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Background. +ere is still no clear understanding of the pathogenesis of atrial fibrillation (AF). For this purpose, we used in-
tegrated analysis to uncover immune infiltration characteristics and investigated their relationship with competing endogenous
RNA (ceRNA) network in AF.Methods. +ree AF mRNA data sets (GSE14975, GSE79768, and GSE41177) were integrated using
the SVA method from Gene Expression Omnibus (GEO). Together with AF circRNA data set (GSE129409) and miRNA data set
(GSE70887) from GEO database, we built a ceRNA network. +en hub genes were screened by the Cytoscape plug-in cytoHubba
from a protein-protein interaction (PPI) network. As well, CIBERSORT was employed to investigate immune infiltration,
followed by Pearson correlation coefficients to unravel the correlation between AF-related infiltrating immune cells and hub
genes. Ulteriorly, circRNA-miRNA-mRNA regulatory axises that could be immunologically related to AF were obtained. Results.
Ten hub genes were identified from the constructing PPI network. +e immune infiltration analysis revealed that the number of
monocytes and neutrophils was higher, as well as the number of dendritic cells activated and Tcells regulatory (Tregs) was lower in
AF. Seven hub genes (C5AR1, CXCR4, HCK, LAPTM5, MPEG1, TLR8, and TNFSF13B) were associated with those 4 immune
cells (P< 0.05). We found that the circ_0005299–miR-1246–C5AR1 and circRNA_0079284-miR-623-HCK/CXCR4 regulatory
axises may be associated with the immunemechanism of AF.Conclusion.+e findings of our study provide insights into immuno-
related ceRNA networks as potential molecular regulators of AF progression.

1. Introduction

Atrial fibrillation (AF) is a common arrhythmia, increasing
with age, reaching 7.5% or more in people older than 80 [1].
In addition, the risk of embolic stroke, heart failure, and
mortality increase with AF [1, 2]. Although treatment
strategies of AF have advanced dramatically in recent years,
their efficacy is not ideal, especially in the radiofrequency
ablation treatment of persistent AF (PAF) [3]. +e reason is
the incomplete knowledge of the AF mechanisms. To de-
velop more effective treatments for AF, we therefore need to
gain a deeper understanding of the molecular and cellular
mechanisms involved in AF.

CircRNAs are new RNA molecules with unique biological
functions that can act as sponges for microRNAs (miRNAs) to
bind competitively and regulate parental genes expression
[4, 5]. A growing body of evidence suggests that circRNA-
miRNA-mRNA regulatory axis are involved in cardiovascular
disease’s pathogenesis. CiRS-7, for example, is useful as a
sponge for miRNA-7a, which promotes myocardial apoptosis
via inhibiting PARP and SP1 expression [6]. +e competitive
binding of heart-related circRNA (HRCR) with endogenous
miR-223 increases the expression of ARC gene, thereby
inhibiting heart failure and cardiac hypertrophy [7]. Further,
circRNA_000203 promote fibrosis-associated gene expression
by inhibiting miR-26b-5p targets, contributing to myocardial
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�brosis [8]. Hence, competing endogenous RNA (ceRNA)
networks may shed light on AF pathophysiology. Studies have
also shown that in�ammation and the immune response it
triggers are crucial to the development of AF [9, 10]. However,
rarely have studies examined the relationship between immune
cells in�ltration and ceRNA networks in atrial tissue of AF
patients.

In our study, on the one hand, we integrated three PAF
data sets by the SVA method and used weighted gene co-
expression network analysis (WGCNA) and di�erential ex-
pression analysis to identify common genes (CGs). Di�eren-
tially expressed (DE) miRNAs and DE circRNAs in PAF were
identi�ed from GSE70887 and GSE129409 data set, respec-
tively. Together with CGs, ceRNA network was built based on
circRNA-miRNA pairs and miRNA-mRNA pairs. Hub genes
were then �ltered using the Cytoscape plug-in cytoHubba by
analyzing protein-protein interaction (PPI) networks. On
another hand, CIBERSORT was used to study immune in�l-
tration inAF [11]. In the following analysis, Pearson correlation
coe�cients were used to determine the correlation between
AF-related in�ltrating immune cells and hub genes. Finally, we
gained novel insight into the mechanisms that govern the
progression of AF by the analysis of immune-related ceRNA
networks. �e study �owchart is shown in Figure 1.

2. Materials and Methods

2.1.DataAcquisition. �ree AFmRNA data sets (GSE14975,
GSE79768, and GSE41177), AF circRNA data set
(GSE129404), and AF miRNA data set (GSE70887) were

downloaded from gene expression omnibus (GEO) [12]
database. �ree left atrial appendage samples from PAF
patients and three sinus rhythm (SR) controls were included
in GSE129409, while four atrial appendage samples from
PAF patients and two SR controls were contained in
GSE70887. Among the GSE14975, GSE79768, and
GSE41177, left atrial appendage tissue was obtained from
�ve PAF patients and �ve SR controls, seven PAF patients
and six SR controls, and sixteen PAF patients and three SR
controls, respectively.

All data sets originated from a free open-access database
on the Internet; thus, this study does not require ethical
approval and patient consent.

2.2. Data Processing and Gene Set Enrichment Analysis
(GSEA). In order to transform gene probe IDs to gene
symbol codes, the series matrix �les were processed by
ActivePerl 5.24.2 software (https://www.activestate.com/
products/perl/). In the three mRNA data sets, the data in
GSE14975 data set were transformed into log base 2 data by
a�y package in R [13]. �e sva package’s combat function
was applied to remove batch e�ects and other undesired
variation between the three mRNAmicroarray data sets after
merging all data [14]. In the end, R software’s “limma”
package contains the “normalizeBetweenArrays” function
[15], which normalized expression values. Gene set en-
richment analysis (GSEA) is a computational algorithm for
determining whether a prede�ned set of genes exhibit
consistently signi�cant di�erences between two states [16].
In a GSEA, the sequenced genes of AF and SR samples are
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Figure 1: Flow diagram of bioinformatics analysis.
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Figure 2: Enrichment analysis of mRNA integrated data set through gene set enrichment analysis (GSEA). GSEA results showing
physiological cardiac muscle hypertrophy (a), collagen binding (b), activation of innate immune response (c), chemokine signaling pathway
(d), renin angiotensin system (e), and T cell receptor signaling pathway (f) are differentially enriched in atrial fibrillation.
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analyzed after imputting gene annotation files, reference
function sets, and all the gene data from both samples. +e
pathways enriched in each phenotype were analyzed based
on nominal p value and normalized enrichment score (NES).

2.3. Weighted Gene Co-Expression Network Analysis
(WGCNA) Construction and Identification of Modules.
Gene co-expression network was constructed using the
integrated data set with the help of a system biology ap-
proach of WGCNA [17]. +e soft thresholding power β was
set as 5 and 20 and was selected using the function pick-
Soft+reshold. In order to classify genes with similar ex-
pression profiles into gene modules, average linkage
hierarchies were clustered according to topological overlap
matrix (TOM)-based difference measure, and the minimum

size (gene group) of the genes dendrogram was 50 [18].
Finally, module membership (MM), gene significance (GS),
and module-trait correlations analyses were conducted.
P< 0.05 was defined as statistically significant module.

2.4. Identification of Differential Expression of circRNAs,
miRNAs, and mRNAs. In this study, DE mRNAs, DE
miRNAs, and DE circRNAs were screened using the Limma
package in R. +e integrated data set was analyzed with |log2
Fold change | > 0.5 and p value< 0.05 set as the cut-off point
for selecting DE mRNA. For analysis of GSE70887, |log2
Fold change | > 1 and p value< 0.05 were used as criterion
for selecting DE miRNA. For analysis of GSE129409, |log2
Fold change | > 3 and p value< 0.05 were used as criterion
for selecting DE circRNA. +e “ggplot2” and “pheatmap”
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Figure 3: Construction of the weighted co-expression network and module analysis. (a) Differentially expressed genes represented by
different colors under the gene tree. (b) Module-trait relationships.+e yellowmodule correlated significantly with atrial fibrillation. (c)+e
scatter plots show the correlations between the yellow modular gene and atrial fibrillation.
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packages of R software were used to create volcanomaps and
heatmaps for DE mRNA, DE miRNAs, and DE circRNAs.
Common genes (CGs) are the intersection of DE mRNA
identified from the integrated mRNA data set and the genes
found in yellow module.

2.5. Construction of a circRNA-miRNA-mRNA Regulatory
Network. CircRNAs information can be found in CircBase
(https://www.circb ase.org/) [19]. +e cancer-specific
circRNA database (CSCD, https://gb.whu.edu.cn/CSCD/)
[20] was able to predict target miRNAs for each DE

circRNA. +en, we gathered miRNAs that overlapped both
DE and predicted miRNAs and used TargetScan database
[21] to predict targeted genes. Next, those targeted genes
were considered as candidate targets and overlapped with
CGs. Lastly, we constructed a ceRNA regulatory network of
AF and visualized it using Cytoscape version 3.8.0.

2.6. GO and KEGG Functional Enrichment Analysis. To as-
sess the functional annotations of genes in ceRNA regulatory
network, GO and KEGG functional enrichment analysis was
carried out based on the “clusterprofiler,” “ggplot2 Goplot,”
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Figure 4: Identification of DEmRNAs in atrial fibrillation from the integratedmRNAdata set. Heat map (a) and Volcano plot (b) for the DE
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significant module were identified.
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Figure 5: Continued.
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“digest,” “org.Hs.eg.db,” and “enrichplot” packages of R/
Bioconductor. Statistically significant values were defined as
p value< 0.05.

2.7. Construction of PPI Regulatory Network and Identifica-
tion of Hub Genes. Using the STRING datebase (https://
string-db.org) [22], a PPI network was constructed for these
genes in the ceRNA network, and a minimum interaction
score of 0.4 was considered the cutoff point. CytoCope 3.8.0
software was utilized to visualize the PPI network, and the
Maximal Clique Centrality (MCC) arithmetic of the Cyto-
scape plug-in cytoHubba was used to filter hub genes in the
PPI network. Finally, a circRNA-miRNA-hub gene sub-
network was constructed. Boxplot maps representing dif-
ferential expression of circRNAs, miRNAs, and mRNAs in
their microarray data sets in the circRNA-miRNA-hub gene
subnetwork were generated with the help of “reshape2” and
“ggpubr” packages of R software.

2.8. Immune Cell Infiltration Analysis. +e integrated data
set was analyzed using CIBERSORT in R software to
compute the relative proportion of infiltrating immune cells
in AF, and the samples were filtered using P< 0.05. A
principal component analysis (PCA) was performed on
immune cell infiltration using the “ggplot2” package. +e 22
types of infiltrating immune cells were subjected to a
Spearman correlation analysis using R software, and we
generated a correlation heatmap with the help of “Corrplot”
package in R for visualizing the results. +e expression of 22
immune cells was compared and visualized using “vioplot”
package between PAF and SR samples.

2.9. Correlation Analysis between Hub Genes and Infiltrating
Immune Cells Associated with AF. A Pearson correlation
coefficient was applied to examine the relationship between
hub genes and AF-related infiltrating immune cells, which
was visualized with the “ggpubr” package of R.

2.10. Diagnostic Analysis of Hub Immune-Related Genes for
AF. For the purpose of determining the effectiveness of hub
immune-related genes in predicting AF, receiver operator
characteristic (ROC) curve analysis was conducted with the
help of “pROC” package.

3. Results

3.1. Enrichment Analysis of Merged Expression Data through
GSEA. GSEAwas applied to analyze the significant difference
between AF and SR groups for the integrated data set. +e
enrichments for upregulated gene sets in the significant order
(size of NES) were related to physiological cardiac muscle
hypertrophy (GO) (Figure 2(a)), collagen binding (GO)
(Figure 2(b)), activation of innate immune response (GO)
(Figure 2(c)), chemokine signaling pathway (KEGG)
(Figure 2(d)), renin angiotensin system (KEGG) (Figure 2(e)),
and T cell receptor signaling pathway (KEGG) (Figure 2(f)).

3.2. Identification of Gene Co-Expression Networks and
Modules. Using the WGCNA package, gene co-expression
network was built from the integrated gene data set to
identify functional clusters in AF patients. Eight modules
were excavated after setting the power to 5 (Figures 3(a)). In
Figure 3(b), the module-trait relationships are illustrated,
showing that the yellow module has the greatest relationship
with AF (r� 0.47, p � 0.002), encompassing 365 genes. +e
greatly significant correlation between GS andMM indicates
that genes in the yellow module are greatly associated with
AF (cor� 0.5, p � 1.7e − 24) (Figure 3(c)).

3.3. Identification of DE circRNAs, DE miRNAs, DE mRNAs,
and CGs. In the merged mRNA data set, a total of 439 DE
mRNAs were screened in AF (Figures 4(a), 4(b)). +en, CGs
were defined as the intersection of DE mRNAs from the
integrated mRNA data set and genes from yellow module
(Figure 4(c)), including 110 genes. Totally, 103 DE circRNAs

Predicted miRNAsDE miRNAs

1986920

(e)

target genes

130716446
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(f )

Figure 5: Identification of DE circRNAs, DE miRNAs in atrial fibrillation. Volcano plots (a) and heat map (b) of DE circRNAs between
atrial fibrillation and sinus rhythm group. Volcano plots (c) and heat map (d) of DE miRNAs between atrial fibrillation and sinus rhythm
group. (e) A total of 9 overlapping miRNAs between the DE miRNAs and the predicted miRNAs were identified. (f ) A total of 64
overlapping mRNAs between the common genes (CGs) and the targeted genes were screened.
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Figure 6: Continued.
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were screened in the circRNA expression profile data
(Figures 5(a), 5(b)). In addition, 29 DE miRNAs were
identified in the miRNA expression profile data (Figures.
5(c), 5(d)).

3.4. Construction of ceRNAs Regulatory Networks in AF.
Fifteen DE circRNAs were not found in the CSCD database.
Based on this database, 1,995 targeted miRNAs were pre-
dicted from the remaining 88 DE circRNAs. In the next step,
9 miRNAs were obtained through the intersection of DE
miRNAs and predicted miRNAs (Figure 5(e)). Using the
TargetScan database, 9 miRNAs predicted 13,135 potential
targets. +en, 64 mRNAs were acquired by the intersection
of CGs and predicted target genes (Figure 5(f )). Finally, the
ceRNA network associated with AF was constructed
(Figure 6(a)).

3.5.FunctionalEnrichmentAnalyses formRNAs in theceRNAs
Network. Go functional enrichment analysis revealed that
those genes in the circRNA-miRNA-mRNA ceRNA network
were primarily involved in biological process (BP) terms,
including “T cell activation,” “lymphocyte proliferation.” In
the cell component (CC) ontology, those genes were mainly
enriched in “external side of plasma membrance,” “endo-
cytic vesicle.” Molecular function (MF) analysis indicated
that those genes were significantly enriched in “immune
receptor activity,” “coreceptor activity” (Figure 6(b)). +e
KEGG pathway of those genes were primarily involved in
“hematopoietic cell lineage,” “chemokine signaling path-
way,” “leukocyte transendothelial migration” (Figure 6(c)).

3.6. PPI Network Analysis. Using STRING database, 55
mRNAs in ceRNAs network were constructed into a PPI
network consisting of 45 nodes and 160 edges after removing
unconnected nodes (Figure 6(d)). To explore and construct
the crucial circRNA-miRNA-hub genes regulatory axis in
the progression of AF, the MCC algorithm was used to
identify hub genes in the PPI network. +rough the MCC

scoring method, the top ten genes were defined as hub genes
(Table 1), which were C–C chemokine receptor type 5
(CCR5), C-X-C chemokine receptor type 4 (CXCR4), Toll-
like receptor 8 (TLR8), stromal cell-derived factor 1
(CXCL12), C5a anaphylatoxin chemotactic receptor 1
(C5AR1), hematopoietic cell kinase (HCK), tumor necrosis
factor ligand superfamily member 13B (TNFSF13B), in-
terferon regulatory factor 8 (IRF8), macrophage gene 1
protein (MPEG1), and lysosomal-associated transmem-
brane protein 5 (LAPTM5), respectively (Figure 6(d)). And
those hub genes were upregulated in AF. Subsequently, a
circRNA-miRNA-hub gene subnetwork was showed in
Figure 6(e). Figure 7 shows the differential expression of
each molecule in the ceRNA subnetwork in the microarry
data sets. +e basic information of the 9 circRNAs in the
ceRNA subnetwork are listed in Table 2.

3.7. Immune Infiltration Analyses. Using the CIBERSORT
algorithm, bar plots and heat maps display the relative
proportion of the 22 types of immune cells detected in each
sample (Figures 8(a), 8(b)). Using PCA, the immune cells in
the atrial tissues of AF patients and SR revealed distinct
group bias clustering and individual differences
(Figure 8(c)). Correlation analysis between infiltrating im-
mune cells and T cells regulatory (Tregs) was positively
related to macrophages M0 (r� 0.69) and negatively cor-
related to neutrophils (r� 0.40) and the activated dendritic
cells were positively related to activated NK cells activated
(r� 0.54). In contrast, T cells CD8 were negatively related to
T cells CD4 memory resting (r� −0.67), mast cells resting
were negatively related to activated mast cells (r� −0.58),
and T cells gamma delta negatively correlated to macro-
phages M2 (r� −0.52) (Figure 8(d)). +e monocyte and
neutrophil counts tend to be higher in AF than SR, while
dendritic cells activated and Tcells regulatory (Tregs) tend to
be lower (P< 0.05) (Figure 8(e)).

3.8. Correlation Analysis between Hub Genes and AF-Related
Infiltrating Immune Cells. A total of 7 hub genes were

MPEG1

C5AR1 CCR5

IRF8

ILR8

HCKCXCL12hsa_circ_0002103

hsa_circ_0004979

hsa_circ_0005299
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(e)

Figure 6: Constructing and analyzing the ceRNA network. (a) CeRNA network of circRNA-miRNA-mRNA interactions in atrial fi-
brillation. (b) An analysis of the GO enrichment of mRNAs in the ceRNA network. (c) An analysis of the KEGG pathway enrichment of
mRNAs in the ceRNA network. (d) PPI network construction and hub gene selection. (e) CircRNA-miRNA-hub gene subnetwork
construction. Upregulated circRNAs are indicated by red diamonds, downregulated miRNAs by green triangles, and upregulated mRNAs
by blue ovals.
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linearly associated with immune cells associated with AF.
C5AR1 was positively associated with neutrophils (r� 0.39,
P � 0.011) and associated negatively with T cells regulatory

(Tregs) (r�−0.31, P � 0.047). CXCR4 was negatively cor-
related with T cells regulatory (Tregs) (r�−0.52, P< 0.001).
HCK was positively associated with monocytes (r� 0.44,

Table 1: Top 10 genes with higher MCC score in protein-protein interaction network.

Gene symbol MCC score logFC P Value Gene title
CCR5 156 0.530 0.0091 C–C chemokine receptor type 5
TLR8 156 0.503 0.0071 Toll-like receptor 8
C5AR1 126 0.508 0.0296 C5a anaphylatoxin chemotactic receptor 1
CXCL12 126 0.584 0.0083 Stromal cell-derived factor 1
CXCR4 120 1.096 1.54E-06 C-X-C chemokine receptor type 4
TNFSF13B 120 0.573 0.0093 Tumor necrosis factor ligand superfamily member 13B
HCK 32 0.693 0.0005 Hematopoietic cell kinase
MPEG1 30 0.783 0.0005 Macrophage gene 1 protein
IRF8 26 0.633 0.0013 Interferon regulatory factor 8
LAPTM5 2 0.730 4.88E-05 Lysosomal-associated transmembrane protein 5
Positive logFC values correspond to upregulated genes. FC, fold change; MCC, maximal clique centrality.

Type

AF

SR

15.010.0 12.57.5

**

**

*

*

*

***

**

**

**hsa_circ_0001615

hsa_circ_0004390

hsa_circ_0004771

hsa_circ_0005299

hsa_circ_0002103

hsa_circ_0006725

hsa_circ_0001190

hsa_circ_0004979

hsa_circ_0079284

(a)

Type

AF

SR

2 3 4 5 6 7

***

*

*

**

*

*

hsa–miR–508–5p

hsa–miR–339–3p

hsa–miR–483–5p

hsa–miR–198

hsa–miR–623

hsa–miR–1246

(b)

Type

AF

SR

4

C5AR1

MPEG1

CXCL12

CXCR4

TLR8

HCK

LAPTM5

TNFSF13B

CCR5

IRF8

6 8 10 12

***

***

**

**

***

**

***

**

**

*

(c)

Figure 7: Di�erential expression of circRNAs (a), miRNAs (b), and mRNAs (c) in their microarray data sets in the circRNA-miRNA-hub
gene subnetwork. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001.
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P< 0.001). LAPTM5 was negatively associated with den-
dritic cells activated (r� −0.45, P< 0.001) and T cells reg-
ulatory (Tregs) (r� −0.37, P � 0.016). MPEG1 was
negatively associated with T cells regulatory (Tregs)
(r� −0.59, P< 0.001). TLR8 was negatively associated with
Dendritic cells activated (r� −0.32, P � 0.039) and T cells
regulatory (Tregs) (r� −0.45, P< 0.001). TNFSF13B was
negatively associated with T cells regulatory (Tregs) (r� -
0.38, P � 0.014) (Figure 9).

3.9. Hub Immune-Related Genes Could be Used to Predict AF
Specifically and Sensitively via the ROC Curve Analysis.
ROC curve analysis revealed that these seven hub immune-
related genes (C5AR1, CXCR4, HCK, LAPTM5, MPEG1,
TLR8, and TNFSF13B) were significantly associated with AF
diagnosis (0.7<AUC< 1) (Figure 10).

4. Discussion

AF is the most frequent arrhythmia that presents in clinical
practice and increases the risk for heart failure, stroke, and
death. By further understanding the mechanisms, we may
find new strategies to treat AF. We performed a combined
analysis of ceRNA networks and immune infiltration as-
sociated with AF to explore the molecular mechanism. First,
we performed GSEA to analyze the significant difference
between AF and SR groups for the integrated data set. Gene
sets related to cardiac muscle hypertrophy, collagen binding,
innate immune response, chemokine signaling pathway,
renin angiotensin system, and T cell receptor signaling
pathway were differentially enriched with AF phenotype.
+e chemokine signaling pathway plays a key role in car-
diovascular disease. For example, chemokines and their
receptors are important in the recruitment and activation of
immune cells and the persistence of the local inflammatory
response in atherosclerosis [23]. Chemokines and their
receptors have also been shown to be involved in the
pathophysiology of cardiac remodeling and heart failure
resulting from excessive pressure load [24]. +e renin an-
giotensin system is known to be closely associated with
mechanism of AF development. +e atrial electrical and
structural remodeling are the core part of AF, and the ac-
tivation of the renin-angiotensin-aldosterone system
(RAAS) contributes to atrial remodeling [25]. Conversely,

studies have demonstrated that renin-angiotensin system
inhibitors can delay heart remodeling in patients with AF
[26] and prevent recurrence of AF after ablation [27]. So,
GSEA indicated that those gene sets in AF patients were
primarily involved in cardiac muscle, immune, and in-
flammatory responses.

Next, we performed two different methods (WGCNA
and LIMMA method) to screen CGs related to AF from the
integrated data set. Together with DE circRNAs and DE
miRNAs related to AF, the ceRNA network was constructed,
suggesting that these mRNAs, miRNAs, and circRNAs in the
circRNA-miRNA-mRNA ceRNA network could play an
important role in the pathogenesis of AF. GO functional
enrichment analysis revealed that these genes in the ceRNA
network were significantly involved in the regulation
of lymphocyte and mononuclear cell proliferation and
immune receptor activity. KEGG pathway analysis results
were predominantly enriched in “Chemokine signaling
pathway” and “Cytokine–cytokine receptor interaction.”
According to GO and KEGG results, ceRNA network about
AF in this study was also mainly correlated with inflam-
mation and immunity. Subsequently, we constructed a PPI
network based on 55 mRNAs in the ceRNA network and
used the MCC algorithm in the CytoHubba plug-in to filter
10 hub genes (CCR5, CXCR4, TLR8, CXCL12, C5AR1,
HCK, TNFSF13B, IRF8, MPEG1, and LAPTM5). Among
them, the highest scored gene was CCR5. Research has
shown that CCR5 is involved in autoimmune and inflam-
matory diseases such as rheumatoid arthritis [28] by reg-
ulating the activation and migration of immune cells. And
studies also have indicated that CCR5may play a role in Ang
II-induced hypertension and vascular dysfunction [29], as
well as in the development of arthrosclerosis and cardio-
vascular disease [30]. Additionally, CCR5 inhibition protects
against pressure overload-induced cardiac dysfunction
through P38 and ERK1/2 signaling pathways [31].+erefore,
we speculated that CCR5 may be implicated in the patho-
genesis of AF through immune and inflammatory responses,
which needs to be further explored.

+en, CIBERSORT was used to study immune infil-
tration in AF. According to the study, we found that an
increase in monocytes and neutrophils, along with a de-
crease in dendritic cells and regulatory Tcells (Tregs), might
be linked to AF pathogenesis. And our bioinformatics
analysis showed 7 hub genes (C5AR1, CXCR4, HCK,

Table 2: +e basic information of the 9 circRNAs in the ceRNA subnetwork.

CircRNA ID logFC P Value Chr Genomic length Strand Gene symbol
hsa_circ_0001615 3.09 0.007 6 411 − PHIP
hsa_circ_0004390 3.24 0.008 1 754 − LPAR3
hsa_circ_0004771 3.02 0.006 21 203 − NRIP1
hsa_circ_0005299 3.73 0.001 3 278 − SHQ1
hsa_circ_0002103 3.85 0.012 17 691 + NLK
hsa_circ_0006725 3.14 0.041 5 575 + RHOBTB3
hsa_circ_0079284 3.55 0.015 7 321 − RNF216
hsa_circ_0001190 3.31 0.003 21 1568 + DYRK1A
hsa_circ_0004979 3.06 0.006 18 308 + ZNF236
Positive logFC values correspond to upregulated circRNAs. Chr, chromosome; FC, fold change.
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LAPTM5, MPEG1, TLR8, and TNFSF13B) were associated
with those 4 AF-related immune cells, and these genes may
be able to predict AF based on the ROC curve analysis
(0.7<AUC< 1). So, we conjectured that these 7 genes may
be involved in AF pathogenesis by regulating these 4 im-
mune cells.

Ulteriorly, we performed a combined analysis of
circRNA-miRNA-hub gene subnetwork and immune in-
filtration associated with AF. It has been found that in-
flammatory infiltration of myocardium, including
neutrophils and inflammation markers, may contribute to
AF [32]. Neutrophils dominate the inflammatory cells in AF
patients who undergo pericardiotomy, atriotomy, or cath-
eter ablation according to some studies [33, 34]. Further-
more, elevated neutrophil-to-lymphocyte ratio (NLR) has
been shown to be independently associated with a higher
risk of all-cause mortality and combined end point events in
patients with AF and to be an independent predictor of long-
term prognosis in AF patients [35]. Our study also found
neutrophils were upregulated in AF tissues. We found that
T cell regulatory (Tregs) proportion in atrial tissues of AF
patients was significantly lower, which was similar to the
results of Chen et al. [36]. And they validated IL-6-miR-210
inhibits Tregs function by targeting Foxp3 to promote atrial
fibrosis. Recently, we downloaded immune genes from the
database and constructed the immune cell-related ceRNA
subnetwork through bioinformatics analysis, which the
results showed that Tregs were also underexpressed in atrial
auricular tissue of AF [37]. One more study revealed that
Tregs alleviate myocardial fibrosis and cardiac hypertrophy
in hypertensive mice caused by angiotensin II [38]. +is

suggests that neutrophils and Tregs might be important core
cell subtypes in driving AF disease progression. Further-
more, our finding showed that C5AR1 was highly expressed
in the auricle tissue of AF patients and was positively as-
sociated with neutrophils and negatively correlated with
Tregs. Studies confirmed that high levels of C5a and its
interaction with C5aR1 led to excessive activation of central
neutrophil functions [39, 40]. Meanwhile, C5AR1 was in-
volved in cardiovascular disease. C5aR1 activation has been
reported within atherosclerotic plaques [41, 42], and
C5AR1-deficient mice revealed obviously mitigate cardiac
remodeling and inflammation after Ang II infusion [43].
From our constructed circRNA-miRNA-hub gene subnet-
work, two downregulated miRNAs (miR-1246 and miR-
483-5p) and their upregulated C5AR1 target gene were
regulated by four upstream upregulated circRNAs. Study
found that miR-1246 in endothelial progenitor cell (EPC)-
derived exosomes enhanced in vitro and in vivo
angiogenesis in myocardial infarction (MI), and these im-
provements may be involved in the reduction of myocardial
injury and cardiac fibrosis after MI [44]. +erefore, we
hypothesized that low expression of miR-1246 in patients
with AF may ultimately lead to atrial fibrosis by targeting
and enhancing fibrosis-related gene expression. +ese re-
ports suggested that circ_0005299–miR-1246–C5AR1 reg-
ulatory axis could be associated with the immune
mechanism of AF.

Previous study has shown that dendritic cells are present in
damaged heart tissue and play a significant role in cardiac
remodeling after MI [45]. However, we found that activated
dendritic cells were downregulated (P< 0.05), and resting
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Figure 8: Analyses of immune infiltration in atrial fibrillation. +e relative percentage (a) and heatmap (b) of 22 types of immune cells. (c)
Principal component analysis of immune cells in atrial fibrillation and normal controls. (d) +e correlation of the infiltration of innate
immune cells. (e) Comparison of 22 immune cell subtypes between patients in atrial fibrillation and controls.
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Figure 9: Pearson correlation coefficients were used to calculate the relationship between hub genes and immune cells related to atrial
fibrillation (a–j).
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dendritic cells tended to be upregulated (P> 0.05) in the left
atrial tissue of patients with AF. We speculated that di�erent
timepoints of the AF onset may determine the contrary results.

In AF patients, the proportion of intermediate mono-
cytes was higher compared with the control group [46],
especially in those with low-voltage zones [47]. Further-
more, the activation of monocytes, more speci�cally their
enhanced migration ability, is crucial in the pathogenesis of
atrial remodeling in AF patients [48, 49]. Our analysis also
found that monocytes were highly expressed in atrial tissues
of AF patients, and GO enrichment analysis of genes in the
ceRNA network was mainly enriched in regulating the

proliferation of monocytes, which was positively correlated
with HCK gene. Study showed that HCK gene expression
was increased in LPS-stimulated human peripheral blood
monocyte-derived macrophages [50]. And HCK as critical
for regulating alternative activation of monocytes [51]. Our
study found that Tregs were also negatively associated with
other 5 hub genes (CXCR4, LAPTM5, MPEG1, TLR8, and
TNFSF13B) in AF tissues. It has been reported that CXCR4
and LAPTM5 are involved in the negative regulation of
Tregs [52, 53]. Moreover, Wang et al. [54] showed that
CXCR4 is overexpressed in AF patients, which may lead to
the occurrence of AF by modulating atrial �brosis and
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Figure 10: �e receiver operator characteristic curves of the hub immune-related genes for atrial �brillation. (a) C5RA1, (b) CXCR4, (c)
HCK, (d) LAPTM5, (e) MPEG1, (f ) TLR8, and (g) TNFSF13B.
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structural remodeling. Additionally, the ceRNA subnetwork
found that downregulated miR-623 and its upregulated
HCK and CXCR4 target genes were coregulated by
circ_0006725 and circ_0079284. Ring Finger 216 (RNF216)
is the host of has_circRNA_0079284, and study reported
that it may be involved in innate immune signaling [55].
Study on intervertebral disc degeneration has shown that
miR-623 directly bound CXCL12 to reduce levels of in-
flammatory factors in LPS-injured nucleus pulposus cells
[56]. +ose indicated that circRNA_0079284, miR-623,
HCK, and CXCR4 may play roles in immune and inflam-
mation. Our result suggested that the interaction between
circRNA_0079284-miR-623-HCK/CXCR4 may be associ-
ated with the immune mechanism of AF. Other circRNA-
miRNA-mRNA regulatory axes composed of these 7 hub
genes in the ceRNA subnetwork may also be related to
immunity (Figure 6(e)).

However, there are some limitations to this literature.
First, only a few samples were used for miRNA and circRNA
microarray analysis. Second, not all samples used for miRNA
microarray analysis were from left atrial appendage, and
tissue samples from different parts of atrial of patients with AF
did not achieve homogeneity between samples, which may
produce bias to the results. +ird, in this study, the genes that
predicted AF were derived from tissue samples, and the
biomarkers for diagnosing persistent AF need to be tested in
blood samples from those patients. Finally, further in vitro
and in vivo experiments are needed in the future to validate
the results deduced by bioinformatics analysis.

5. Conclusion

+rough the analysis of immune-related ceRNA networks,
our findings provide novel insight into the molecular
mechanisms underlying the progression of AF. And we
found that the circ_0005299–miR-1246–C5AR1 and
circRNA_0079284-miR-623-HCK/CXCR4 regulatory axises
may be associated with the immune mechanism of AF.
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