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Fabry disease (FD) is a multisystem lysosomal storage disorder induced by genetic variants in the alpha-galactosidase A (αGalA)
gene. Some FD patients have GLA variants with a reduction in overall αGalA enzymatic activity due to mutated proteins with
reduced stability, caused by protein misfolding and premature degradation, but the αGalA catalytic activity remains conserved
(“amenable” genetic variants). To correct this misfolding and to prevent premature degradation, migalastat, a small iminosugar
molecule was developed. We report the clinical characteristics of FD “amenable” cohort patients from Argentina, prior to starting
treatment with migalastat. Seventeen Fabry adult patients were recruited from 13 Argentinian Centers; 8 males (47.1%) and 9
females (52.9%) were included. All genotypes included were missense-type “amenables” mutations. Some classic FD typical early
manifestations were more frequent in patients with “classic” versus “late-onset” FD phenotype (pain, p � 0.002; cornea ver-
ticillata, p � 0.019). Tere was a statistically signifcant diference in estimated glomerular fltration rate in the “classic” versus
“late-onset” phenotype (p � 0.026) but no diference between genders (p � 0.695). Left ventricular mass was similar between
genders (p � 0.145) and phenotypes (p � 0.303). Cardiovascular risk factors were present among “late-onset” females (obesity
50% and smoke 25%). In patients who started “de novo”migalastat, themain indications were (i) heart disease, (ii) kidney damage,
and (iii) pain, while in “switched from prior enzyme replacement therapy” patients, the most frequent indication was “patient
decision;” this coincides with publications by other authors.
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1. Introduction

Pathogenic genetic variants in the alpha-galactosidase A
(αGalA) gene (GLA), located on region q22.1 X chromo-
some, cause the multisystem disorder called Fabry disease
(FD) [1]. Reduced or defcient αGalA activity is leading to
progressive intracellular globotriaosylceramide (Gb3) stor-
age in numerous cells and organs, including the nervous
system, kidneys, and heart [1].

“Classic” FD phenotype is presented in men with (i)
severely reduced (<1–3% of mean normal) αGalA activity;
(ii) marked Gb3 accumulation in vascular endothelial cells,
cardiomyocytes, smooth muscle cells, and podocytes; and
(iii) childhood or adolescent symptoms onset, followed by
progressive multiorgan failure with shortening of life ex-
pectancy due to premature death [1, 2]. Te frst clinical
manifestations, including neuropathic pain in the extrem-
ities (chronic paresthesia and episodic severe pain crises),
gastrointestinal (GI) discomfort, hypohidrosis, angioker-
atomas, and cornea verticillata typically emerge during
childhood or early adulthood [1, 2].

Men with a “Late-onset” FD phenotype present with (i)
varying residual αGalA activity levels reduced (>3% of the
mean normal) and (ii) clinical manifestations usually limited
to a single organ, with symptoms onset around the 5th
decade of life [1, 2].

In heterozygous FD female patients, disease spectrum
severity ranges from asymptomatic to severe “classic”
phenotype and is in part dependent on the GLA type variant
(genotype) and the X chromosome inactivation (lyoniza-
tion) profle [1–3].

In Argentina, therapeutic strategies for FD currently
include (i) enzyme replacement therapy (ERT): intravenous
administration of agalsidase (recombinant αGalA; α or β)
and (ii) chaperone therapy which involves the stabilization
of the conformation of αGalA protein in the endoplasmic
reticulum to improve its catalytic ability by oral adminis-
tration of migalastat, an iminosugar αGalA competitive
inhibitor. Other therapeutic strategies in development in-
clude gene therapy and substrate inhibition therapy.

Te real prevalence and incidence of FD are uncertain.
While initially reported incidences ranged from 1/476000 to
1/117000 in the general population, newborn screening
initiatives have found an unexpectedly high prevalence, as
high as 1/3100 newborns in Italy [1]. On the other hand,
a high prevalence of FD has been reported in at-risk pop-
ulations, both in adult men and women on hemodialysis (1/
476 and 1/667, respectively), hypertrophic cardiomyopathy
(1/476 and 1/667, respectively), and cryptogenetic stroke (1/
769 and 1/714, respectively). In Argentina, there are no
databases with accurate epidemiological records.

Over 1000 GLA variants have been reported: missense
∼60%, frameshift ∼25%, nonsense ∼8%, and splicing variants
∼7%.

A FD patients subgroup with “missense” type GLA
genetic variants can be “amenables” (as explained below)
which cause both (i) misfolding and (ii) reduced stability of
αGalA, so it is prematurely degraded in the trans-Golgi
network and cannot reach the cytoplasmic lysosome.

Despite this, αGalA catalytic activity remains conserved
[4, 5]. 1-Deoxygalactonojirimycin (migalastat), a small
iminosugar molecule, was developed to prevent αGalA
premature degradation. Migalastat is capable of binding to
the αGalA active site, correcting the protein structure
misfolding, improving stability, and thus being able to cross
the trans-Golgi network without being retained and fnally
reach the lysosome to fulfll its physiological catalytic
function [4, 5]. Tis pharmacological mechanism, by which
a small molecule can help a protein fold correctly, allowing it
to enter physiological processing pathways properly was
enunciated as “chemical chaperone” [6, 7]. Certain GLA
genetic variants specifcally cause this αGalA structure al-
teration that can be corrected with migalastat and are called
“amenables” (or migalastat responders) variants. In 2016,
migalastat was approved by the FDA, and today, it is
available as an alternative to ERT to treat FD patients with
“amenable” GLA genetic variants [5, 8].

To date, there are no cohorts of “amenable” FD patients
reported in Latin America; rather, most studies include these
patients from other geographic latitudes. For this reason, in
the present work, we report the results of “amenable” FD
patients from a Latin American country for the frst time.

In the present study, we report the clinical characteristics
of FD “amenable” cohort patients from Argentina prior to
starting treatment with migalastat. Tis is the initial report,
and the follow-up of this cohort receiving migalastat every
6months will be reported later.

2. Materials and Methods

2.1. Patients and Data Collection. We performed a cross-
sectional study in 13 FD centers in Argentina (1-Sanatorio
Parque de Rosario. 2-Angel C. Padilla Hospital, San Miguel
de Tucumán. 3-STR Cuidadela, Buenos Aires. 4-Instituto de
Nefrologı́a y Hemodiálisis, Mendoza. 5-Hospital de Alta
Complejidad Presidente Juan Domingo Perón, Formosa. 6-
San Bernardo Hospital, Salta. 7-Hospital Central de Men-
doza. 8-Hospital Central de San Luis. 9-Fresenius Medical
Care, Córdoba. 10-Hospital Dr. Enrique Erill. Belén de
Escobar, Buenos Aires. 11-Fundación para el Estudio de las
Enfermedades Neurometabólicas, Buenos Aires. 12-Hospital
Alemán, Buenos Aires. 13-INECO. Neurociencias Grupo
Oroño, Rosario) during August 2018 to April 2023. Te
study was approved by each local committee, and written
informed consent was obtained from all patients after oral
information.

Inclusion criteria were as follows: FD patients with
confrmed diagnosis by the genetic test and “amenable” GLA
variants. Te study of the genetic variant was carried out by
PCR amplifcation and sequencing of all coding exons and
fanking intronic regions from previous DNA extraction
from Dried Blood Spot. Reference sequence: NM_000169.2
(ENST00000218516). Exclusion criteria were as follows: (i)
FD patients with confrmed diagnosis by genetic test and NO
“amenable” GLA variant and (ii) FD patients with inclusion
criteria who refused to participate in the study. Quantif-
cation of αGalA enzymatic activity was performed by the
fuorometric method. Decreased or normal enzyme activity
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was considered at values < than or > than 4.0 nmol/h/l,
respectively. Plasma globotriaosylsphingosine (Lyso-Gb3)
was quantifed by the liquid chromatography method with
tandem mass spectrometry.

Plasma and urinary creatinine were determined by
electrochemiluminescence (Roche Diagnostics). Urinary
albumin was determined by the colorimetric method (Roche
Diagnostics). Te urinary albumin/creatinine ratio (uACR)
was calculated to estimate 24-hour albuminuria [9]. Ratio
values 0–30 were considered normal, 30–300 were patho-
logical albuminuria, and >300 were proteinuria in at least
two samples.Te estimated glomerular fltration rate (eGFR)
was calculated using Chronic Kidney Disease Epidemiology
(CKD-EPI) [9, 10].

Te presence/absence of a neuropathic pain crisis and/or
typical acroparesthesias was evaluated by questioning (Brief
Pain Inventory–Short Form) and quantitative sensory
testing (QST) [1, 2, 11]. Te presence/absence of dyshidrosis
and typical GI symptoms were evaluated by questioning
(Gastrointestinal Symptom Rating Scale) and physical ex-
amination [1, 2, 12]. Te presence/absence of angioker-
atomas was evaluated by a dermatologist specialist in FD
[1, 2]. Te presence/absence of hearing loss was defned by
alterations in the logo-audiometry test [1, 2]. Te presence/
absence of cornea verticillata was evaluated by ophthal-
mological examination with a slit lamp, performed by an
ophthalmologist with experience in FD [1, 2]. FD cardiac
involvement was defned by (i) cardiac arrhythmia typical of
FD (electrophysiological disorders in 12-lead electrocar-
diogram) and/or (ii) left ventricular hypertrophy (LVH)
assessed by tissue Doppler echocardiogram and/or cardiac
magnetic resonance imaging (MRI); causes of cardiomy-
opathy other than FD were ruled out [1, 2]. FD central
nervous system (CNS) involvement was defned by (i) ce-
rebral white matter lesions in brainMRI angiography and/or
(ii) clinical stroke by antecedents during the interrogatory
and/or physical examination [1, 2]. Left ventricular mass
index (LVMI) was performed by cardiac MRI, and the re-
sults expressed in g/m2.

2.2. Statistical Analyses. Categorical variables were
expressed as numbers (percentages) and continuous vari-
ables as the mean± standard deviation (SD). Parametric or
nonparametric tests were used according to nominal or
continuous variables. Te contingency tables were analyzed
with the Fisher exact or Chi2 test. Diferences were con-
sidered signifcant if p< 0.05. Statistical analyses were
performed with IBM SPSS Statistic Editor 1.8 version.

3. Results

Seventeen FD adult patients were recruited from 13
Argentinian Centers; 8 males (47.1%) and 9 females (52.9%)
were included (Table 1).

Tere were no statistically signifcant diferences in the
mean age of males (45.8± 14.9 years) and females
(49.9± 14.1 years) (p � 0.566). Te distribution of fre-
quencies and correlations for variables “gender,” “genotype,”

“age,” “age at diagnosis,” and “age at symptoms onset”
classifed by “classic” or “late-onset” FD phenotypes is
shown in Table 1.

All genotypes included were missense-type “amenables”
mutations. Figure 1 shows the distribution of genotype
frequencies by gender (a) and FD phenotype (b).

Plasma Lyso-Gb3 was similar on FD patients “classic”
versus “late-onset” phenotype (p � 0.162) (Figure 2(a)), and
αGalA enzyme activity was signifcantly diferent
(p � 0.006) (Figure 2(b)).

Classic FD typical early manifestations were more
frequent in patients with “classical” versus “late-onset” FD
phenotype (pain and cornea verticillata with statistical
signifcance, p � 0.002 and p � 0.019, respectively;
angiokeratomas, diarrhea, and hearing loss without sta-
tistical signifcance, p � 0.121, p � 0.121, andp � 0.611,
respectively).

Temean eGFRwas 96.3± 29.4ml/min/m2 among “late-
onset” females, 116± 18.1ml/min/m2 among “classic” fe-
males, 88.5± 25.5ml/min/m2 among “late-onset” males, and
124± 22.1ml/min/m2 “classic” males (Figure 3(a)). Tere
was a statistically signifcant diference in eGFR in the
“classic” versus “late-onset” phenotype (p � 0.026) but no
diference between genders (p � 0.695). Te mean ACR was
156± 140mg/g among “late-onset” females, 46.1± 71mg/g
among “classic” females, 173± 106mg/g among “late-onset”
males, and 508± 325mg/g “classic” males (Figure 3(b)).
Tere was a statistically signifcant diference in ACR in
males versus females (p � 0.049) but no diference between
phenotypes (p � 0.623).

LVMI was similar between genders (p � 0.145) and
phenotypes (p � 0.303) (Figure 4) (mean 99.5± 19.9 g/m2

among “late-onset” females, mean 87.6± 35.9 g/m2 among
“classic” females, mean 152± 103 g/m2 among “late-onset”
males, and 112± 13.9 g/m2 “classic” males) (Figure 4).

Te frequency of cardiac arrhythmia and CNS in-
volvement were similar in patients classifed by gender and
phenotypes (cardiac arrhythmia between genders p � 0.522
and between phenotypes p � 0.375, respectively; CNS in-
volvement between genders p � 0.929 and between phe-
notypes p � 0.929, respectively).

Cardiovascular risk factors were present among “late-
onset” females (obesity 50% and smoking 25%).

Figure 5 shows the frequency distribution of the vari-
ables “switch from ERT to migalastat” and “migalastat de
novo” in patients classifed by gender and phenotype (a) and
start criterion treatment (b).

4. Discussion

Results from a cohort of “classic” and “late-onset” male and
female “amenables” FD patients of similar age, diagnosed in
adulthood, are presented.

A major methodological limitation of this study is the
small number of patients included and its cross-sectional
design. Te small sample size may afect the distribution of
patients in the “classic” versus “late-onset” and “male” versus
“female” groups; this could have conditioned the diferences
in clinical manifestations found in our results. On the other
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hand, some FD biomarkers can be modifed over time;
therefore, the cross-sectional design can condition the re-
sults; this is the case of Lyso-Gb3.

Lyso-Gb3 has been previously correlated with FD
severity and phenotype [13]. Contrary to expectations, in
our population, plasma Lyso-Gb3 was similar between
both phenotypes (among patients grouped by gender),
probably due to an efect of the subjects included dis-
tribution, with more patients in the “late-onset” group
and within the “classical” population, a greater number of
females.

Te signifcant diference in the onset of symptoms is an
expected result, since the “classic” phenotype typically
presents early symptoms and the “late-onset” not [1, 2].

Te signifcant eGFR diference between “classic” and
“late-onset” is an expected result because the classic phe-
notype typically afects kidney function earlier [1, 2, 14].
Because they present earlier and more severe renal damage,
patients with the classic phenotype typically present greater
urinary protein excretion [1, 2, 14, 15]. Te albuminuria
found, similar between both phenotypes, can be explained
by the high prevalence of cardiovascular risk factors present
in the “late-onset” female group, who theoretically should
have less albuminuria due to Fabry nephropathy but have
kidney damage from causes other than Fabry [16]. FD
cardiac involvement can occur both among adult patients
with “classic” phenotypes and in “late-onset” phenotypes
with cardiac presentation [1, 2]. Our population did not

Table 1: Distribution of frequencies and correlations for variables “gender,” “age,” “genotype,” “age at diagnosis,” and “age at symptoms
onset” classifed by “classic” or “late-onset” FD phenotype.

Classic FD Late-onset FD p value
Gender (M/F) 3/5 5/4 0.457
Age 43.11± 12.4 ys 52.3± 14.9 ys 0.180
Genotype G85D; N34D; M187I; G258V; D264Y D109G; C174G; N215S; R363H; R212H —
Age at diagnosis 36.3± 12.8 ys 47.40± 14.8 ys 0.116
Age of symptoms onset 19.3± 13.4 ys 46.6± 13.4 ys 0.003∗

FD: Fabry disease; M: males; F: females; ys: years; ∗statistical signifcance p value.
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Figure 1: Distribution of genotype frequencies by gender (a) and Fabry phenotype (b). M: males; F: females.

4 Global Health, Epidemiology and Genomics



present diferences in the variables “myocardial mass” and
“cardiac arrhythmia.”

Central nervous system involvement was similar in
patients classifed by gender and phenotype. CNS in-
volvement typically occurs in “classic” phenotypes and not

in “late-onset” patients, probably the higher cardiovascular
risk factors frequency present among “late-onset” females
may have modifed this result.

In patients who started “de novo” migalastat, the main
indications were (i) heart disease, (ii) kidney damage, and
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Figure 2: Plasma Lyso-Gb3 levels (a) and α-galactosidase-A activity (b) according to gender and Fabry disease phenotype. Alpha-GalA:
α-galactosidase-A; M: males; F: females.
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Figure 3: Renal function parameters distribution by gender and Fabry phenotype. eGFR: estimated glomerular fltration rate; ACR: albumin
creatinine ratio; M: males; F: females.
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(iii) pain, while in the “switched from prior ERT” group, the
most frequent indication was “patient decision.” Tis co-
incides with publications by other authors [17, 18].

5. Conclusions

In Argentina, the indications for starting “de novo” miga-
lastat treatment were heart disease, kidney damage, and
pain, while in “switched from prior ERT” patients, the most
frequent indication was “patient decision.”

Among Fabry “amenables” patients from Argentina,
NOT all major clinical disease manifestations are more
frequent among “classic” versus “late-onset” phenotypes.

Abbreviations
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