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Developing automatic history matching (AHM) methods to replace the traditional manual history matching (MHM) approach in
adjusting the permeability distribution of the reservoir simulation model has been studied by many authors. Because permeability
values need to be evaluated at hundreds of thousands of grid cells in a typical reservoir simulation model, it is necessary to apply a
reparameterization technique to allow the optimization algorithms to be implemented with fewer variables. In basic
reparameterization techniques including zonation and pilot point methods, the calibrations are usually based solely on the
production data with no systematic link to the geological and geophysical data, and therefore, the obtained permeability
distribution may be not geologically consistent. Several other reparameterization techniques have attempted to preserve geological
consistency by incorporating 4D seismic data; however, these techniques cannot be applied to our fractured basement reservoirs
(FBRs) as they do not have 4D seismic data. Taking into account these challenges, in this study, an AHM methodology and
workflow have been developed using a new reparameterization technique. This approach attempts to minimize the potential for
geological nonconsistency of the calibrated results by linking the permeability to geophysical data. The proposed methodology can
be applied to fields with only traditional geophysical data (3D seismic and conventional well logs). In the proposed workflow, the
spatial distributions of seismic attributes and geomechanical properties were calculated and estimated from 3D seismic data and
well logs, respectively. After that, a feed-forward artificial neural network (ANN) model trained by the back-propagation algorithm
of the relationship between initial permeability with seismic attributes and geomechanical properties of their grid cell values is
developed. Then, the calibration of the permeability distribution is performed by adjustment of the ANN model. Modification of
the ANN model is performed using the simultaneous perturbation stochastic approximation (SPSA) algorithm to calibrate
transmission coefficients in the ANN model to minimize the discrepancy between the simulated results and observed data. The
developed methodology is applied to calibrate the permeability distribution of a simulation model of Bach Ho FBR in Vietnam.
The effectiveness of the methodology is evident by comparing the historical matches with an available manually history-matched
simulation model. The application shows that the proposed methodology could be considered as a suitable practical approach for
adjusting the permeability distribution for FBR reservoir simulation models.

1. Introduction

Because the chance of exploring conventional reservoirs in
giant fields has decreased [1, 2], unconventional petroleum

reservoirs are new resources to maintain the long-term sta-
bility of oil and gas supplies. The naturally fractured reser-
voirs are known as important unconventional reservoirs in
the world. The fractured basement reservoir (FBR) is a form
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of the naturally fractured reservoir. FBRs are the most com-
mon type of reservoir and contribute the most oil and gas
reserves to Vietnam. The largest of FBRs in Vietnam is Bach
Ho located in Cuu Long Basin [3]. Many studies have con-
ducted overviews of geological and production characteris-
tics for FBRs [4, 5]. These studies have shown that FBRs
have low matrix porosity and permeability and that fluids
are mainly stored and flow in natural fractures. Due to the
complexity of the fracture system, many of the model
parameters are difficult to estimate with FBRs.

One of the parameters that is the most difficult to esti-
mate with FBRs is permeability. In general, the permeability
field of a reservoir simulation model is obtained through a
two-step process. In the first step (integration of static data),
the permeability field in the geological model is built based
on the integration of static information such as core mea-
surement, seismic data, well logs, and stratigraphy. In the
second step (integration of dynamic data), the permeability
field in the simulation model (obtained by upscaling from
the geological model) is calibrated during the history match-
ing process to improve the fit between the model’s predic-
tion and production data. In the case of FBRs, since fluids
mainly flow in fractures, permeability measurements from
conventional core analysis are not representative of actual
effective permeability. In widely accepted practices, seismic
and well log data are used to estimate permeability distribu-
tion [6, 7]. Due to the lack of representative core sample
measurements, the permeability fields evaluated only from
seismic and well log data are often highly uncertain and need
a lot of calibration in history matching processes for simula-
tion models of FBRs in Vietnam [8–10]. In addition, calibra-
tions of the permeability distribution of simulation models
are mainly done in a manual history matching (MHM) pro-
cess and often take a long time of months with large fields
like Bach Ho FBR.

Developing automatic history matching (AHM) methods
to replace the traditional MHM approach in adjusting the
parameters of the reservoir simulation model has been studied
by many authors. Many authors have reviewed studies on
AHM methods [11–13]. Permeability is a major parameter
of the reservoir simulation model that is usually modified in
history matching processes. However, developing suitable
and reliable methods and techniques to calibrate the perme-
ability distribution of reservoir simulation models in AHM
processes faces several challenges. The first difficulty in adjust-
ing permeability is the large number of variables because
permeability values need to be evaluated at hundreds of thou-
sands of grid cells in a typical reservoir simulation model.
Therefore, it is necessary to apply a reparameterization tech-
nique to allow the optimization algorithms to be implemented
with fewer variables. An up-to-date review of reparameteriza-
tion techniques can be found in [14]. Examples of basic repar-
ameterization techniques include zonation and pilot point
methods. In the zonation method, the reservoir is divided into
several zones, in each of which the properties are treated as
uniform [15, 16]. In the pilot point method, the reservoir
properties are adjusted at the selected pilot points, and the
changes are extrapolated to all grid cells with kriging [17,
18]. In addition to reducing the number of variables by repar-

ameterization techniques, another way to reduce the computa-
tional cost associated with history matching, which has been
carried out in several studies, is to use proxy models (e.g.,
[19]). Yousefzadeh et al. presented a review of studies using
proxy models in reservoir history matching [20]. Another dif-
ficulty in adjusting the permeability distribution in the reser-
voir simulation model is to ensure the geological consistency
of the permeability field because the calibrations in the simu-
lation model are usually based solely on the production data
without a systematic link to the static data. Several reparame-
terization techniques have been developed to preserve geolog-
ical consistency in AHM processes. For example, gradual
deformation was developed to gradually change stochastic res-
ervoir models while preserving their spatial variability [21, 22].
Other studies try to improve the geological consistency of the
calibration results by incorporating 4D seismic data into the
historical matching process [23–25]. Yousefzadeh and Ahmadi
proposed a deep learning-based reparameterization technique
that could preserve geological realism by using permeability
realizations [26]. However, these AHM approaches are difficult
to apply to large, complex, or non-4D seismic reservoirs.

Considering the challenges mentioned above, this study
was set forth to develop a new AHM methodology and
workflow to adjust the permeability field in history matching
simulation models of FBRs. The new approach must be con-
venient for application to large, complex fields and only uses
traditionally available information, including 3D seismic,
well log, and production data. In this workflow, an initial
feed-forward artificial neural network (ANN) model of the
relationship between permeability with seismic attributes
and geomechanical properties of their grid cell values is
developed. The back-propagation algorithm is used to train
the ANN model. Then, the calibration of the permeability
distribution is performed by adjustment of the ANN model.
Modification of the ANN model is performed by using the
simultaneous perturbation stochastic approximation (SPSA)
algorithm to calibrate transmission coefficients in the ANN
model to minimize the discrepancy between the simulated
results and observed data. Our AHM methodology is
described in Section 2. Its application to adjust the perme-
ability field of a simulation model of Bach Ho FBR in Viet-
nam is presented in Section 3.

2. Methodology

2.1. Methodology Workflow. The workflow of our AHM
methodology is presented in Figure 1. The approach can
start with 3D seismic, well log, and production data. The
workflow can be divided into the following steps:

(1) Obtain spatial distributions of initial permeability,
seismic attributes, and geomechanical properties

(2) Select input parameters for the ANN model from
seismic attributes and geomechanical properties

(3) Develop an initial ANN model of the relationship
between permeability with selected seismic attributes
and geomechanical properties
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(4) Automatic history matching the reservoir simulation
model based on modifying the permeability field by
calibrating the ANN model

Descriptions of the methods used to perform the above
steps are given in Sections 2.2 to 2.5.

2.2. Obtain Spatial Distributions of Initial Permeability,
Seismic Attributes, and Geomechanical Properties. The distri-
bution of permeability is usually already built into the basic
geological model of the reservoir. For use in a simulation
model, this distribution in the geological grid is upscaled to
obtain the corresponding distribution in the simulation grid.
The permeability distribution on the simulation grid before
history matching is used as the initial permeability distribu-
tion in the workflow.

Distributions of conventional seismic attributes can be
calculated and extracted from 3D seismic data using geolog-
ical modeling software. To be used in the workflow, these
distributions are upscaled to the simulation grid.

Hidden layer

Output layer

Input layer

Figure 2: Schematic diagram of a feed-forward ANN with three
layers.
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Figure 1: Flow chart of the AHM workflow.
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Figure 4: Initial permeability distribution histogram.
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Figure 5: Distribution of the 3D curvature attribute.
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To use geomechanical properties as inputs of the ANN
model, we predicted distributions of vertical stress (Sv), min-
imum horizontal stress (Sh,min), maximum horizontal stress
(Sh,max), pore pressure (Pp), Poisson’s ratio (ν), Young’s
modulus (E), uniaxial compressive strength (UCS), and
internal friction coefficient (μi). Geomechanical properties
can be calculated from well logs and core measurements
along the wellbore and then interpolated to obtain their
spatial distributions. In reality, laboratory testing of geome-
chanical properties and measurement of in situ stresses is
costly and time-consuming. Furthermore, these measure-
ment results are often available only in a few wells and at
several intervals. Therefore, much research has been done

to establish empirical correlations between geomechanical
properties and well logs. Nowadays, it is commonly accepted
that geomechanical properties may be calculated from well
logs with calibration [27, 28]. Various empirical formulas
and specific methods can be used to predict geomechanical
parameters, depending on the data conditions and the type
of reservoir. Since there are very limited measured data on
the geomechanical properties of our FBRs, the prediction
of geomechanical properties was performed using empirical
correlations with the petrophysical well logs in the proposed
methodology.

The uniaxial compressive strength (UCS) was esti-
mated from the compressional wave transit time log
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Figure 6: Distribution of the envelope attribute.
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Figure 7: Distribution of gradient magnitude attribute.

5Geofluids



0.80

Cosine of phase
Seismic (default)

0.60

0.40

0.20

0.00

−0.20

−0.40

−0.60

−0.80

Figure 8: Distribution of the cosine of phase attribute.

180.00

Reflection intensity
Seismic (default)

160.00

140.00

120.00

100.00

80.00

60.00

40.00

20.00

Figure 9: Distribution of the reflection intensity attribute.

10.00

RAI
Seismic (default)

7.50

5.00

2.50

0.00

−2.50

−5.00

−7.50

−12.50

−10.00

Figure 10: Distribution of the relative acoustic impedance attribute (RAI).

6 Geofluids



22.50

RMS Amplitude
Seismic (default)

20.00

17.50

15.00

12.50

10.00

7.50

5.00

2.50

Figure 11: Distribution of the RMS amplitude attribute.

32.50

Sweetness
Seismic (default)

30.00
27.50
25.00
22.50
20.00
17.50
15.00
12.50
10.00

7.50
5.00
2.50

Figure 12: Distribution of the sweetness attribute.

0.80

Variance
Seismic (default)

0.70

0.60

0.50

0.40

0.30

0.20

0.10

Figure 13: Distribution of the variance attribute.

7Geofluids



(DT) using an empirical correlation obtained for granitic
rock [29]:

UCS = 2 55 × 10−5 ×Vp
1 7658, 1

where Vp is the P-wave velocity (Vp = 1/DT), the unit of UCS
is megapascals, and the unit of Vp is meters per second.

The internal friction coefficient (μi) was also estimated
from the compressional wave sonic transit time log using
the following empirical correlation [30]:

μi = tan asin
Vp − 1
Vp + 1

2

Poisson’s ratio (ν) was calculated from the compressional
and shear wave sonic transit time logs (DT and DTSM) as fol-
lows [31]:

ν =
Vp

2 − 2Vs
2

2 Vp
2 −Vs

2 , 3

where Vs is the S-wave velocity (Vs = 1/DTSM) and the unit
of Vs is meters per second.

Young’s modulus (E) was estimated from the compres-
sional and shear wave sonic transit time logs and the density
log (RHOB) using the following formula [31]:

E = RHOB ×
Vs

2 × 3Vp
2 − 4Vs

2

Vp
2 −Vs

2 4
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Under conditions where density is commonly measured
along with wells in the oil and gas industry, the vertical stress
(Sv) at any depth is calculated by integrating the density log
from the surface:

Sv =
D

0
RHOB z gdz, 5

where D is the depth; RHOB z is the depth-dependent den-
sity; the z-axis is vertical and positive downward, with z = 0
corresponding to the earth’s surface; and g is the gravita-
tional acceleration.

Minimum horizontal stress (Sh,min) was calculated from
Poisson’s ratio, vertical stress, and pore pressure (Pp) accord-
ing to the following equation [32]:

Sh,min =
ν

1 − ν
Sv − Pp + Pp 6

The maximum horizontal stress (Sh,max) is the most diffi-
cult to determine among the stress components. In our study,
the maximum horizontal stress was calculated based on the

formula of Barton et al. [33] using information from borehole
image log:

Sh,max =
UCS + Pm + Pp

1 + 2 cos 2θ
− Sh,min

1 − 2 cos 2θ
1 + 2 cos 2θ

, 7

where Pm is the downhole mud pressure when drilling-induced
tensile fractures occur and θ is the wellbore breakout angle
which is observed from formation microimager (FMI) logs.

An overview of methods for determining pore pressure
can be found in [34]. Among them, the method of calculat-
ing pore pressure from the sonic log (which is commonly
available data) was used here. This formula evolved from
Eaton’s study [35] relating the pore pressure to the compres-
sional wave sonic transit time of the following form:

Pp = Sv − Sv − Phyd
DTn

DT

3
, 8

where Phyd is the hydrostatic pore pressure, DT is the mea-
sured sonic transit time by well logging, and DTn is the nor-
mal sonic transit time obtained from the normal trend line.
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Figure 19: Distribution of pore pressure.
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2.3. Select Input Parameters for ANN Model from Seismic
Attributes and Geomechanical Properties. To have an ANN
model that predicts the permeability reliably and is suitable
for computational resources, it is necessary to select the seis-
mic attributes and geomechanical properties that have a
high relationship with the permeability as input for the
ANN model. The Pearson correlation coefficient and princi-
pal component analysis are methods commonly used for
selecting input variables of ANNs [36]. Jayaweera and Aziz
[37] compared the performance of these two input selection
methods for an application in the development of the ANN
model. Their results showed that the use of the variables
selected using the principal component analysis did not con-
tribute to improving the development of the ANN model.
Meanwhile, the variables selected by the Pearson correlation
coefficient were successfully used.

In this study, the selection of input parameter for the
ANN model is carried out based on calculating the Pear-
son correlation coefficient between the seismic attributes/
geomechanical properties and the initial permeability.
The Pearson correlation coefficient r between the dataset
x1, x2,⋯, xn containing n grid cell values of a potential
input variable and the dataset containing n corresponding
grid cell permeability values is calculated using the follow-
ing formula [38]:

r =
∑n

i=1 xi − x yi − y

∑n
i=1 xi − x 2 ∑n

i=1 yi − y 2
, 9

where x and y are the arithmetic mean of the datasets
x1, x2,⋯, xn and y1, y2,⋯, yn , respectively.

2.4. Develop an Initial ANNModel of the Relationship between
Permeability with Seismic Attributes and Geomechanical
Properties. Feed-forward ANN is the most widely used net-
work architecture. This type of ANN is also used in our study.
A feed-forward ANN consists of one input layer, one or more
hidden layers, and one output layer. Each layer contains one or

more processing nodes. Every node in a layer is connected
with all nodes in the previous layer. Every node in the hidden
and output layers sums its weighted inputs, adds a bias, and
applies an activation function to the weighted sum to get the
output. In this way, the input values that pass through the net-
work are eventually transformed into one or more output
values. Two types of activation functions commonly used are

Table 1: The absolute values of the Pearson correlation coefficient
between seismic attributes/geomechanical properties and
permeability.

Order
Seismic attribute/
geomechanical

property

Absolute value of the Pearson
correlation coefficient with

permeability

1 Vertical stress 0.5524013

2
Minimum horizontal

stress
0.5264302

3
Maximum horizontal

stress
0.5123780

4
Uniaxial compressive

strength
0.4606758

5 Pore pressure 0.4495262

6 Young’s modulus 0.4186554

7 Gradient magnitude 0.4166373

8
Internal friction

coefficient
0.4083762

9 Envelope 0.3190987

10 RMS amplitude 0.3168818

11 Sweetness 0.3120950

12 Reflection intensity 0.3007208

13 Poisson’s ratio 0.2828500

14 3D curvature 0.2207953

15 Variance 0.1527727

16 Cosine of phase 0.0067648

17
Relative acoustic

impedance
0.0022413

1.00
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Figure 21: Distribution of internal friction coefficient.
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the identity function and the sigmoid function, respectively,
represented by the following equations:

f x = x, 10

f x =
1

1 + e−x
11

The key step in building an ANN is a learning process in
which the network is trained on a dataset consisting of input
values and corresponding output values. To train a feed-
forward ANN, the back-propagation algorithm is used. More
detailed descriptions of the feed-forward ANN and the back-
propagation algorithm can be found in many documents
(e.g., [39]).

In the reparameterization technique of the proposed
AHM methodology, a three-layer feed-forward ANN model
representing the relationship between permeability with
seismic attributes and geomechanical properties is built.
Figure 2 shows the schematic diagram of a feed-forward
ANN with three layers: the input layer with nodes for seis-
mic attributes and geomechanical properties; and the output
layer has one node for permeability. With this type of ANN,
the final output (permeability) can be calculated using the
following equation:

K = f o βo + 〠
nh

k=1
wo

kf
h βh

k + 〠
ni

i=1
wh

ikxi , 12

where K is the value of permeability, nh is the number of
hidden nodes, ni is the number of input values, and xi is
the ith input variables (seismic attributes and geomechanical
properties). The symbols β, w, and f represent biases,
weights, and activation functions, respectively, with super-
script o denoting the output layer, superscript h denoting

the hidden layer, i being the index of the node in the input
layer, and k being the index of the nodes in the hidden layer.

Our initial ANN model is trained using the set of sample
dataset that contains grid cell values of initial permeability,
seismic properties, and geomechanical properties. With a
selected feed-forward ANN architecture, the back-propagation
algorithm is used to evaluate the weights and bias of the
ANN model.

2.5. Automatic History Matching the Reservoir Simulation
Model Based on Modifying Permeability Field by Calibrating
the ANN Model. In AHM approaches, optimization algo-
rithms are used to minimize an objective function that quan-
tifies the mismatches between the simulated results and the
corresponding observed values.

Typically, historical production data includes bottom-
hole pressure and production rates of various fluids mea-
sured monthly at producers. Reservoir simulations are also
often performed with oil rate constraints; i.e., the oil produc-
tion rate is set using the corresponding historical measure-
ments. Therefore, historical production data and simulated
results may differ from each other in the values of bottom-
hole pressure and water production rate of producers.

The mismatch between observation and simulation of
the well bottom-hole pressure can be quantified by the root
mean square error (RMSE) between the observed and simu-
lated results of the well bottom-hole pressure of all pro-
ducers and at all observation times:

EP =
∑NP

j=1∑
NO j

i=1 pobsj,i − psimj,i
2

∑NP
j=1NOj

1/2

, 13

where j is the index of the producer, NP is the number of the
producers, i is the index of the observation times, NOj is the

100.0000

10.0000

1.0000

1000.0000

PERMX
permeability I (MD)

Figure 22: Distribution of calibrated permeability.
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number of observation times of the jth producer, and pobsj,i
and psimj,i are the observed and simulated bottom-hole pres-
sure at the ith observed time of the jth producer.

In the same way, the mismatch between observation and
simulation of the water production rate can be quantified by
RMSE between the observed and simulated results of the
water production rate of all the producers and at all observa-
tion times:

ER =
∑NP

j=1∑
NO j

i=1 qwobs
j,i − qwsim

j,i
2

∑NP
j=1NOj

1/2

, 14

where qwobs
j,i and qwsim

j,i are the observed and simulated water
production rates of the jth producers at the ith observed time.

The value of the objective function in this study is calcu-
lated from the combination of RMSEs between simulation
and observation of both bottom-hole pressure and water
production rate as follows [40]:

E = α2P · E
2
P + α2R · E

2
R

1/2 15

The values of weighted factors αP and αR in Equation
(15) are given such that the RMSE of bottom-hole pressure
mismatch in the initial value of the objective function is
equal to the contribution of RMSE of bottom-hole pressure.

Minimizing the objective function calculated by Equation
(15) means minimizing the discrepancy between the observa-
tion and simulation of all the producers and at all observed
times. The task of integrating production data to adjust the per-
meability distribution leads to finding the minimum of the
objective function which depends on permeability distribution:

E = f K i, j, k , 16

where E is calculated by Equation (15) and K i, j, k is the per-
meability value of grid cell i, j, k .

Since the objective function represented by Equation
(16) has a very large number of variables (hundreds of

thousands of permeability values at the grid cells), it is nec-
essary to use reparameterization techniques so that the opti-
mization algorithms can be able to work efficiently. It can be
seen from Equation (12) and Equation (16) that calibration
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Figure 23: Calibrated permeability distribution histogram.

Table 2: RMSEs between observation and simulations of all
producers obtained by two models.

Model OLD Model NEW

RMSE of the bottom-hole pressure
of all producers (kg/cm2)

144.68 142.12

RMSE of the water production rate
of all producers (m3/day)

148.41 119.98

Table 3: Comparison of maximum, minimum, mean, and median
of EP,j of producers obtained by the two models.

Model OLD Model NEW

Minimum value of EP,j (kg/cm
2) 5.92 1.37

Maximum value of EP,j (kg/cm
2) 480.66 480.66

Mean value of EP,j (kg/cm
2) 110.87 101.86

Median value of EP,j (kg/cm
2) 78.83 67.75

Number of producers with
smaller EP,j

30 86

Table 4: Comparison of maximum, minimum, mean, and median
of ER,j of producers obtained by the two models.

Model OLD Model NEW

Minimum value of ER,j (m
3/day) 0.00 0.00

Maximum value of ER,j (m
3/day) 969.58 703.30

Mean value of ER,j (m
3/day) 72.90 58.62

Median value of ER,j (m
3/day) 42.38 28.90

Number of producers with
smaller ER, j

27 51
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of the permeability distribution can be performed by modi-
fying the weights and bias of the selected ANN architecture.
Therefore, history matching the simulation model by adjust-
ing the permeability distribution can be performed by find-
ing the minimum of the objective function which depends
on the weights and bias of the ANN model with selected
architecture:

E = E βo,wo
k, β

h
k ,w

h
ik , with k = 1,⋯, nh, i = 1,⋯, ni

17

The SPSA algorithm has been used in our study to min-
imize the function represented by Equation (17). Applica-
tions of SPSA algorithms to do AHM were conducted by
Gao et al. [41] and Son et al. [40]. The SPSA requires only
two evaluations of the objective function for the gradient
approximation in each iteration of the optimization
procedure, regardless of the number of parameters being

optimized. A detailed description of the algorithm can be
found in [42].

3. Application to Bach Ho FBR

3.1. Base Simulation Model and Initial Permeability
Distribution. Bach Ho is one of the largest oil fields in
Vietnam’s continental shelf located in Cuu Long Basin.
The main oil reservoir of Bach Ho is a fractured basement
containing fracture systems and vugs with a high degree of
heterogeneity. The reservoir consists of fractured/weathered
granite and granodiorite sealed by highly overpressured
shales, which act both as seal and source rock. The base sim-
ulation model of Bach Ho FBR used to test the method is a
model developed by the field operator using the black oil
ECLIPSE 100 commercial reservoir simulation software.
The size of each grid cell of the simulation model is 125m
× 125m × 50m. The simulation grid consists of 88 × 232 ×
44 grid cells in the x, y, and z directions, respectively. Among

0

50

100

150

200

250

300

350

400

0 5 10 15 20

W
BH

PH
, W

BH
P 

(k
g/

cm
2 )

Time (years)

WBHPH: P1
WBHP: P1 (model OLD)
WBHP: P1 (model NEW)

Figure 24: Comparison of bottom-hole pressure between simulations and observation for producer P1.
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Figure 25: Comparison of water production rate between simulations and observation for producer P1.
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them, 134470 grid cells are involved in flow simulation (active
cell). The grid properties as the permeability of the base simu-
lation model (initial permeability) were obtained by upscaling
them from a base geological model that has also been devel-
oped by the field operator. An illustration of the initial perme-
ability distribution is shown in Figure 3. The histogram of the
initial permeability distribution of active grid cells in reservoir
simulation model is presented in Figure 4.

The model has been history matched by the field opera-
tor using production data of 24 years, mainly by adjusting
the permeability distribution manually. This manually
history-matched model has been accepted by the field oper-
ator for forecasting future production, decision-making, and
reservoir management. In our work presented here, the ini-
tial permeability distribution was modified by the proposed

AHM methodology and workflow presented in Section 2.
All other parameters of the model remain the same as in
the manually history-matched model.

3.2. Distribution of Seismic Attributes. The distributions of
nine seismic attributes (3D curvature, cosine of phase, enve-
lope, gradient magnitude, reflection intensity, relative acoustic
impedance, RMS amplitude, sweetness, and variance) were
extracted from the base geological model of Bach Ho FBR
and upscaling to the grid of the simulation model by the Petrel
software platform. The three-dimensional distribution images
of 3D curvature, envelope, and gradient magnitude attributes
are shown in Figures 5–7. The three-dimensional distribution
images of the other six seismic attributes are presented in
Figures 8–13.
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Figure 26: Comparison of bottom-hole pressure between simulations and observation for producer P2.
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Figure 27: Comparison of water production rate and bottom-hole pressure between simulations and observation for producer P2.
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3.3. Distribution of Geomechanical Properties. To use geome-
chanical properties as inputs of the ANN model, distributions
of vertical stress, minimum horizontal stress, maximum hori-
zontal stress, pore pressure, Poisson’s ratio, Young’s modulus,
uniaxial compressive strength, and internal friction coefficient
are predicted by the method presented in Section 2.2. Firstly,
computations were performed to obtain the distributions
along the well of these geomechanical properties for 47 wells
that have enough log data for the selected empirical correla-
tions. Using Equations (1)–(8), wellbore distributions of the
geomechanical properties were estimated for these wells.
Then, the co-kriging algorithm was used to create the distribu-
tion of geomechanical properties for the entire reservoir in the
geological model. The three-dimensional distribution images
of vertical stress, Poisson’s ratio, and Young’s modulus are

shown in Figures 14–16, respectively. The three-dimensional
distribution images of the other five geomechanical properties
are presented in Figures 17–21.

3.4. Selection of Input Variables for ANN Model. The ANN
model was built with the output variable as permeability.
The input variables for the ANN model were selected from
the nine above seismic attributes and eight geomechanical
properties. The choice was made on the assessment of the
strength of the relationship between these potential input
variables and permeability. The strengths of these relation-
ships are evaluated based on calculating the Pearson correla-
tion coefficient between the grid cell values of seismic
attributes/geomechanical properties and the initial perme-
ability (Equation (9)).
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Figure 28: Comparison of bottom-hole pressure between simulations and observation for producer P3.
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Figure 29: Comparison of water production rate between simulations and observation for producer P3.
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The calculated absolute values of the Pearson correlation
coefficient between permeability and different seismic attri-
butes and geomechanical properties are shown in Table 1.
The arrangement in Table 1 is in order of the absolute value
of the Pearson correlation coefficient from highest to lowest.
It can be seen from Table 1 that most geomechanical proper-
ties have a higher absolute value of Pearson correlation coeffi-
cients compared to those of seismic attributes. This shows that
it is perfectly reasonable to include geomechanical properties
as inputs of the ANNmodel for the prediction of permeability.

As described in Section 2, a three-layer feed-forward
back-propagation ANN is built in our workflow. The output
layer of the ANN model has one node (permeability).
Seismic attributes and geomechanical properties have been
selected as inputs for the ANN model. The first criterion in

our selection is to include attributes/properties that have a
higher relationship (as quantified by the absolute value of
the Pearson correlation coefficient) with permeability. How-
ever, if the correlation between two certain attributes/prop-
erties is too high, selecting both is not necessary since their
effect on the output variable will be similar. From this point
of view, the input parameters of the ANN model have been
selected in the following order:

(1) Consider including each attribute/property in the
selection list based on the order of the absolute value
of the Pearson correlation coefficient from high to low

(2) However, if the next attribute/property has a very
high absolute value of the Pearson correlation
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Figure 30: Comparison of bottom-hole pressure between simulations and observation for producer P4.
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Figure 31: Comparison of water production rate between simulations and observation for producer P4.
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coefficient (which is quantified to be greater than 0.9)
with one of the selected attributes/properties, it is not
selected, but it is considered to select the next attri-
bute/property

With the above selection criteria, studies have been per-
formed that analyze the influence of the number of input layer
nodes and the number of hidden layer nodes to determine a
reasonable ANN configuration. Finally, the selected ANN
model was designed with an input layer of six nodes and a hid-
den layer of three nodes as presented in Figure 2. Six attributes/
properties were selected as inputs of the ANNmodel, including
vertical stress, Young’smodulus, gradientmagnitude, envelope,
Poisson’s ratio, and 3D Curvature. These selected attributes/
properties are presented in italics in Table 1.

It is noted that some attributes/properties in Table 1
were not selected even though they have a higher absolute
value of the Pearson correlation coefficient than the last
selected feature (3D curvature). Those attributes/properties
include the following:

(i) Minimum horizontal stress was not selected
because its absolute value of the Pearson correla-
tion coefficient with vertical stress (selected) is
equal to 0.9890326

(ii) Maximum horizontal stress was not selected
because its absolute value of the Pearson correla-
tion coefficient with vertical stress (selected) is
equal to 0.9823804
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Figure 32: Comparison of bottom-hole pressure between simulations and observation for producer P5.
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Figure 33: Comparison of water production rate and bottom-hole pressure between simulations and observation for producer P5.
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(iii) Uniaxial compressive strength was not selected
because its absolute value of the Pearson correla-
tion coefficient with vertical stress (selected) is
equal to 0.9186830

(iv) Pore pressure was not selected because their abso-
lute value of the Pearson correlation coefficient
with vertical stress (selected) is equal to 0.9243060

(v) Internal friction coefficient () was not selected
because its absolute value of the Pearson correla-
tion coefficient with Young’s modulus (selected)
is equal to 0.9741136

(vi) RMS amplitude seismic attribute was not selected
because its absolute value of the Pearson correla-

tion coefficients with envelope seismic attribute
(selected) is equal to 0.9795668

(vii) Sweetness seismic attribute was not selected
because its absolute value of the Pearson correla-
tion coefficients with envelope seismic attribute
(selected) is equal to 0.9966662

(viii) Reflection intensity seismic attribute was not
selected because its absolute value of the Pearson
correlation coefficients with envelope seismic attri-
bute (selected) is equal to 0.9707658

3.5. History Matching Result. The ANN model was built for
the relationship between permeability and six selected seis-
mic and geomechanical properties. As mentioned above,
the ANN has 3 layers: the input layer consists of 6 nodes
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Figure 34: Comparison of water production rate between simulations and observation for the field.
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Figure 35: Comparison of cumulative water production between simulations and observation for the field.
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corresponding to the selected seismic attributes and geome-
chanical properties; the hidden layer is designed with 3
nodes; and the output layer has 1 node corresponding to
the permeability. To reflect the nonlinear relationship, the
sigmoid function (Equation (11)) was used to transfer infor-
mation between the input layer and the hidden layer. The
identity function (Equation (10)) was used to transfer infor-
mation between the hidden layer and the output layer.

With the selected architecture, after training using the
prepared dataset in the grid cells, the obtained ANN repre-
sents the relationship between the permeability at the grid
cell (K) with the seismic attributes and geomechanical prop-
erties at the same grid cell (x1, x2,⋯, xn) in the following
form (Equation (12) when the output layer has one node):

K = f o βo + 〠
3

k=1
wo

kf
h βh

k + 〠
6

i=1
wh

ikxi 18

The task of integrating production data to correct the
permeability distribution leads to finding the minimum of
the objective function which depends on weights and bias
of the ANN model form (Equation (17) when the output
layer has one node):

E = E βo,w
o
k, β

h
k ,w

h
ik , with k = 1,⋯, 3, i = 1,⋯, 6, 19

where the value of the objective function is estimated by
Equation (15).

The observed dataset was collected from the field opera-
tor. The observed dataset includes historical monthly mea-
surements of the bottom-hole pressure and oil, gas, and
water rates of 122 producers. This dataset was used in the
MHM process performed by the field operator. The same
historical production dataset was used in the application of
our AHM methodology presented here.

As mentioned in Section 2, the SPSA algorithm was used
in our computer code to minimize the objective function
represented by Equation (19). Each evaluation of the objec-
tive function in the optimization algorithm requires an auto-
matic command line run of the ECLIPSE simulator. The
optimization algorithm achieves convergence after about 7
days of computation on a personal computer (PC) with
3.0GHz CPU Intel Core i7-9700 processor. A three-
dimensional image of the calibrated permeability distribu-
tion is shown in Figure 22. The calibrated permeability
distribution histogram of active grid cells in reservoir simu-
lation model is presented in Figure 23.

From Figures 3, 4, 22, and 23, it can be seen that the per-
meability distribution in the calibrated model is more homo-
geneous than the permeability distribution in the initial

model. In the case of FBRs, since the fluids mainly flow in
fractures, permeability measurements from conventional
core analysis are not representative of the actual effective
permeability. In widely accepted practices in Vietnam, a
fracture “halo” modeling approach ([43, 44]) based on con-
ventional seismic interpretation methods incorporating only
the larger fault systems was employed providing permeabil-
ity model [40]. This approach ignores the effect of smaller
cracks and can therefore estimate the permeability distribu-
tion with higher heterogeneity than it actually is. In addition,
changing the permeability values of some grid cells during
manual history matching can also increase the degree of
inhomogeneity of the permeability distribution. For this rea-
son, we believe that the reduction in permeability heteroge-
neity after calibration is reasonable.

The simulation model using the calibrated permeability
distribution (hereafter called model NEW) is compared with
the manually history-matched model (hereinafter referred to
as model OLD) in terms of the agreement between observed
data and simulated results. The RMSEs between the observa-
tion and simulation of the bottom-hole pressure (EP) and
water production rate (ER) of these two models are shown
in Table 2. EP and ER are calculated by Equations (13) and
(14), respectively. The calculations have been performed
with all monthly observed times of 122 producers. Table 2

Table 6: Comparison of maximum,minimum,mean, and median of
EP,j of producers in the testing period obtained by the two models.

Model OLD Model NEW

Minimum value of EP,j (kg/cm
2) 12.48 0.87

Maximum value of EP,j (kg/cm
2) 318.60 318.60

Mean value of EP,j (kg/cm
2) 59.42 47.23

Median value of EP,j (kg/cm
2) 34.81 13.16

Number of producers with
smaller EP,j

11 27

Table 7: Comparison of maximum,minimum,mean, and median of
ER,j of producers in the testing period obtained by the two models.

Model OLD Model NEW

Minimum value of ER,j (m
3/day) 0.11 0.02

Maximum value of ER,j (m
3/day) 723.43 383.07

Mean value of ER,j (m
3/day) 145.83 112.46

Median value of ER,j (m
3/day) 83.63 71.09

Number of producers with
smaller ER, j

13 14

Table 5: RMSEs between observation and simulations of all producers in the testing period obtained by two models.

Model OLD Model NEW

RMSE of the bottom-hole pressure of all producers (kg/cm2) 84.48 83.72

RMSE of the water production rate of all producers (m3/day) 215.46 158.43
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shows that RMSEs of both water production rate and bottom-
hole pressure of model NEW are lower than those of model
OLD. The improvement is greater in the case of water produc-
tion rate in comparison with the case of bottom-hole pressure.

The values of EP in Table 2 indicate that model NEW is
statistically better in matching with observed bottom-hole
pressure compared to model OLD. The mismatch between
observation and simulation of bottom-hole pressure can be
quantified for each producer via RSME between the observed
data and the corresponding simulated results for that producer
as follows:

EP,j =
∑

NO j

i=1 pobsj,i − psimj,i
2

NOj

1/2

, 20

where EP,j is RSME between observation and simulation of
bottom-hole pressure of jth producer, NOj is the number of

observation times of the jth producer, and pobsj,i and psimj,i are
the observed and simulated bottom-hole pressure at the ith
observation time of the jth producer.

Table 3 shows the maximum, minimum, mean, and
median values of EP,j of all producers obtained by the two
models. It can be seen that the minimum and median values
of EP,j of model NEW are all smaller than the corresponding
values of model OLD. The maximum and mean values of
EP,j of the two models are equivalent. It also shows that
the model NEW gives a smaller RSME of bottom-hole
pressure in a larger number of producers compared to
model OLD.
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Figure 37: Comparison of water production rate between simulations and observation in the testing period for producer P1.
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Figure 36: Comparison of bottom-hole pressure between simulations and observation in the testing period for producer P1.
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The values of ER in Table 2 indicate that model NEW is sta-
tistically better in matching with observed water production
compared to model OLD. The mismatch between observation
and simulation of water production rate can also be quantified
for each producer via RSME between the observed data and the
corresponding simulated results for that producer as follows:

ER,j =
∑

NO j

i=1 qwobs
j,i − qwsim

j,i
2

NOj

1/2

, 21

where ER,j is RSME between observation and simulation of
water production rate ofjth producer, NOj is the number of

observation times of the jth producer, and qwobs
j,i and qwsim

j,i

are the observed and simulated water production rate at
the ith observation time of the jth producer.

Table 4 shows the maximum, minimum, mean, and
median values of ER,j of the two models. It can be seen that
the maximum, mean, and median values of ER,j of model
NEW are all smaller than the corresponding values of model
OLD. It also shows that model NEW gives a smaller RMSE
of water production rate in a larger number of producers
compared to model OLD.

When comparing the values of EP,j and ER,j obtained
from the two models of all producers, it can also be seen that
the number of producers having better historical matches of
both water production rate and bottom-hole pressure in
model NEW is superior. A total of 5 producers have RMSEs
of both water production rate and bottom-hole pressure
obtained from model OLD which is smaller in comparison
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Figure 38: Comparison of bottom-hole pressure between simulations and observation in the testing period for producer P2.
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Figure 39: Comparison of water production rate and bottom-hole pressure between simulations and observation in the testing period for
producer P2.
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with that of model NEW. Meanwhile, model NEW has
smaller RMSEs of both water production rate and bottom-
hole pressure compared with model OLD at a total of 42
producers.

Comparisons of historical matching for each producer
between the two models can also be observed on time plots
of water production rate and bottom-hole pressure. Due to
the large number of producers, only ten plots are shown
for five producers with a large cumulative liquid production
in Figures 24–33. Similar figures for other producers have
also been plotted. From Figures 24–33 and the comparison
plots for other producers, it is also seen that the model
NEW gives the agreement of both water production rate
and bottom-hole pressure better in a larger number of pro-
ducers in comparison with that of model OLD.

The simulated results and observed data for total field
water production rate and cumulative water production are
presented in Figures 34 and 35. It can be seen from these fig-
ures that model NEW gives the simulated results of the field
water production that match the observed values better than
the simulated results of model OLD.

Combining the results presented above, it can be said
that, with both comparisons, through the RMSE values and
the observations on the plots, model NEW gives simulated
results that are more consistent with the observed data in
comparison with model OLD. The history matching time
to get model NEW is also much shorter than that of the
model OLD (days versus months). This demonstrates the
effectiveness of the AHM method and the reparameteriza-
tion technique proposed here.
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Figure 40: Comparison of bottom-hole pressure between simulations and observation in the testing period for producer P3.
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Figure 41: Comparison of water production rate between simulations and observation in the testing period for producer P3.
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3.6. Testing of Prediction. To test the predictive ability of the
models after history matching, numerical simulations were
performed for the next two years and compared with the
observed data updated by the field operator. Only 58 pro-
ducers remained in operation during these two years. The
observed dataset for testing includes historical monthly mea-
surements of oil, gas, and water rates for all 58 producers.
However, bottom-hole pressure measurements were made
with only 34 producers.

Model NEW is compared in terms of the agreement
between observed data and simulated results in the two-
year testing period. The RMSEs between the observation
and simulation of the bottom-hole pressure (EP) and water
production rate (ER) of these two models are shown in
Table 5. The calculations have been performed with all

monthly observed times of all producers having measure-
ment data in the testing period. Table 5 shows that RMSEs
of both water production rate and bottom-hole pressure of
model NEW are lower than those of model OLD. Similar
to the history matching period, the improvement in the test-
ing period is also greater in the case of water production rate
in comparison with the case of bottom-hole pressure.

The values of EP in Table 5 indicate that model NEW is
statistically better in testing of prediction with observed
bottom-hole pressure compared to model OLD. The mis-
match between observation and simulation of bottom-hole
pressure production rate can also be quantified for each pro-
ducer via RSME between the observed data and the corre-
sponding simulated results for that producer (Equation
(20)). Table 6 shows the maximum, minimum, mean, and
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Figure 42: Comparison of bottom-hole pressure between simulations and observation in the testing period for producer P4.
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Figure 43: Comparison of water production rate between simulations and observation in the testing period for producer P4.
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median values of EP,j of producers having bottom-hole pres-
sure in the testing period obtained by the two models. It can
be seen that the minimum, mean, and median values of EP,j
of model NEW are all smaller than the corresponding values
of model OLD. The maximum values of EP,j of the two
models are equivalent. It also shows that the model NEW
gives a smaller RSME of bottom-hole pressure in a larger
number of producers compared to model OLD.

The values of ER in Table 5 indicate that model NEW is
statistically better in testing of prediction with observed water
production compared to model OLD. Table 7 shows the max-
imum, minimum, mean, and median values of ER,j of the two
models. It can be seen that the maximum, minimum, mean,

and median values of ER,j of model NEW are all smaller than
the corresponding values of model OLD. It also shows that
model NEW gives a smaller RMSE of water production rate
in a larger number of producers compared to model OLD.

Comparisons of predictive ability for each producer
between the two models can also be observed on time plots
of water production rate and bottom-hole pressure. Due to
the large number of producers, only ten plots are shown
for five producers with a large cumulative liquid production
in Figures 36–45. Similar figures for other producers have
also been plotted. From Figures 36–45 and the comparison
plots for other producers, it is also seen that the model
NEW gives the agreement of both water production rate
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Figure 44: Comparison of bottom-hole pressure between simulations and observation in the testing period for producer P5.
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Figure 45: Comparison of water production rate and bottom-hole pressure between simulations and observation in the testing period for
producer P5.
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and bottom-hole pressure better in a larger number of pro-
ducers in comparison with that of model OLD.

The simulated results and observed data for total field
water production rate and cumulative water production in
testing period are presented in Figures 46 and 47. It can be
seen from these figures that model NEW gives the simulated
results of the field water production that match the observed
values better than the simulated results of model OLD.

Combining the results presented above, it can be said
that, with both comparisons, through the RMSEs values
and the observations on the plots, model NEW gives simu-
lated results that are more consistent with the observed data
in testing period in comparison with model OLD.

4. Conclusion

This study has proposed a new automatic history matching
(AHM) methodology and workflow for adjusting the

permeability field of FBR’s simulation models. The proposed
AHM workflow uses a reparameterization technique that
allows 3D seismic and well log data to be integrated when his-
tory matching production data. In this reparameterization
technique, an artificial neural network (ANN) model is
developed with permeability as output. Seismic attributes
and geomechanical properties that are highly correlated with
permeability are selected as input for the ANN model. The
grid cell values of initial permeability, selected seismic attri-
butes, and selected geomechanical properties are used to build
the ANNmodel. Calibration of the permeability distribution is
then performed by correcting the ANNmodel to minimize the
difference between simulated results and observed data. Cor-
rection of the ANNmodel is performed using an optimization
algorithm to modify its weights and bias. The proposed AHM
methodology has been applied to calibrate the permeability
distribution for a simulation model of Bach Ho FBR of
Vietnam. With the execution time tens of times shorter, the

0

2000

4000

6000

8000

10000

12000

24.69 26.69

W
W

PR
H

, W
W

PR
 (S

TB
/d

ay
)

Time (years)
25.19 25.69 26.19

FWPRH
FWPR (model OLD)
FWPR (model NEW)
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proposed AHM method gave a simulation model with better
historical matching and better prediction results than the
model obtained by the traditional MHM method.

The application results have shown the advantages and
applicability of the proposed AHM method:

(i) In the proposed method, the permeability distribu-
tion is not modified based solely on the production
data but is also constrained to the static data. This
approach partly preserves the geological consistency
of the distribution obtained after calibration

(ii) The method is very fast, easy to implement, and
suitable for large reservoirs

(iii) The method requires only traditional 3D seismic,
well log, and production data

(iv) It can also be seen that the proposed method can be
used to adjust not only the permeability field but also
the porosity field for FBRs. It is also expected to be
suitable for other types of reservoirs under the similar
data condition that core sample measurements are
limited or not reliable and only traditional 3D seis-
mic, well log, and production data are available
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FBR: Fractured basement reservoir
FWPR: Simulated field water production rate
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