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Broken rock masses with the complexity and concealment widely exist in nature such as underground mine, collapse column, and
zone. It is extremely difficult to model fracture networks and to simulate water diffusion for broken rock masses. To explore a
reasonable fracture network model for broken rock masses, a new method for modeling a two-dimensional planar fracture
network model is proposed in this paper. It includes packer test, empirical relationship, fractal width description, and
symmetric expansion modeling. Then, the fluid-solid coupling is used to simulate the diffusion properties of water in the two-
dimensional planar fracture network model. It is found that the diffusion velocities vmax and vmin do not appear in the fracture
widths λmax and λmin. It indicates that the fracture widths λmax and λmin in the fracture network model for broken rock mass
have little impact on the diffusion velocity. Furthermore, the fracture distribution pattern in the fracture network model is an
important factor affecting the diffusion velocities vmax and vmin. The simulation results of water diffusion in the currently
proposed model are almost consistent with the actual process of the packer test. Also, the validity of the two-dimensional
planar fracture network model is verified by comparing the simulation results with the existing research.

1. Introduction

Severe accidents in construction periods, such as collapses
and landslides, are easily caused by broken rock masses,
severely threatening engineering safety. Grouting is one of
the most common and effective methods for reinforcing bro-
ken rock masses. The grouting technique and grouting mate-
rial are crucial factors for determining the grouting
reinforcement effects [1–4]. However, the concealment of
grouting objects challenges the verification and evaluation
of the grouting reinforcement effect. Thus, various methods,
such as laboratory tests, field tests, and numerical simula-
tions, are used to study the grouting reinforcement effect
and the diffusion range of grouting fluid.

Fractured rock exists widely in geological engineering,
such as in collapse zones, collapse columns, and under-
ground mines. Randomly distributed existing fractures have
a negligible effect on seepage characteristics [5, 6]. In partic-
ular, the randomly distributed fractures in a broken rock
mass dominate the diffusion characteristics. In this respect,

Alireza and Tayfun [7] proposed a correlation to predict
the effective fracture network permeabilities for natural frac-
ture. The effective fracture network permeability is based on
2-dimensional fracture. For fractal dimensions, the scanning
line and intersection points of the natural fracture are two
critical factors but ignoring fracture width. These randomly
distributed fractured areas form a connected fracture net-
work in a two-dimensional plane, which provides the moti-
vation to study fracture networks in two dimensions, as in
this work.

Fractures in rocks are disordered, showing statistically
self-similar and fractal characteristics [8–13]. Torabi and
Berg [14] stated in their comprehensive review the scaling laws
on length distributions. Also, Velde et al. [15] and Vignes-
Adler et al. [16] concluded that the distribution of rock frac-
tures can be characterized by fractal dimension. Therefore, it
is reasonable to use fractal dimension to show the characteris-
tics of rockmass fractures. Besides,Wang et al. [17] established
a fractal model according to a relationship between the macro-
structural parameters and microstructural parameters of a

Hindawi
Geofluids
Volume 2024, Article ID 5515938, 17 pages
https://doi.org/10.1155/2024/5515938

https://orcid.org/0000-0003-4743-1177
https://orcid.org/0000-0002-2030-4699
https://orcid.org/0000-0001-6252-0448
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2024/5515938


fracture network. The proposed fractal model for the Bingham
fluids concluded that the initial pressure gradient decreases
with increasing porosity of matrix material, fractal dimension
for mother diameters, and permeability. Their research hints
that the initial pressure gradient of the proposed fractal model
is determined by macroscopic structural parameters. Likewise,
Zheng and Yu [18] investigated gas diffusion characteristics of
porous media using randomly distributed fractal-like tree net-
works in the matrices. They proposed that the gas permeability
is a function of structural parameters of dual-porosity media,
which does not contain any empirical coefficients. In particu-
lar, Miao et al. [19] proposed a fractal-based model that is a
function of the fractal dimension D for a broken rock mass.
InMiao et al.’s research, the fractal dimensionD is determined
by many factors, such as fracture area, area porosity, fracture
density, the maximum fracture length, aperture, the facture
azimuth, and facture dip angle, and their model validated the
available numerical simulations.

Moreover, experimental analyses and numerical simula-
tions of the grouting reinforcement for broken rock masses
have been presented by some researchers [20–24]. Lange
and Van Geel [25] constructed a new experimental model
to analyze and evaluate the effectiveness of the fluid pressure
gradient and mass flux in a surrounding rock mass with two
fractures. Nishimura et al. [26] studied microgrouting tech-
nology. Their research results show that the stress changes
depend on the depth and the interaction between adjacent
grouting piles, which provides a research idea for grouting
stress coupling simulation in the current paper. Du et al.
[27] analyzed the variations of the pressure characteristics
during the grouting process by simulating the compression
grouting process in a geotechnical centrifuge. The sealing
efficiency increases with high fractal dimension while near
the grouting source. Conversely, the sealing efficiency
decreases with low fractal dimension. Kvartsberg and Frans-
son [28] constructed a model of a set of random water-
conducting fissures according to hard rock test data and
the characteristics of water-conducting fissures. They ana-
lyzed the diffusion characteristics of grouting fluid through
numerical simulation. Zhou et al. [29] established a mechan-
ical model of the interaction between a fully grouted bolt and
the surrounding rock. They proposed a numerical simula-
tion analysis of the fully grouted bolt considering the multi-
ple yield conditions of the anchor element. These studies
verified the effectiveness and reliability of the numerical sim-
ulation method through static experiments of grouted bolts.

Numerical simulation can be seen as an auxiliary
method with which to effectively study grouting reinforce-
ment. In the existing numerical simulation methods of
grouting reinforcement, a geometric model is constructed
by setting the permeability rate of the medium. Lei et al.
[30] proposed a hybrid finite-discrete element model to sim-
ulate and analyze fluid flow in fractured geological media. In
their hybrid finite-discrete element model, the simulation
of fluid flow in fractured rocks is performed in an equiva-
lent permeability. Wang et al. [17] proposed that stochastic
fracture network model can be used to estimate hydraulic
conductivity tensor for fractured rocks and to simulate
fluid flow.

However, the geometric models constructed in above
way can hardly be effectively verified by using rock engineer-
ing. The spatial distribution and shape of fractures in rock
masses have great uncertainty and particularity, mainly
due to irregular fracture terminations. The complexity and
concealment of broken rock masses causes a bottleneck in
the construction of a reasonable geometric model. There-
fore, building a reasonable geometric model of a broken rock
mass is critical for simulating the flow and diffusion of the
grouting fluid. Especially for solving engineering problems,
the accuracy of geometric models is more important.
According to packer test data and existing empirical rela-
tionship, a new method for constructing the geometric
model of a broken rock mass is proposed in this study.
The fractal dimension in the currently new method is carried
out in using the maximum and minimum fracture widths.
Finally, the constructed geometric model is realized by
numerical simulation, and the simulation results are in good
agreement with the existing research.

2. Packer Test

2.1. Engineering Background. A specific range of sliding
fracture zones was exposed in an underground mine of the
Fankou Lead-Zinc Mine due to collapse [24]. Fankou
Lead-Zinc Mine is an underground mine located in
Shaoguan City, Guangdong Province, China. Because of
poor geological conditions, the mine adopts the room and
pillar method to mine lead-zinc ore at intervals through
blasting. The engineering background in detail was stated
by Wen et al.’s research [24]. Due to unreasonable excava-
tion sequence and untimely filling, as a result, the filling
body on both sides of 0# stope slides to the 0# goaf and
the roof of the 0# stope collapses. The collapse range and slip
area are shown in Figure 1.

In Figure 1, the black-dotted line is the slip line detected
according to the borehole investigation. The magenta color
represents the slip line obtained from the numerical simula-
tion analysis. The direction of the red arrow is the slip direc-
tion; that is, the filling body on both sides of 0# stope filled
the previously empty area of the stope. The scope of the
collapse area and the approximate slip surface position is
preliminarily predicted through drilling and numerical sim-
ulation analysis, as shown in Figure 2. The numerical simu-
lation analysis of the mining area shows that the strain in the
slipped fracture zone is quite different. Moreover, according
to the field drilling and coring results, the rock mass near the
slip surface is broken, and there is no intact core, as shown
in Figure 3.

2.2. Packer Test. To enhance the bearing capacity and stabil-
ity of the slip zone, grouting reinforcement must be carried
out in this area. How can the diffusion range of grouting
be determined? Numerical simulation provides an effective
method for the flow and diffusion of grouting fluid. For a
fractured rock mass, the key of this study is how to build a
geometric model for the broken rock mass with a slip zone
using numerical simulation. Before grouting reinforcement
in this area, a packer test is carried out to obtain the
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permeability rate of the broken rock mass. More impor-
tantly, the packer test also provides an essential basis for
building the geometric model of numerical simulation.

The packer test is an in situ test [31]. The water is
injected into the borehole at the high pressure to understand
the fracture development and permeability of the rock

mass according to the calculation of water absorption.
Also, the packer test is a method frequently used to evaluate
and judge the permeability of rock masses. In this study, the
packer test is carried out to measure the permeability rate of
the broken rock mass. The packer test is divided into two
main stages.
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Figure 2: z direction strain contour plot of the slip surface in the collapse area.
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The first stage is called the pretest stage, which is neces-
sary to set the test pressure. Then, the initial pressure slowly
increases to the set test pressure and is maintained for 30
minutes. In the case of a pressure drop during the initial
pressure increases, supplementary pressure is needed, but
the extra pressure shall not exceed the test pressure. Mean-
while, it is necessary to check whether there is water leakage
at the pipe interface and accessories.

The next stage is the primary test stage. When the pres-
sure reaches the test pressure, the water injection is stopped
and maintained for 15 minutes. If the pressure drop is
within the allowable threshold range and remains constant
for 30 minutes and there is no water leakage, the packer test
is deemed to be successful.

The test length of the packer test hole in this study is 8m,
and the test pressure is 0.8MPa. A schematic diagram of the
packer test device is shown in Figure 4. After the water block-
ing plug reaches the predetermined hole position, the water
plug is testedwith themaximumpressure to detect water leak-
age. Then, the pressure gauge and flow meter data are
recorded simultaneously. The reading on the pressure gauge
is recorded once every 10minutes, and the pressure is kept sta-
ble. The flow test results must meet the following conditions:

(1) For four consecutive records, the differences between
maximum and minimum values are less than 10% of
the minimum final values

(2) When the flow decreases gradually, the recorded
values for four consecutive times are less than
0.5 L/min

(3) When the flow increases gradually, there is no
increasing trend for four consecutive records

The results of the packer test are expressed as unit water
absorption, that is, water permeability, which is described as
follows:

q = Q0
L0P0

, 1

where q is the permeable rate (Lu), Q0 is the flow per unit
time (L/min), L0 is the length of the packer test section
(m), and P0 is the tested pressure (MPa).

As shown in Figure 4, the low-pressure water at 0.8MPa
is injected into the test hole at 0.8MPa. When water over-
flows from the outlet hole, the water pump stops working
and records the injected water volume, and the water pres-
sure of the outlet hole is regarded as 0MPa. The test results
are listed in Table 1. The results of RQD value indicate that
the rock mass in study area is extremely broken.

3. Plane Model Construction Scheme of a
Broken Rock Mass

The packer test in the broken rock mass is carried out to
measure the permeability rate. According to the existing
experimental research, an empirical relationship between
the osmotic coefficient and fractal dimension was established
by Wu [32]. Thus, the fractal dimension of the broken rock
mass is used to build an equivalent fracture model. The con-
structed model is used to analyze the simulated water flow
characteristics and diffusion range. The reliability of the
model is determined by performing the numerical simula-
tion. The construction and validation framework of the cur-
rent model is shown in Figure 5.

3.1. Fractal Theory of a Fractured Rock Mass. Randomly dis-
tributed fractures with irregular sizes are common in rock
masses. The existing research concluded that the fractured
rock masses show fractal characteristics [33–35]. Thus, the
fractal dimension is used to quantitatively characterize the
fracture characteristics of a fractured rock mass, which pro-
vides a credible research basis for establishing a geometric
model consistent with the rock structure observed in field
practice.

For the fractal dimension of the broken rock mass, there
are two hypotheses as follows:

(1) The fractures of the broken rock mass are connected
in the three-dimensional space

(2) The distribution and scale of fractures in-plane or in
the three-dimensional space fit the fractal scale

In the study area, one area is regarded as a representative
unit area (RUA). The relationship between the cumulative
number of fractures and the plane width of fractures in the
RUA can be expressed with the following [19, 36].

N L ≥ λ = λmax
λ

Df

, 2

where L represents the fracture length, λ represents a thresh-
old fracture length, N represents the total number of frac-
tures with a length greater than or equal to λ, λmax
represents the maximum value of fracture length in the
RUA, and Df represents the fractal dimension of the fracture
length (λ) distribution. The Df value indicates the unifor-
mity of the fracture length. That is, the greater the value of
Df is, the worse the uniformity. The Df fluctuates from 0
to 2 in the two-dimensional plane space. In the three-
dimensional space, the value range is expressed as 0 to 3.

(a)

(b) (c)

Figure 3: Broken drill cores ((a–c) the rock cores of different
boreholes).
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After differentiating λ in Eq. (2), Df can be expressed as
shown in the following:

−dN λ =Dfλ
Df
maxλ

− Df +1 dλ 3

In porous media, Yu and Li [36] proposed a unified
model, as shown in the following:

Df = de +
ln ε

ln rmax/rmin
, 4

Table 1: The test results of packer test.

No. Deep (m) RQD value (%) Injection pressure (MPa)
Interval between water inlet

and water outlet (m)
Permeable rate (Lu)

637-YK1 9.5 45.2 0.816 8.1 115.6

649-YK1 8.9 39.7 0.796 7.9 116.7

657-YK1 9.3 41.8 0.793 8.3 113.1

667-YK1 9.6 46.3 0.80 8.1 116.2

673-YK1 9.1 53.1 0.802 8.1 113.4

Water
pump

Flow
gauge

Pressure gauge

Three way flow
regulating valve

Return pipe

Water source tank

Water blocking plug

Water blocking plug

Floral tube

Figure 4: Packer test device diagram.
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Figure 5: The construction and validation framework of the current model.

5Geofluids



where ε is the effective porosity and the ratio rmax/rmin is
derived from an assumption that the pores are regarded as
the form of squares that are self-similar in terms of sizes
[36]. However, it is redefined in Miao et al.’s [19] research
that rmin represents the minimum value of fracture lengths,
rmax represents the maximum value of fracture lengths, de
is the Euclidian dimension, de is 2 in two dimensions, and
de is 3 in three dimensions.

Fractures in broken rock masses can be regarded as
pores. As an originality of the paper, the fracture lengths
rmin and rmax in Eq. (4) is refined by fracture widths λmin
and λmax. Thus, Eq. (4) is also applicable to fracture in a rock
mass. Eq. (4) can be rewritten as

Df = de +
ln ϕc

ln λmax/λmin
, 5

where ϕc represents the effective porosity of fractures in a
rock mass, which is a ratio of the projected area of the frac-
tures in the RUA to the total projected area of the RUA.

According to Eq. (3), the projected area A0p of fractures
in the RUA can be expressed as

A0p = −
λmax

λmin

a ⋅ λ ⋅ dN λ = βDfλ
2
max

de −Df
1 − λmin

λmax

de−Df

,

6

where a is the effective width of the rupture and β is a ratio
of a to λ [14, 35].

The plane projection of fractures in the broken rock
mass can be regarded as complete connectivity in the two-
dimensional plane model. Therefore, Miao et al. [19] had
proposed that the porosity ϕa of fractures can be redefined
with the following:

ϕa =
A0p
A0

= βDfλ
2
max

A0 de −Df
1 − λmin

λmax

de−Df

, 7

where A0 represents the total area of the RUA.
Furthermore, based on Eq. (5), the porosity ϕa of frac-

tures can be expressed as

ϕa =
λmin
λmax

de−Df

, 8

where de = 2 (or 3) in two (or three) dimensions.
Since the fractured rock mass fractures are almost con-

nected, the broken state of the three-dimensional fractured
rock mass is also regarded as connected when projected to
a two-dimensional plane. In this case, fracture width is the
key factor affecting water flow diffusion in the packer test.
In numerical simulation, for opening fracture, the fracture
width is a crucial factor in the process of fluid diffusion,
especially the Poiseuille flow of fluids in narrow opening
fracture [37]. In this research, thus, the λmax and λmin in

Eqs. (6)–(8) are regarded as the maximum and minimum
fracture widths.

In this study, the porosity ϕc of fractures is applied in the
plane model. Therefore, de = 2 is employed in Eq. (5). Also,
we can obtain porosity based on Eq. (7) and Eq. (8). Then,
the two-dimensional plane model of the broken rock mass
is generated by setting the λmax and λmin values. In conclu-
sion, it is feasible to establish a geometric model with a spe-
cific fracture porosity that is consistent with the fractal
dimension.

3.2. Construction of a Two-Dimensional Model of a Broken
Rock Block Mass

3.2.1. Empirical Relationship between the Fractal Dimension
and Osmotic Coefficient. According to a geometric model
of the stable structure and an irregular fissure structure
model, Wu [32] proposed an empirical relationship between
the fractal dimension and osmotic coefficient. He also
researched the correlation between the fractal dimension of
actual fractures and permeability in the rock mass.

According to the existing experimental data [32], the
empirical relationship between the osmotic coefficient K
and fractal dimension Df is better fitted by a cubic polyno-
mial, as shown in Figure 6. From Figure 6, we can obtain
an empirical relationship between fractal dimension Df
and osmotic coefficient K , as shown in the following:

Df = ‐3 5832K3 + 3 2225K2 − 1 0922K + 1 8975 9

According to the Technical Code for High-Pressure Jet
Grouting of Water Conservancy and Hydropower Projects
for China, the transformation relationship between perme-
able rate q and the osmotic coefficient K is given by

K = q × 1 3 × 10−5cm/s 10

Figure 6 shows the results of the experimental data. Miao
et al. [19] had derived the analytical relationship between
fractal dimension and permeability based on the cubic law.
In Figure 6, when the fractal dimension fluctuates between
1.76 and 1.90, the empirical relationship is good consistency
with derived analytical model of Miao et al. [19].

3.2.2. Construction of a Plane Model of the Broken Rock
Mass. All fractures in the broken rock mass are considered
to be connected. For a section is selected in the study area
of a broken rock mass, all fractures on the section are
assumed to be connected. In these cases, the studied area
of the broken rock mass is assumed to consist of countless
sections. Then, the diffusion and flow of water in each sec-
tion are approximately consistent.

Taking the water injection hole as the central axis, the
water radially diffuses evenly in the periphery of the broken
rock mass in a cylinder mode. The diffusion radius is uni-
formed, as shown in Figure 7. In the process of a packer test,
the pore characteristics of the broken rock mass with water
pressure holes are assumed to be centrosymmetric and con-
sistent or similar.
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Figure 7 supports the assumption that the water pressure
on the borehole wall is uniform. The water pressure flowing
from the hole wall into the broken rock mass is the test pres-
sure. Additionally, the fractures of the broken rock mass are
connected in the three-dimensional space, and they are also
connected to project the connected fractures on the two-
dimensional plane.

For the model of an irregularly broken rock mass, it is
difficult to ensure that the fracture surfaces remain parallel.
Thus, according to the statistical principle, the nonunifor-
mity coefficient of the fracture is introduced into this simu-
lation calculation, and its expression is as shown in the
following:

c = λmax − λmin
x ×N

, 11

whereN represents the number of fractures in the RUA, x rep-
resents the average value of the fracture aperture, and c repre-
sents the nonuniformity coefficient of the fracture, which is a
ratio of the total fracture area to the fracture path length.

Since the nonuniformity coefficient reduces the connec-
tivity of fractures, Eq. (7) is rewritten as

ϕa =
A0p
A0

= c
βDfλ

2
max

A0 de −Df
1 − λmin

λmax

de−Df

12
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For the broken rock mass, the construction of a two-
dimensional plane model meets the following assumptions:

(1) The distribution of fractures in the study area is
approximately the same as that in the three-
dimensional space. That is, the fractal dimension is
the same

(2) The fracture scale accords with the fractal geometry
feature. The fractures in a small area are nonuni-
form, but the whole area is approximately
homogeneous

According to the physical meaning of the fracture poros-
ity, the generation and extension of a two-dimensional geo-

metric model of a broken rock mass are shown in Figure 8.
The fracture parameters of the model unit in Figure 8 is
listed in Table 2 (a) and (b). In particular, those data are
the raw data of the model unit. Then, the model unit of
Figure 8 is extended asymmetrically. The model unit of
Figure 8 is magnified, as shown in Figure 9. Figure 9 shows
the maximum and minimum fracture apertures. In the
model unit, the area of fracture opening can be obtained as
shown in the following:

sc = sa − sr, 13

where sc is the area of the fracture opening, sa is the area of a
model unit, and sr is the scope of the block in the model unit.

Model unit First extension Second extension Third extension

Figure 8: Geometric model of a two-dimensional plane of the in situ broken rock mass.

Table 2: Fracture parameters of the broken rock mass in the unit area. (a) Projected area of fractures per unit area. (b) Fracture trace length
per unit area.

(a)

No. 1 2 3 4 5 6 7 8 9 10 11 12

Projected area (m2) 0.0876 0.0218 0.0017 0.0585 0.063 0.0346 0.0111 0.0024 0.0052 0.0609 0.0469 0.0249

No. 13 14 15 16 17 18 19 20 21 22 23 24

Projected area (m2) 0.0055 0.0241 0.0318 0.0166 0.0107 0.0199 0.0103 0.009 0.0103 0.0178 0.0206 0.0484

No. 25 26 27 28 29 30 31 32 33 34 Total

Projected area (m2) 0.0198 0.0198 0.0733 0.0049 0.0462 0.0338 0.0205 0.0119 0.0494 0.0147 0.9379

(b)

No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Trace length (m) 0.26 0.05 0.07 0.32 0.17 0.27 0.31 0.32 0.18 0.09 0.13 0.11 0.04

No. 14 15 16 17 18 19 20 21 22 23 24 25 26

Trace length (m) 0.33 0.12 0.18 0.1 0.17 0.08 0.15 0.09 0.15 0.11 0.12 0.11 0.17

No. 27 28 29 30 31 32 33 34 35 36 37 38 39

Trace length (m) 0.19 0.12 0.18 0.08 0.08 0.13 0.16 0.09 0.17 0.17 0.19 0.08 0.36

No. 40 41 42 43 44 45 46 47 48 49 50 Total

Trace length (m) 0.15 0.25 0.05 0.32 0.2 0.15 0.4 0.26 0.14 0.15 0.03 8.3
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The average value of the effective fracture aperture in the
model unit can be expressed via

λ = sc
La

, 14

where λ is the mean value of the fracture aperture and La is
the whole trace length of the fracture in the model unit.

4. Modeling and Simulation Analysis

On the basis of Yu’s fractal dimension [19, 36] on fracture
length, in this paper, the fracture width is used to express
the fractal dimension for the opening fracture of broken
rock mass. And the geometric model of the two-
dimensional plane fracture network is generated. The proce-
dures for generating the two-dimensional fracture network
model are carried out in Section 3. First, the packer test of
the broken rock mass is carried out. Second, the fractal
dimension of the fractured rock mass is obtained according
to the empirical relationship between the permeability rate
and the fractal dimension. Of course, the maximum and
minimum fracture widths are also placed in the model.
Based on above parameters, the symmetrical expansion
method is used to generate the plane model of an irregular
fracture network of the broken rock mass. Finally, the proce-
dure of the packer test is simulated in view of the established
plane model. The processes of model generation are as
follows:

(1) The permeability rate is obtained from the broken
rock mass packer test

(2) The empirical relationships of Eq. (9) and Eq. (10)
are employed to obtain the osmotic coefficient and
fractal dimension

(3) Eqs. (6)–(8) are used to determine these fracture
parameters, which are used to generate a geometric
plane model

(4) Finally, the geometric plane model is imported into
simulation software to simulate the water diffusion
procedures

4.1. Plane Fracture Model of Fractured Rock Mass. The per-
meability measured by the field packer test is the primary
parameter, and the fractal dimension, fracture degree, and
λmax and λmin values are obtained according to Eqs.
(6)–(8). In this regard, the two-dimensional plane model of
a fracture network in the fractured rock mass is generated
in numerical simulation software, as shown in Figure 10.
Under constant initial pressure, the steady-state method is
employed to simulate the flow state and diffusion range of
water in the fracture model.

Two different fracture forms are shown in the current
model. The fragmentation of the broken rock mass is con-
siderable, the fractures formed are sparse, and the width
of fractures is significantly larger. The other fracture form
is that the fragmentation of broken rock is small, and the
formed fractures are dense, but the fracture width is
small.

The model size is determined according to the actual
size of the field packer test. In the geometric model of
Figure 10, the mean fracture width λ of the fracture width
can be obtained by a ratio of the fracture area to the frac-
ture trace length. The fracture area is different between the
model area and the rock block area. AutoCAD can be
used to compute the rock block area. In this model, the
λ value is 7.5mm, and the λmax and λmin values are listed
in Table 3. The fractal dimension and λ value is constant,
and the geometric model is constructed according to the
actual size of Table 3.

A difference of fracture distribution exists between the
current plane geometric model and the in situ broken rock
mass of the packer test. Therefore, fluid boundary conditions
are set symmetrically to ensure the dimensional consistency
between the current plane geometric model and the fracture
morphology of in situ broken rock mass. Figure 10 shows
that the fluid boundary conditions include an inlet, outlet,
and symmetrical boundary. The inlet boundary defines an
initial water pressure of 0.8MPa. The water pressure of the
outlet boundary is 0MPa. Additionally, the upper and lower
boundaries of the model of Figure 10 are defined as symmet-
rical boundaries to save computational memory and
improve computational efficiency. Furthermore, the defini-
tion of an asymmetrical boundary reduces the dimensional
difference between the model and packer test scenarios.

4.2. Fluid-Solid Coupling Model. According to Newton’s law
of viscous fluid movement between plates [38], the shear
stress in the x direction of the surface of the fluid microele-
ment (FME) can be expressed as

τxy = μ
∂vx
∂y

+
∂vy
∂x

, 15

where τxy represents the shear stress in the x direction of the
FME, μ represents the viscosity of viscous fluid, and vx rep-
resents the flow rate in the x direction. According to the
reciprocal theorem of shear stress, it can be concluded τxy
= τyx. Otherwise, the FME will accelerate its rotation. In
fact, the rotation of the FME only occurs in the separation

𝜆max

𝜆min

Figure 9: Plane geometric model of different λ values in the local
area.
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process of the boundary layer. Based on the above, the shear
stress in y direction and z direction can also be expressed as

τyz = τzy = μ
∂vy
∂z

+ ∂vz
∂y

,

τxz = τzx = μ
∂vx
∂z

+ ∂vz
∂x

16

Thus, the viscous force of the FME in the x direction can
be expressed as

f x = υ∇2vx + υ
∂
∂x

∇·ν = υ∇2vx , 17

where υ is the ratio of μ to ρ. The continuity equation of
incompressible fluid is ∇·ν = 0, where ν is the velocity tensor
in x direction. Then, the viscous force of the FME in y and z
directions can be expressed in the same way. In this regard,
the viscous force of the FME is υ∇2ν. The Navier-Stokes
equation in vector form is expressed as

Dν
Dt

= ‐ 1
ρ
∇ρ + μ

ρ
∇2 · ν,

∇·ν = 0
18

In the packer test, the pressure increases slowly until it
reaches the design pressure. At the same time, the time fac-
tor in Eq. (18) is ignored during the packer test. Therefore,
the form of rectangular coordinate system of Eq. (18) is
rewritten as

vx
∂vx
∂x

+ vy
∂vx
∂y

= −
1
ρ

∂p
∂x

+ μ

ρ

∂2vx
∂x2

+ ∂2vx
∂y2

, 19

vx
∂vy
∂x

+ vy
∂vy
∂y

= −
1
ρ

∂p
∂y

+ μ

ρ

∂2vy
∂x2

+
∂2vy
∂y2

, 20

∂vx
∂x

+
∂vy
∂y

= 0 21

The flow of water in the two-dimensional plane rock
mass fracture model is regarded as the plane one-way flow,
and the initial pressure of water in the model is far greater
than the dead weight of it. That is, the influence of the dead
weight of water is ignored. Then,

∂vy
∂x

=
∂vy
∂y

= 0, 22

∂2vy
∂x2

=
∂2vy
∂y2

= 0, 23

∂vx
∂x

= ∂2vx
∂x2

= 0 24

Substituting Eqs. (22)–(24) into Eqs. (19)–(21) yields

1
ρ

∂p
∂x

= μ

ρ

∂2vx
∂y2

25

Symmetry boundary condition
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Figure 10: Geometric model of the two-dimensional planes of the fractured rock mass.

Table 3: Fracture parameters of the two-dimensional plane geometric modeling.

Permeable rate (Lu) Fractal dimension No. λmax λmin Fractured rate (%) No. λmax λmin Fractured rate (%)

115 1.79

A 10mm 1mm 6.1654 B 9mm 1mm 5.6730

C 8mm 1mm 5.1690 D 7mm 1mm 4.6515

E 6mm 1mm 4.1182 F 5mm 1mm 3.5658
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By integrating y in Eq. (25), it can be rewritten as

1
ρ

∂p
∂x

y + C = μ

ρ

∂vx
∂y

26

According to the boundary conditions of upper and
lower edges of fracture, y = r is the flow core radius, as
shown in Figure 11. The differentiation on the right side of
Eq. (26) can be expressed as:

∂vx
∂y

= 0, 27

C = −r
∂p
∂x

28

Substituting Eq. (28) into Eq. (26) yields

1
ρ

∂p
∂x

y − r
∂p
∂x

= μ

ρ

∂vx
∂y

29

In the constitutive equation of fluid τ = Kγn, the shear
rate γ is given by

‐ dvx
dy

= γ = τ

K

1/n
30

It is assumed that the flow of water in the fracture is not
affected by external forces. If water diffuses in the form of a
plane circle, the shear stress τ at the edge of the flow core
radius can be expressed as

τ = −
y
2
dp
dx

, 31

where negative sign represents flow direction. Then,
substituting Eq. (30) and Eq. (31) into Eq. (29), change rate
of pressure gradient is expressed as follows:

dp
dx

= yμn

2K y − ρr n

1/ n−1
32

The packer test hole radius is expressed as x = r0, and the
initial pressure of water is expressed as p = p0. Eq. (32) is
integrated based on the expansion of boundary conditions
and initial conditions, and we obtain the following:

△p = p0 − px =
yμn

2K y − ρr n

1/ n−1
x − r0 33

According to the hypothesis of effective stress, the total
stress of the fluid-solid coupling system formed by water
and rock mass can be regarded as the sum of water pressure
and equivalent stress of rock mass. However, the rock block
in the actual engineering is fixed by surrounding rock mass.
For the three-dimensional state of the fracture network, it is
projected into a two-dimensional fracture network, where
each rock block is always set with one fixed boundary. It
ensures that rock blocks do not rotate due to fluid pressure.
Therefore, the pressure at the fluid boundary is equal to the
pressure at the fracture boundary.

P1 = P2 = −n ⋅ −pI + μ ∇v + ∇v T , 34

where P1 represents the fluid pressure at fluid boundary, P2
represents the equivalent stress at fracture surface, n is the
normal tensor direction of boundary interface, I represents
the unit tensor, v represents the velocity tensor.

4.3. Diffusion Characteristics. In the simulation, the follow-
ing assumptions are made:

(1) Water is an incompressible fluid

(2) The permeability of the rock block is 0. That is, liq-
uid will not penetrate the rock block but will flow
and diffuse along the fracture

(3) The influence of fluid-solid coupling between water
and rock blocks on water diffusion is ignored

In Table 3, the fractal dimension of the current study is
1.79. Barton and Zoback [39] reported that the fluctuation
range, the fractal dimension of 2D maps of the fracture
length, is 1.3 to 1.7. In this paper, the research object is bro-
ken rock mass. The fracture network formed by the broken
rock mass is a connected open fracture. Thus, the fractal
dimension value 1.79 is beyond the range 1.3 to 1.7 given
in the literature [39]. It hints that the current fractal dimen-
sion value of 1.79 is reasonable.

Under an initial pressure of 0.8MPa, the diffusion of
water in the plane model is shown in Figures 12 and 13.
Figure 12 shows the distribution of water diffusion pres-
sure in the fracture network, and Figure 13 shows the

r
Crack width 𝜆

Flow direction

Flow core radius
Micro-fracture

Packer test hole
Y

X

Figure 11: The structure diagram of water diffusion in microfissures.
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variation trend of water diffusion pressure in sections A-A,
B-B, and C-C.

Figure 13 reveals a relationship between fluid diffusion
pressure and diffusion distance in the fracture model. It is
shown from Figure 13 that the flow diffusion pressure in
the fracture network is approximately linear. When the
water diffuses, the pressure distribution shows different
states with an irregular distribution of fractures. In the
model, the diffusion pressure shows good consistency along
a symmetrical measurement line, suggesting that the irregu-
lar distribution of fractures greatly influences the distribu-
tion of water pressure in the fracture network. In contrast,
the irregular distribution of fractures has little effect on the
initial inlet pressure and outlet end pressure of the packer
test.

Lines A-A, B-B, and C-C of Figure 12 correspond to the
centerline area, the upper edge area, and dense fractures in
the model, respectively. Figure 13 shows that in the process
of water diffusion, the diffusion pressure varies with the dif-
fusion distance in sections A-A, B-B, and C-C of Figure 12.

Figure 13 indicates that the diffusion pressure of water line-
arly decreases with diffusion distance. This study shows that
in the water pressure experiment of a broken rock mass, the
diffusion pressure of water decreases linearly along the diffu-
sion direction in the whole packer test section.

Figure 14 shows that two mainstream channels are
formed in the fracture network, and the mainstream chan-
nels appear in the region where the fractures are sparsely
distributed. The fracture orientation approximately consis-
tent with the diffusion direction has a high flow velocity
and is called the horizontal mainstream channel. In
Figure 14, the region between line I and line II is hori-
zontal mainstream channel (HMC). In the area with con-
siderable fragmentation, the diffusion velocity of water is
very high. In contrast, the water diffusion velocity of the
sparse region is relatively low. Additionally, it can be con-
cluded from Figure 14 that the flow diffusion velocity in
the fracture consistent with the diffusion direction is sig-
nificantly higher than the flow diffusion velocity in other
fractures.
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It can be concluded from Figure 14 that regarding the
connected fracture network structure of the broken rock
mass, the distribution of the fracture network plays a crucial
role in controlling the diffusion rate of water. In the area
with densely distributed fractures and a small fracture width,
the diffusion velocity of water is low. In an area with sparsely
distributed fractures and a large fracture width, the diffusion
velocity of water is very high. When a mainstream channel is
formed, the diffusion velocity of water in this fracture is
greater than the diffusion velocity of water in other fractures.

The four random fractures are used to display diffusion
velocity to reader, as shown in Figure 15. The velocity distri-
bution in each fracture is approximately symmetrical. The
diffusion velocity within the radius flow core is the highest,
and the velocity near the fracture wall decreases linearly.
Thus, it can be concluded that the water diffusion velocity
in fracture can be regarded as a composite plate Poisson
flow.

According to fracture parameters in Table 3, various
two-dimensional plane models are established to simulate
the diffusion state of water in fractures. Because the fractal
dimension is consistent, the simulation results display a sim-
ilarity for the diffusion velocity nephogram of various
model. Thus, four parameters, such as diffusion velocities
vmax and vmin, maximum fracture flow channel (Max-
CFC), and minimum fracture flow channel (Min-CFC), are
used to characterize the diffusion differences of water in dif-
ferent models. Then, the distribution characteristics of the
water diffusion velocity in fractures are shown in Figure 16.

In the corresponding models from No. A to No. F, the
diffusion velocities of the minimum fractures are 0.402m/s,
0.432m/s, 0.49m/s, 0.427m/s, 0.441m/s, and 0.54m/s,
respectively. In similar, the diffusion velocities of the
maximum fractures are 0.356m/s, 0.263m/s, 0.485m/s,
0.275m/s, 0.313m/s, and 0.562m/s, respectively. The above
velocity values exhibit randomness and disorder. This indi-
cates that the single factor, the maximum fracture width,
has little effect on the diffusion rate of water in the entire
fracture network.

In Figure 16, the maximum values vmax corresponding to
No. A to No. F are 1.297m/s, 1.412m/s, 1.3m/s, 1.317m/s,

1.42m/s, and 1.341m/s, respectively, and the minimum
values vmax are 0.126m/s, 0.163m/s, 0.078m/s, 0.203m/s,
0.163m/s, and 182m/s, respectively. Despite the diffusion
velocities vmax and vmin barely exhibit regularity, the ratio
of mean velocity to maximum velocity is less than 0.5, which
also indicates laminar flow.

Figure 16 indicates that the maximum value and mini-
mum value of diffusion velocity have nothing to do with
Max-CFC and Min-CFC in fracture network model. Also,
it can be concluded from Figure 16 that the distribution of
Max-CFC and Min-CFC has little impact on the maximum
and minimum velocities of the entire fracture model. To
explore the characteristics of water diffusion velocity in frac-
ture networks, a single fracture network model was con-
structed to reveal the diffusion characteristics of water, as
shown in Figure 17. In Figure 17, v represents the flow veloc-
ity, and σv represents the volume stress generated by the
fluid velocity on the solid boundary.

When the initial pressure is constant, the diffusion veloc-
ity decreases with increasing fracture width, as shown in
fracture channel 1 and fracture channel 2 of Figure 17. Then,
fracture channel 1 is divided into fracture channel 3 and
fracture channel 4 resulting in a clear decrease of the diffu-
sion velocity of them. The diffusion velocity of fracture
channel 4 is significantly lower than that of fracture channel
3. There are two main reasons: one is the width of the frac-
ture, and the other is shown in Figure 18(a), which is energy
cancellation between the velocity components v1y and v2y . In
addition, Figure 18(b) shows the alternative type energy can-
cellation and the energy superposition, which are v4y − v5y
and v4x + v5x, respectively. In Figure 18, v1y represents veloc-
ity component of fracture channel 1 exit in y direction, and
v1x represents velocity component of fracture channel 1 exit
in x direction. The other symbols of Figure 18 can be
deduced according to the above rules.

For fracture channel 5 of Figure 17, the diffusion velocity
is the maximum value. The critical reason is that the diffu-
sion energy of fracture channel 2 is mainly transmitted
through fracture channel 5 and the width of fracture channel
5 decreases compared to fracture channel 2. In fracture
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Figure 14: Distribution characteristics of water flow diffusion velocity in the fracture network (No. A).
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channel 8 of Figure 17, a backflow phenomenon is displayed
when v3y is much greater than v4y. Thus, it is possible to
show the minimum diffusion velocity in fracture channel 8
of Figure 17. Of course, the maximum diffusion velocity
may be displayed on a fracture channel, such as the fracture
channel with v4x + v5x status in Figure 18(b).

5. Results and Discussion

In this section, the two-dimensional fracture network model
predictions will be compared with experimental data and dif-
fusion velocity will be discussed. The determination of relevant
parameters for modeling procedures in Figure 5 is as follows:
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(1) Given the fracture network of a broken rock mass
based on a real underground mine, the Fankou
Lead-Zinc Mine

(2) Determine the fractal dimension Df of fracture width
in a two-dimensional fracture network model by Eq.
(5)

(3) The permeability determination for broken rocks is
carried out in packer test and empirical relationship
by Eq. (9) and Eq. (10)

(4) Infer the porosity ϕa of fractures by Eq. (12)

(5) List the fracture widths λmin and λmax by Table 3

(6) Construct the two-dimensional fracture network
model by Figure 8

(7) Finally, simulate the diffusion property by Section 4

The previous fractal property for length distribution of
fractures [19] has been proposed. It is concluded that the
permeability of fractured rocks is a function with fracture
characteristic parameters, such as the fractal dimension Df ,
fracture density, the facture azimuth, facture dip angle, and
fracture aperture. In comparison, the two-dimensional frac-
ture network model of broken rock mass is modeled and
simulated by Sections 3 and 4, respectively. Figure 14 shows
that the current model simulations agree well with the
experimental results [4]. Miao et al. [19] proposed that the
permeability decreases with porosity. Similarly, it can be
seen from Figure 14 that an area with higher fracture density

has lower diffusion. Also, the current simulation prediction
is consistent with practical situation. In Figure 18, the high
dip angle of fracture leads to a decrease horizontal compo-
nent for flow velocity. Thus, it is concluded from Figure 18
that a high dip angle is also resistant for fluid flow. This coin-
cides with Miao et al.’s research [19]. Besides, Figure 13
shows that the current simulations are approximate to the
existing test and derivation results when Df = 1 8 [4].

In this research, the fracture randomness in the fracture
model unit has not been qualitatively described. Instead,
the fracture model unit is generated on the basis of satis-
fying the maximum crack width, minimum crack width,
and fractal dimension. Although there is a certain differ-
ence between the fracture model unit and the actual frac-
ture state, the fractal dimension exhibited by the fracture
model unit is consistent with the actual packer test. Thus,
this study has assuredly reference value for guiding practi-
cal engineering.

6. Conclusions

In the current research, the packer test is applied to deter-
mine permeable rate, and the empirical relationship between
osmotic coefficient and fractal dimension is stated. Then, the
fractal geometry theory is used to describe the fracture sys-
tem of broken rock mass, and fractal dimension for width
distribution of fractures has been proposed. Based on the
above, a two-dimensional fracture network model is
generated by the symmetrical expansion method for the
model unit. Through simulation analysis and comparative
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verification of the current model, we give some of following
conclusions:

(1) The diffusion velocity of fracture networks decreases
with increasing fracture density and dip angle

(2) The diffusion velocities vmin and vmax are not much
to do with the fracture widths λmin and λmax in the
entire fracture network. The diffusion velocity of
fracture model is more affected by the density and
horizontal inclination of fractures

(3) The simulation has verified the feasibility of using
crack width to construct a two-dimensional plane
fracture network model for fractured rock masses

(4) The fracture width is an absolute critical factor for
the diffusion velocity of a single fracture. Our simu-
lations are concordant with available research
results. This indicates that the proposed modeling
method is reliable

In addition, it should be pointed out that we focus on
modeling broken rock mass. It is assumed that all fractures
are connected to form an interconnected fracture network.
Compared to existing researches, a definite advantage of
the current predictions is that the fluid-solid coupling of
the model displays the interaction between fractures. How-
ever, the quantitative description of fracture randomness
on the entire fracture network system has been ignored.
The quantitative analysis of fracture dip angle was not car-
ried out in this study. These are interesting subdomains
and will be our next research.
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