, 21] or (2) whether the plate
subduction during the closure of the eastern Paleo-Tethys
Ocean was double-sided [17] or occurred in a northward
[19, 21, 22] or southward [18, 23] direction. One major factor
influencing these debates is the lack of information concern-
ing the arc magmatism in association with subduction in the
northern part of the Bangxi–Chenxing ophiolite.

The Bangxi–Chenxing suture zone is located in the south-
western part of the South China Block (SCB) (Figure 1),
which is a part of the eastern section of the Paleo-Tethys tec-
tonic domain and is connected to the Paleo-Pacific tectonic
domain [24]. Although the Bangxi–Chenxing suture zone
has undergone multiple phases of magmatism, with multiple
tectonic-magmatic phases, scant evidence of magmatism in
association with the closing of the eastern Paleo-Tethys
Ocean is available. Therefore, the understanding of the
tectono-magmatic evolution that is associated with this pro-
cess remains poor.

Magmatic suites with rock assemblages provide signifi-
cant constraints on both geodynamic processes and tectonic
settings. For example, tonalite–trondhjemite–granodiorites
(TTGs), Mg/high-Mg andesites/diorites, and adakitic rocks
are usually associated with subduction-related environ-
ments (e.g., [25–27]). TTGs are silica-rich (SiO2 > 64wt%,
commonly ~70wt% or greater) with high Na2O contents
(3.0–7.0wt%) and are poor in ferromagnesian elements

(Fe2O3
T + TiO2 +MnO +MgO ≤ 5wt%), with average Cr

and Ni contents of 40 and 18 ppm, respectively (e.g., [28,
29]). In particular, Mg-andesitic/dioritic rock (MA)-like
TTGs usually develop in subducted oceanic crust along con-
vergent plate margins. Therefore, studying the assemblages
is essential for rebuilding oceanic plate subduction, crust–
mantle interaction, and continental crust evolution.

This study is focused upon the Darongshan pluton com-
plex in the northern part of the Bangxi–Chenxing ophiolite.
The results of the newly obtained petrological, whole-rock
geochemical, zircon chronology, and Hf isotope data allow
to constrain the petrogenetic and tectonic settings of the
MA-like TTGs in the Darongshan pluton and provide
important petrological evidence of the closure of the eastern
Paleo-Tethys Ocean.

2. Geological Setting and Pluton Features

The SCB consists of the Cathaysia Block in the southeast and
Yangtze Block in the northwest, which are assumed to have
amalgamated during the Neoproterozoic (Figure 1; [16, 24]
and references therein). The Cathaysia Block is characterized
by the extensive generation of magmatic rocks (e.g., [9, 18,
30]), with the ages at which the granitic rocks intruded
roughly divided into the Early Paleozoic (ca. 460–400Ma),
Permian–Triassic (ca. 270–230Ma), and Jurassic–Creta-
ceous (ca. 180–80Ma) [31–33]. South China collided with
Indochina to the south and North China to the north during
the Triassic [34], resulting in unconformities, deformation,
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and orogenic magmatism, indicating strong tectonic pro-
cesses [35–37]. The Triassic granitic rocks of South China
are mainly high-K calc-alkaline, weakly peraluminous, and
predominantly I- and S-type granites, with a few A-type
granites [38].

The Darongshan pluton includes several Early Triassic
granite batholiths, such as Darongshan, Pubei, and Nali.
These batholiths are distributed over an area of >7000 km2

within Guangxi Province and are elongated in a NE–SW
(ca. 350 km) with variable width (25–70 km) (Figure 2(a);
[39, 40]). The Darongshan pluton is mainly composed of
biotite monzogranite, granite–porphyry, and a small amount
of migmatitic granite (e.g., [17, 41]). The ages of these
granites vary greatly, ranging 260–230Ma, as determined
by SHRIMP and LA-ICP-MS U–Pb zircon dating and
EMP U–Th–Pb monazite dating [42–44]). Jiao et al. [38]
obtained a uniform emplacement age of ca. 250Ma for
each suite in the Darongshan granitoid using SIMS U–Pb
zircon dating.

The Darongshan pluton has intruded into the Cambrian,
Silurian, Devonian, and Lower–Middle Carboniferous strata
with irregular contact relationships and is overlain by Late
Triassic and Jurassic sediments (Figure 2(b); Figures 3(a)–
3(e); [36, 45]). Hornfels have developed locally at the contact
area between the granite–porphyry and strata from the Silu-
rian Liantan Formation (S1l), which is composed of quartz
sandstones and siltstone/slates with minor sandstone inter-
layers (Figure 3(a); [24, 45]). Partial thermal metamorphism
can be seen in the contact zone between the granite and

Devonian Lianhuashan Formation strata (D1l), which is
composed of conglomerates, reddish purple quartz sand-
stones, and shales (Figure 3(d); [46]). In addition to the
intrusion, fault contact is observed where the granite con-
tacts Carboniferous strata. Normal faults have developed
with a strike of approximately 50–65° and a dip angle of
approximately 80° (Figure 3(e)). Moreover, the granites con-
tain numerous, irregularly arranged mafic microgranular
enclaves (Figure 3(f)).

3. Petrography

Two groups of granitoid samples were collected from the
Darongshan pluton according to the different types of gran-
ite units and contact relationships, ensuring that the main
characteristics of the pluton are represented.

The samples from the first group are characterized by
medium-grained hypersthene granite–porphyry and consist
of quartz (20–25%), K-feldspar (10–15%), and plagioclase
(15–20%), with small amounts of biotite (5–10%) and hyper-
sthene (5–8%) (Figure 4). The matrix is cryptocrystalline
(15–20%). The biotite and feldspar are subhedral, and the
quartz is anhedral (Figure 4). The K-feldspar phenocrysts
range 0.5–1.5mm with no twinning (Figures 4(a)–4(d)),
while plagioclase phenocrysts show polysynthetic twinning
and oscillatory zoning, with K-feldspar and quartz inclu-
sions (Figures 4(c) and 4(d)). Hypersthene ranges 0.5–
1.5mm and is often observed alongside the plagioclase
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phenocrysts (Figures 4(e)–4(h)). The accessory minerals
are garnet (Figures 4(a) and 4(b)), zircon, and monazite.

Samples from the second group are characterized as
medium- to coarse-grained granite and consist of quartz
(20–25%), K-feldspar (15–20%), plagioclase (20–25%), and
biotite (8–10%), with minor amounts of cordierite (3–5%)
(Figure 5). Anhedral quartz ranges 0.5–3.5mm, and quartz
includes feldspar grains (Figures 5(a)–5(d)). Subhedral K-
feldspar and plagioclase range 0.5–2.5mm (Figures 5(c)
and 5(d)), and the plagioclase shows oscillatory zoning with
a few weak secondary changes (Figures 5(c)–5(f)). The bio-
tite is dark brown with a flakey structure, and the secondary
alteration is mainly weak sericitization (Figures 5(a)–5(f)).
The accessory minerals included zircon, garnet, and titanite
(Figures 5(e)–5(h)).

4. Analytical Methods

Analysis of the major, trace, and rare earth elements within
the Darongshan granitoids was completed at the Key Labo-
ratory of Orogenic Belts and Crustal Evolution, Peking Uni-
versity, China. The major elements were measured by the

flax method and analyzed using a scanning wavelength-
dispersive X-ray fluorescence spectrometer (AR-LAD-
VANTXP+) with an error of less than 5%. Trace and rare
earth elements were analyzed using an Agilent 7500ce
inductively coupled plasma mass spectrometer (ICP-MS)
for which 25mg powder samples were placed in a Teflon
beaker with 2mL Hf (40%), 0.6mL HNO3 (68%), and
0.5mL HClO4 (72%), which was then sealed, heated in an
electric oven at 185°C for 72 h, and left for evaporation.
Another 1–2mL of HNO3 (68%) was then added, and the
solution evaporated until dry. This step was then repeated,
and the obtained residue was redissolved in 10mL HNO3
(2%) before sealing and heating in an electric oven at
105°C for 12h. The obtained solution was then diluted to
25mL using HNO3 (2%) solution for ICP-MS measure-
ments. The measurement precision was greater than 5%,
and the analytical values for all elements showed <10% error
as compared to the standard values.

A fresh Darongshan granitoid sample (YK021-1) was
selected for zircon dating. Zircon sorting was performed by
the Langfang Geoscience Exploration Technology Service
Co., Ltd., and zircon target preparation, cathodoluminescence

 Granite-porphyry

Sandstone

(a)

 Granite-porphyry

(b)

Granite

Limestone

(c)
Co

ng
lom

er
ate

Granite

Sandstone

Granite

(d)

Granite
Sandstone

(e)

MMEsGranite

(f)

Figure 3: Field photographs: (a) Granite–porphyry intruded into sandstone formations; (b) granite–porphyry overlain by Late Mesozoic
strata; (c) granite intruded into limestone formations; (d) granite intruded into Devonian Lianhuashan Formation strata (D1l); (e) fault
contact; (f) potassic granite with mafic microgranular enclaves (MMEs).

4 Geofluids



micrography (CL), and LA-ICP-MS zircon U–Pb dating
were performed by Beijing GeoAnalysis Co., Ltd. Zircons
were photographed using a JSM6510 scanning electron
microscope (JEOL Corporation, Japan). An NWR193UC
model laser ablation system (Elemental Scientific Lasers
LLC, USA) was coupled with an Agilent 7900 ICP-MS
instrument (Agilent, USA) at 6Hz and a fluence of 5 J/
cm2 for the analysis of 30μm spots. Iolite software was used
for data reduction [36]. Zircons GJ-1 and 91500 were used
as primary and secondary reference materials, respectively,

and GJ-1, 91500, and Plešovice were analyzed twice, once
every 10 sample analyses. Typically, 45 s sample signals were
acquired after 25 s gas background measurements, with
exponential functions used to calibrate the downhole frac-
tionation. Further details of the process used can be found
in literature [47–49].

Zircon Lu–Hf isotopic composition analyses were con-
ducted at Beijing GeoAnalysis Co., Ltd. (Beijing, China),
using a RESO 193nm laser ablation system (Australian Sci-
entific Instruments, Canberra, Australia) and a Neptune
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Plus MC-ICP-MS (Thermo Fisher Instruments, USA). Abla-
tion was conducted using helium as the carrier gas and a
laser beam spot with a diameter of 40μm. The internation-
ally accepted standard zircon Plešovice was used as reference
material [49]. Further details of the analytical procedures
used are described in Wu et al. [50]. The 176Hf/177Hf of
0 282480 ± 0 000016 (2σ) that was obtained for the standard
zircon Plešovice is consistent with the value obtained previ-
ously and was within an acceptable error range [51]. The
176Hf/177Hf and 176Lu/177Hf ratios of 0.0332, 0.282772 and
0.0384, 0.28325 that were obtained for present-day chon-
drite and depleted mantle, respectively [52], were used to

calculate the ƐHf t values. The two-stage Hf model ages
(TDM2) were calculated using 176Lu/177Hf = 0 015 for aver-
age continental crust [51].

5. Results

5.1. Major and Trace Element Geochemistry. The abun-
dances of major and trace elements in the Darongshan
granitoids are shown in Table S1. The Darongshan
granitoids show medium–high SiO2 (65.68–73.33wt%), high
concentrations of Al2O3 (12.54–17.62wt%), and low TiO2
(0.07–0.87wt%) and are alkaline-rich (with K2O +Na2O =
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4 08 – 10 16wt%), with Na2O/K2O ratios of 0.13–2.15. The
samples in the total alkali-silica (TAS) diagram plot lie
mainly in the granite field (Figure 6(a)). Based on
normative mineral classification, all samples clearly are

plotted on the trondhjemite and granite fields in the An–
Ab–Or diagram (Figure 6(b)), and most samples are high-
K and medium-K calc-alkaline in the SiO2 vs. K2O
diagram (Figure 6(c)). Most samples are located in the
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peraluminous field, with a few in the metaluminous field
(A/CNK = 0 96 – 3 61, A/NK = 1 04 – 3 77, Figure 6(d)).
The SiO2 vs. FeOT/(FeOT+MgO) and Na2O+K2O–CaO
diagrams (Figures 6(e) and 6(f)) indicate that the Darongshan
granitoids are magnesian granites with characteristics
ranging from calcic to alkali-calcic.

The trace and rare earth element characteristics of the
Darongshan granitoids are remarkably similar. The total rare

earth elements (REE) are in the range 65.92–213.88 ppm
(with a mean value of 168.29 ppm, Table S1) for all
samples, with LREE/HREE (LREE: light rare earth
elements; HREE: heavy rare earth elements) ratios of 2.76–
13.77 (mean value of 8.11). The La/Yb N values range
2.26–32.53, with an average value of 11.52, indicating
fractionation of the LREE and HREE. All samples are
LREE-enriched, with moderately negative Eu anomalies
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(Eu/Eu∗ = 0 27 – 0 67, Figure 7(a)). The primitive mantle-
normalized trace element diagrams (Figure 7(b)) indicate
that all rock samples are enriched in the large-ion lithophile
elements (LILE; e.g., Rb, Th, and U) and depleted in the
high-field-strength elements (HFSE; e.g., Ta, Nb, and Ti),
indicating typical arc-like characteristics for the granitoid.

5.2. Zircon U–Pb Ages. The geochronological data presented
in Table S2 was obtained from 25 analytical procedures that
were performed on sample YK021-1 from the Darongshan
granitoid. The zircons in the sample are euhedral to
subhedral, long, prismatic, colorless, and transparent, with
lengths ranging 30–150μm and aspect ratios of 1 : 1–4 : 1.
CL imaging revealed clear oscillatory zoning in all grains,
with typical magmatic characteristics (Figure 8). The Th
content ranged 72–687 ppm and the U content 222–
1752 ppm, with the Th/U ratio varying 0.11–0.64 with an
average of 0.34. The 206Pb/238U age obtained from spot
analysis ranged 1189 ± 12–242 ± 2Ma (Table S2), with 23
of the results yielding a 206Pb/238U age of 249 9 ± 2 6Ma
(MSWD = 0 57) (excluding results YK021-1-06 and
YK021-1-09; see Figure 8). It should be noted that sample
YK037 also showed a zircon U–Pb age of 250 1 ± 2 6Ma
(our published data, [53]).

5.3. Zircon Hf Isotopic Composition. The zircon Hf isotopic
compositions of YK021-1 and YK037 were then analyzed
and the results given in Table S3. The results show an ƐHf
t that is between -18.2 and -7.4, with an average of -11.38;
a TDM that varies between 1.21 and 1.62Ga, with an
average of 1.36Ga; and a TDM2 that ranges from 1.74 to
2.41Ga, with an average of 1.99Ga (Table S3). The
Darongshan granitoid exhibits ƐHf t values ranging from
-24.9 to -1.8, with a peak at -10.0 (Figure 9(a)), and the
corresponding Hf isotopic model ages (TDM2 Hf ) range
from 1.4 to 2.8Ga, with a peak at 1.9Ga (Figure 9(b)).

6. Discussion

6.1. Age of the Darongshan Granitoid. Magma crystallization
ages of 249 9 ± 2 6Ma and 250 1 ± 2 6Ma were obtained for
samples YK021-1 and YK037 from the Darongshan granit-
oid (our published data, [53]), respectively. Age data for
the Darongshan pluton have been obtained using different
zircon U–Pb dating methods (Table S4), with zircon U–Pb
ages for the Darongshan pluton ranging from 262 to
230Ma, with a peak age of ca. 252Ma (Figure 10). This
peak age is similar to that of the Darongshan granitoids in
this study. Combining these geochronological data, we
suggest that the Darongshan pluton may have formed at
approximately 255–250Ma.

6.2. Petrogenesis of the Darongshan Granitoids. The Darong-
shan granitoids are silica-rich (SiO2 = 65 68 – 72 91wt%,
mean = 69 89wt%) with high Na2O content (Na2O = 0 46 –
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Figure 9: (a) Histogram of zircon ƐHf t and (b) TDM2 Hf values for the granitoid samples from the Darongshan pluton. Data sources are
referenced in Table S3 and Table S6 of the Supplementary Materials.
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6 58wt%, mean = 3 49), with an average Fe2O3
T + TiO2 +

MnO +MgO of 4.96, and average Cr and Ni contents of
35.34 and 18.51 ppm, respectively. All samples are plotted
in the trondhjemite and granite domains of the normative
granitoid classification, suggesting that the TTGs might have
developed in the Darongshan pluton.

Previous studies have shown that high- and low-pressure
TTGs exhibit different geochemical characteristics such as
fractionated REE patterns, Eu anomalies, and Sr/Y ratios
(e.g., [28, 54–56]). In general, the geochemical characteristics
of high-pressure TTGs are similar to those of typical adakitic
rocks [28, 55, 57], while low-pressure TTGs are character-
ized by low-fractionated REE patterns (or nearly flat REE
patterns), a negative Eu anomaly, lower Sr, and higher
HREE and Y [26, 55, 56, 58]. High-pressure TTGs include
the refractory residual remnants Ga±Hb±Cpx±Opx without
residual plagioclase in the source region, while low-pressure
TTGs show refractory residual remnants with plagioclase,
resulting in a low-fractionated REE pattern and a signifi-
cantly negative Eu anomaly [54, 56, 59].

The Darongshan granitoids are characterized by a low-
fractionated REE pattern, clear negative Eu anomaly
(Eu/Eu∗ = 0 27 – 0 67), high HREE (mean = 19 03) and Y
(mean = 27 00), and low Sr (mean = 74 37). The geochemi-
cal characteristics of the Darongshan granitoid samples are

therefore analogous to those of low-pressure TTGs
(Figure 7; [29, 56]). The samples fall mainly in the island-
arc andesite–dacite–rhyolite series (ADR) region of the
La/Yb N vs. YbN diagram (Figure 11(a)), thus showing
entirely different characteristics compared to those of typical
adakitic rocks.

Several geodynamic mechanisms have been proposed to
explain the genesis of TTGs. Common mechanisms include
(1) material from the partial melting of subducted oceanic
crust reacting with mantle peridotite during its upwards
migration to the mantle wedge (e.g., [60–62]) (the most
important phenomenon indicating this mechanism is the
increased MgO content that occurs in the magma during
this process [63–65]) and (2) partial melting of thickened
continental crust (e.g., [57, 66, 67]), which is not accompa-
nied by an increase in the MgO content [65, 68]. Experimen-
tal petrological studies have supported these genetic
mechanisms (e.g., [69–71]). Therefore, the MgO content is
a key parameter for identifying subduction slabs and conti-
nental crust melts in TTGs (e.g., [26, 72–75]). Recently,
Deng et al. [64, 68] suggested the minimum possible MgO%
for a given SiO2% value, based on an experiment investigating
magnesian andesitic/dioritic magmas (Table S5; [64, 68]).
The Darongshan granitoid samples are plotted in or near
the MA area on the SiO2 vs. MgO diagram (Figure 11(b))
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Figure 11: (a) La/Yb N vs. YbN diagram (after [58]). (b, c) SiO2 vs. MgO and FeOT/MgO diagrams (simplified after [64, 68]). HMA: high-
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and in the calc-alkaline or low-Fe calc-alkaline fields in the
SiO2 vs. FeO

T/MgO discrimination diagram (Figure 11(c)).
Thus, the granitoid displays MA-like features, implying that
it may have undergone subduction-slab melting. In
addition, other characteristics of slab melts, such as the
relatively high Mg#, Ni, and Cr contents that are attributed
to the melting conditions, and the extent of the interaction
with the mantle peridotite [76], are observed in almost
all samples examined in this study, with the Mg#>50
(Table S1) and relatively high corresponding Ni
(mean = 21 48) and Cr (mean = 40 36) suggesting that the
slab melts may have been subjected to mantle peridotite
assimilation (Figure 12(a)).

The ƐHf t values that were obtained for the Darongshan
granitoid range from -24.9 to -1.8 (Table S6). The Hf
isotopic data from the granitoid are plotted between the
CHUR line and the lower crust evolution region on the ƐHf
t vs. U–Pb age diagram (Figure 12(b)), and combined
with the zircon ƐHf t values (-4.7 to -0.2) for the Daling

granite in northern Hainan Island [77] and the ƐNd t
values (-2.61 to +1.10) for mafic igneous rocks in southern
Guangxi [78], these results suggest contribution from a
relatively depleted (ƐHf t > 0) mantle source such as
juvenile crust, lithospheric mantle, or asthenosphere
mantle. However, no evidence of juvenile crust growth has
been observed for the Permian–Triassic period in the study
area, indicating the involvement of juvenile mantle-derived
materials. Darongshan granitoid shows higher 87Sr/86Sr i
values and lower ƐNd t values, which range from 0.7086 to
0.7272 and -12.70 to -9.00, respectively (Table S7). The
87Sr/86Sr i vs. ƐNd t diagram (Figure 12(c)) indicates that
the samples are likely originated in enriched mantle
(EMII), and the low Hf/Sm N (0.35 to 2.11) and Ta/La N
(0.14 to 3.58) ratios of these rocks suggest that the
mantle source has been metasomatized by fluid/melt
released from the subducted slab (Figure 12(d), [79]).
Peraluminous minerals (such as tourmaline and garnet)
and characteristics (A/CNKD>1.1) may be related to the
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melting of pelitic or semipelitic rocks in the subduction zone
(e.g., [80–83]). The calcic to alkali-calcic trend observed in
the Darongshan granitoids (Figure 6(f)) suggests that they
may have resulted from mixed magmas, indicating that
the Darongshan pluton developed mafic microgranular
enclaves.

In summary, the magma generation of the Darongshan
granitoid correlates with fluid/melt released from the sub-
ducted slab that is then assimilated and mixed with mantle
peridotite during ascent.

6.3. Tectonic Implications. During the early Mesozoic, the
SCB experienced intense tectonic-magmatic activity, form-
ing a large granite belt (e.g., [15, 16, 30, 84]). The Darong-
shan granitoids were formed at 262–230Ma (Figure 10;
Table S4), with the most intense magmation occurring at
ca. 250Ma. The rocks are enriched in LILE (e.g., Rb, Th,
U, K, and Pb) and demonstrate relative HFSE deficits (e.g.,
Nb, Ta, P, and Ti) in terms of trace elements, indicating
arc-related affinities with subduction zones (Figure 13; [24,
40, 84]). Combined with studies of nearby Indosinian
igneous rocks, such as the Wuzhishan granites in Hainan
[10], the arc volcanic granites of southern Hunan [85], the
Pingxiang volcanic rocks in southwest Guangxi, the arc
volcanic deposits in the Youjiang Basin [32, 86], and the
arc granites and volcanic rocks of southern Guangxi [24,
45], we tentatively conclude that the Darongshan granitoid
may have formed in a continental arc environment (e.g.,
[37, 43, 87, 88]). Similar scenarios have also been
reported for the Piaochi granitoid in the Qinling orogen
[89] and the Changshan–Ailaoshan granitoids in Yunnan
Province [90].

Regional geodynamic studies have shown that the top-
to-the-north nappes in northeast Vietnam and top-to-the-
north shearing in the Yunkai massif that occurred during
the Permian–Middle Triassic are possibly linked to the sub-
duction and collision of the Indochina Block (ICB) beneath
the SCB [91–93]. The NE–SW extrusive deformation that
occurred in the Dulong–Song tectonic dome along the

Sino–Vietnamese border during the Middle Triassic was
related to the closure of the Paleo-Tethys Ocean, which
resulted in the northward subduction of the ICB [4, 86,
94]. The magmatic record shows that arc volcanic-intrusive
rock assemblages developed in the Pingxiang area in south-
west Guangxi and the northern part of Vietnam during the
Permian–Early Triassic, and these rocks have been shown
to have formed continental marginal arcs in association with
oceanic subduction [95, 96]. Notably, Early–Middle Triassic
island-arc andesites that are associated with subduction
ablation on the southwestern margin of the Youjiang Basin
[97] can be connected to the Late Permian island-arc volca-
nic rocks in Pingxiang [98, 99] and the Late Permian–Middle
Triassic island-arc volcanic rocks of Qinzhou–Fangcheng-
gang, which form a magmatic arc belt [100]. This belt may
represent the subduction of the eastern Paleo-Tethys Ocean
[97]. The sedimentary record shows that the Devonian
strata in the Qinzhou–Fangchenggang trough and the
Paleo-Tethys oceanic basin in western Yunnan Province
were both deposited in the same deepwater environment
[101, 102]. Moreover, the Permian Qinzhou–Fangcheng-
gang area shows marine sedimentation that is similar to that
of Jinshajiang–Ailaoshan(e.g., [16, 103]). Permian radiolaria
silicalite and siliceous mudstone are observed, and the radi-
olarian composition is characteristic of ocean or deep-sea
fauna (i.e., the presence of abundant Pseudotormentus and
Albaillellaria), implying that the Qinzhou–Fanchenggang
Basin was most likely part of the Paleo-Tethys Ocean branch
ocean basin [104]. Contrarily, zircon U–Pb age analyses of
the sedimentary rocks in the Qinzhou–Fanchenggang area
and Youjiang Basin suggest a Permian–Triassic orogenic
event that followed the subduction of the Paleo-Tethys
branch ocean, as well as the subsequent collision of the
ICB with the SCB [18, 105]. Based on the aforementioned
analysis, we propose that the subduction of the eastern
Paleo-Tethys Ocean occurred in southern Guangxi during
the Early Indosinian.

Recently, zircon U–Pb chronology and Sm–Nd isotope
studies have suggested that the Bangxi ophiolite on central
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Hainan Island may be the easternmost oceanic crust rem-
nant of the Paleo-Tethys Ocean [14, 106]. The Bangxi–
Chenxing suture zone is also considered to be the eastern
extension of the Song Chay suture zone in northeast Viet-
nam [20, 107, 108]. The ophiolites of the Jinshajiang–
Ailaoshan–Song Ma suture zone have the same Sm–Nd
and U–Pb age (ca. 340–360Ma) as the Bangxi–Chenxing
ophiolite (e.g., [7, 109, 110]). Thus, the Bangxi–Chenxing
suture zone may be the easternmost section of the Jinsha-
jiang–Ailaoshan–Song Ma branch of the Paleo-Tethys
Ocean (e.g., [16, 24, 38]). The inherited zircon ages of the
Shiwandashan granite in Guangxi (363–314Ma) and Wuz-
hishan granite in Hainan (366–312Ma) were both recorded
during this episode [10, 17]. Combined with the sedimen-
tary, magmatic, tectonic, and metamorphic records of adja-
cent areas, the northward subduction of the eastern Paleo-
Tethys oceanic crust probably began approximately 275Ma
(Figure 14(a); e.g., [13, 45, 91, 94]). The foundering of the
flab-slab likely occurred ca. 250Ma (Figure 14(b)), resulting
in strong upwelling of the asthenospheric mantle and mafic
intra- and/or underplating. A major magmatic event
occurred in South China in response to the significant
increase in geotherms. In addition to the Darongshan plu-
ton, acidic volcanic rocks are present in the Lang Son area
of Vietnam (252–250Ma; [111]), Changzheng granite in
Hainan (ca. 251Ma; [44]), and rocks in the Longzhou–
Chongzuo of Guangxi (ca. 250Ma; [78]). Significantly, the
zircon SHRIMP U–Pb age of eclogite in the Song Ma suture
zone is 230 5 ± 8 2Ma [112]. Clear changes in the sediment
sources of clastic rocks on the eastern and western sides of
the Ailaoshan suture zone [113] during the Middle–Late Tri-
assic (ca. 237Ma) suggest that the subduction of the eastern
Paleo-Tethys Ocean may have ended ca. 230Ma, eventually
forming the Jinshajiang–Ailaoshan–SongMa–Bangxi–Chenx-
ing suture zone (Figure 14(c)).

7. Conclusion

Based on the mineralogy, geochemistry, zircon U–Pb ages,
and zircon Hf isotopic analysis of the Darongshan granitoid,
the following conclusions are proposed:

(1) The LA-ICP-MS U–Pb zircon analysis results indi-
cate that the Darongshan pluton was formed at
249 9 ± 2 6Ma

(2) The magma from which the Darongshan granitoid
was formed was originally fluid/melt, which was
released from the subducted slab and assimilated
and mixed with mantle peridotite during ascent

(3) The formation of the Darongshan pluton is related
to the oceanic subduction of the eastern Paleo-
Tethys, with subduction likely ending during the
Middle to Late Triassic
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