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Colorectal cancer (CRC) is the most prevalent type of malignant tumor of the gastrointestinal tract. In the current study, we
characterized the landscape of genomic alterations in CRC patients. Based on the results of whole-exome sequencing (WES), we
identified 31 significantly mutated genes. Among them, several genes including TP53, KRAS, APC, PI3KCA, and BRAF were
reported as significantly mutated genes in previous studies. In the current study, the most frequently mutated gene was TP53,
which encodes tumor suppressor p53, affecting approximately 60% of CRC patients. In addition, we performed the expression
profiles of significantly mutated genes between the normal group and tumor groups and identified 20 differentially expressed
genes (DEGs); among them, CSMD3, DCHS2, LRP2, RYR2, and ZFHX4 were significantly negatively correlated with PFS.
Moreover, consensus clustering analysis for CRC based on the expression of significantly somatic mutated genes was performed.
In total, three subtypes of CRC were identified in CRC, including cluster1 (n� 453), cluster2 (n� 158), and cluster 3 (n� 9), based
on expression level of significantly somatic mutated genes. Clinicopathological features analysis showed subtype C1 had the
longest progression-free survival (PFS) with median time of 8.2 years, while subtypes C2 and C3 had 4.1 and 2.7 years of PFS,
respectively. Moreover, we found three subtypes related to tumor infiltration depth, lymph node metastasis, and distant me-
tastasis. Immune infiltration analysis showed the tumor infiltration levels of B cell native, T cell CD8+, T cell CD4+ memory
activated, T cell gamma delta, NK cell resting, macrophage M0, macrophage M2, myeloid dendritic cell activated, mast cell
activated, and mast cell resting significantly changed among the three groups, demonstrating the three subgroups classified by 22
somatically significantly mutated genes had a high capacity to differentiate patients with different immune statuses, which is
helpful for the prediction of immunotherapy response of CRC patients. Our findings could provide novel potential predictive
indicators for CRC prognosis and therapy targets for CRC immunotherapy.

1. Introduction

Colorectal cancer is the most prevalent type of malignant
tumor of the gastrointestinal tract [1]. In 2020, colorectal
cancer is the third most common cancer, with more than
193000 diagnosed cases [2], leading to the second cause of
cancer-related deaths, with around 830000 fatalities. Studies
have found that nearly 50% of colorectal cancer patients will
eventually have distant metastases, and the resistance of
colorectal cancer to chemotherapy drugs has led to treat-
ment failure and tumor metastasis invasion [3].

Immunotherapy, in addition to surgery and chemotherapy,
has been identified as a promising treatment for specific
subtypes of CRC [4]. However, there were differences in
prognosis amongst patients with the same disease stage,
which were linked to distinct genetic abnormalities,
underlining CRC’s molecular heterogeneity.

*e human immune system will go through three stages
of tumor development: immune clearance, immune balance,
and immune escape [5]. Based on this theory, immuno-
therapy plays a role to restore or enhance the antitumor
effect of the immune system. With the development of
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tumor cytology, immunotherapy has been paid more and
more attention in the treatment of malignant tumors and has
achieved good efficacy in some subtypes of colorectal cancer
patients [6]. Currently, the research related to immune
checkpoint inhibitors is relatively mature and widely used in
tumor immunotherapy. Immunotherapy drugs primarily
target PD-1, PD-L1, and CTLA-4 [7]. At present, PD-1/PD-
L1 inhibitors are relatively commonly used in the immu-
notherapy of colorectal cancer, and their efficacy is relatively
favorable in patients with deficient mismatch repair
(dMMR) or microsatellite instability-high (MSI-H) types,
and the efficacy in patients with other subtypes needs to be
further explored, in which the level of PD-L1 expressionmay
have an impact on the efficacy [8]. However, mismatch
repair proficient (MMR) or microsatellite stable (MSS) types
account for the majority of patients with colorectal cancer.
In recent years, some researchers have begun to focus on the
immune escape mechanism of pMMR/MSS colorectal
cancer, trying to convert its immune “cold environment”
into a “hot environment.” Recent advances in genomics and
bioinformatics have facilitated identification of new im-
mune-related genes through cancer genome sequencing [9].
*erefore, it is promising to develop a novel genomic and
expression-based classification of CRC with an improved
clinical significance.

In this study, we compared gene expression differences
between wild-type genes and mutant genes using expression
profiles and genomic data, as well as performed Cox re-
gression analysis. In addition, bioinformatics analysis was
employed to investigate the clinical profile and distinct
characteristics of immunogenicity of different subtypes of
CRC. Our findings could provide novel potential predictive
indicators and therapy targets for CRC immunotherapy.

2. Materials and Methods

2.1. Data Acquisition. TCGA database (https://portal.gdc.
cancer.gov/) was used to extract mutational data, RNA-seq
data, and clinical medical information of CRC patients. Our
study included a total of 536 CRC samples, which included
536 CRC tumor samples and 536 adjacent normal samples.

2.2. Unsupervised Consensus Clustering Analysis. Using the
Consensus Cluster Plus R package, we conducted an un-
supervised consensus analysis [10]. In a brief, a graph of the
consistency matrix based on the k value is displayed. Fur-
thermore, for each k, the empirical cumulative distribution
function plot shows a uniform distribution. *e cluster con-
sensus graph depicts the cluster consensus values for various k
values. A higher cluster consensus value indicates a lower level
of cluster stability.*e average consensus value is drawn from a
project and members of a consensus cluster are represented by
a project consensus graph. Multiple project consensus values
with varying k values are displayed in a project.

2.3. Immune Signature Analysis in Molecular Subtypes.
*e ESTIMATE algorithm was used to calculate expression
scores for microenvironmental factors [11]. Tumor samples

were analyzed with TIMER [12] for six tumor-
infiltrating lymphocytes, including CD8+ T cells, dendritic
cells, neutrophils, B cells, macrophages, and CD4+ T cells.
Heatmaps were used to visualize the expression scores for
immune signatures in different subgroups of CRC. Immune
signatures and checkpoint gene expression levels were also
examined across all molecular subtypes.

2.4. Differentially Expressed Gene Analysis. DEGs between
different clusters of CRC were determined by Student’s t-
test, observing cutoff values |log2 (fold change)|> 1 and p

values <0.05.

3. Results

3.1. 4e Landscape of Somatic Mutations of CRC. 536 WES
samples data were conducted to analyze the landscape of
somatic mutations of CRC. *ere were 525 samples
(97.95%) altered in a total of 536 samples (Figure 1(a)). In
addition, 31 genes were identified as significantly mutated
genes including APC, TP53, KRAS, PIK3CA, TNN, SYNE1,
MUC16, FAT4, RYR2, OBSCN, ZFHX4, LRP1B, DNAH5,
DNAH11, FAT3, CSMD3, FBXW7, PCLO, CSMD1,
ABCA13, USH2A, RYR1, FLG, NEB, RYR3, ADGRV1,
LRP2, CCDC168, DCHS2, ATM, and A1BG (Figure 1(a)).
*e variant classification can be divided into 9 types, among
which missense mutations account for the majority
(Figures 1(b) and 1(c)). *e predominant somatic mutation
types were C>T (Figure 1(d)). *e median variants per
sample were 106. TTN, APC, MUC16, SYNE1, TP53, FAT4,
KARS, RYR2, OBSCN, and PIK3CA were the top 10 mutant
genes (Figures 1(e) and 1(g)).

3.2. Identification of Survival-Associated Somatic Mutated
Genes. To investigate the link between somatic mutations
and CRC prognosis, 31 significantly mutated genes were
divided into two groups, respectively. We identified 4 genes
SYNE1, TNN, CCDC168, and NEN mutations were sig-
nificantly related to short overall survival (Figures 2(a)–
2(d)). In addition, we performed the expression profiles of
significantly mutated genes in one normal group and two
tumor groups. We found that 20 genes were dramatically
changed between the normal colon tissue and tumor group
(Figure 3(a)). Among them, DNAH5, TP53, OBSCN, LRP2,
NEB, PCLO, MUC16, USH2A, and CCDC168 were sig-
nificantly upregulated. CSMD1, SYNE1, RYR1, RYR3, APC,
ADGRV1M, DCHS2, KRAS, LRP1B, and FAT4 were sig-
nificantly downregulated (Figure 3(a)) Furthermore, the
relationship between the expression of somatically mutated
genes and progression-free survival (PFS) in CRC was in-
vestigated. We identified high expressions of CSMD3,
DCHS2, LRP2, RYR2, and ZFHX4 were significantly neg-
atively correlated with PFS in CRC (Figures 3(b)–3(f)).

3.3. Consensus Clustering Analysis for CRC Based on the
Expression of Significantly Somatic Mutated Genes.

2 Genetics Research

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/


10417

0
APC
TP53
TTN

KRAS
SYNEI

MUC16
PIK3CA

FAT4
RYR2

OBSCN
7FHX4
LRP1B

DNA115
DNA1111

FAT3
CSMD3
FBXW7

PCLO
CSMDI

ABCA13
USH2A

RYRI
FLG
NEB

RYR3
ADGRV1

LRP2
CCDC168

DCHS2
ATM

A1BG

Altered in 525 (97.95%) of 536 samples.

0 403

75%
58%
51%
40%
29%
28%
25%
24%
21%
19%
19%
18%
18%
17%
17%
17%
17%
17%
17%
16%
16%

16%
15%

15%
15%
14%
14%
14%
13%
13%
1%

Nonsense_Mutation

Missense_Mutation

Frame_Shi�_Del

Frame_Shi�_Ins

Splice_Site

In_Frame_Ins

In_Frame_Del

Multi_Hit

Groups
High exp
Low exp
NA

(a)
Variant Classification

Missense Mutation

Frame_Shi�_Del

Nonsense_Mutation

Frame_Shi�_Ins

Splice Sile

In_Frame_Ins

In_Frame_Del

Translation_Start_Site

Nonstop Mutation

0 50000 100000 150000 200000

(b)

0 50000 100000 150000 200000

Variant Type

SNP

INS

DEL

(c)
SNV Class

T>G

T>A

T>C

C>T

C>G

C>A

20499

9091

37309

161499

7468

56802

0.00 0.25 0.50 0.75 1.00

(d)

Variants per sample
Median: 106

10417

6944

3472

0

(e)

Figure 1: Continued.
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Consensus clustering was performed using the Consensus
Cluster Plus R program. At consensus index, with k� 3, the
cumulative distribution function has the lowest rangeability
(Figure 4(a)). At k� 3, the analysis had the best delta area
scores (Figure 4(b)). In total, three subtypes of CRC were
identi ed in 620 CRC samples, including cluster1 (n� 453),
cluster2 (n� 158), and cluster 3 (n� 9) based on expression
level of signi cantly somatic mutated genes (Figures 4(c) and
4(d)). Our data show that clustered subtypes de ned by the
expression level of somatically mutated genes are closely
related to the heterogeneity of CRC patients (Figure 5(a)).

3.4. Clinicopathological Features Analysis of Somatically
Mutated Genes Related Subgroups of CRC. Unsupervised
clustering based on subgroups formed from mutational

signatures and critical gene changes was carried out to es-
tablish genomic categorization of CRC linked with patients’
clinical and pathological features and progression-free
survival. As shown in Figure 5(b), subtype C1 had the
longest PFS with a median time of 8.2 years, while subtypes
C2 and C3 had 4.1 and 2.7 years PFS, respectively. In ad-
dition, we found that three subtypes related to the grade and
metastasis stage. Subtype C1 contains more early stage,
subtype C2 is intermediate malignancy, while subtype 3 has
the greatest malignancy (Figures 5(c)–5(f )).

3.5. Association between Immune In�ltration and Genomic
Consensus Cluster in CRC. In subtyping analysis, we com-
pared the immune in ltration of the three subgroups by the
CIBERSORT algorithm. We found that B cell native, T cell
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Figure 1: Landscape of somatic mutations of CRC. (a) Oncoplot and waterfall plot showing the somatic landscape of top 31 mutated genes
in CRC. �e distribution of variant classi cation (b), variant type (c), and SNV class (d) present. (e)-(f ) Mutation load of each sample
(variant classi cation type), and stacked bar graph shows the top ten mutated genes, including TTN, APC, MUC16, SYNE1, TP53, FAT4,
KARS. RYR2, OBSCN, and PIK3CA.
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CD8+, T cell CD4+ memory activated, T cell gamma delta,
NK cell resting, macrophage M0/M2, myeloid dendritic cell
activated, mast cell activated, and mast cell resting had
di¥erences among the three groups (Figure 6).

Additionally, a higher number of B cell native were
produced in subtype C3 than in other subtypes; T cell CD4+
memory resting/activated and NK cell resting were signif-
icantly lower in C3 than in C1 and C2 subtypes; macrophage
M0/M2, myeloid dendritic cell activated, and mast cell ac-
tivated were signi cantly higher in C2 than in C1 and C3
subtypes; interestingly, mast cell resting was signi cantly
lower in C2 than in C1 and C3 subtypes (Figures 6(a) and
6(b)).

4. Discussion

In the current study, we characterized the landscape of
genomic alterations in CRC patients. Based on the results of
WES, we identi ed 31 signi cantly mutated genes. Among
them, several genes including TP53, KRAS, APC, PI3KCA,
and BRAF were reported as signi cantly mutated genes in

previous studies. In the current study, the most frequently
mutated gene was TP53, which encodes tumor suppressor
p53, a¥ecting approximately 60% of CRC patients. A pre-
vious study showed that loss of p53 transcriptional activity
leads to uncontrolled cell growth in various organs, in-
cluding the colon [13]. In addition, KRAS mutations are the
main intestinal cancer markers. Studies showed that 30% of
human malignant tumors were related to KRAS gene mu-
tation. �e mutated KRAS is activated and unable to create
normal RAS protein, causing the intracellular signal to be
disrupted, resulting in uncontrolled cell proliferation and
cancer [14]. Furthermore, mutations in the APC gene are the
molecular pathological basis of adenomatous polyposis
(FAP) and play a crucial role in the development of sporadic
colorectal cancer [15]. APC protein de ciency results in
β-catenin accumulation in the cytoplasm; this leads to
sustained transcriptional activation of TCF-mediated genes
and promotes colorectal cancer progression [16]. BRAF
mutations are observed in 8–12% of patients with advanced
disease, and a valine amino acid substitution (V600E) in
exon 15 is the most common alteration. BRAF mutations in
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Figure 5: Clinicopathological features analysis of somatically mutated genes related subgroups of CRC. (a) Heatmap showing the expression
levels of somatically mutated genes in subgroups of CRC. (b) Kaplan–Meier survival analysis of the correlation between subgroups and PFS
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Figure 6: Association between immune in ltration and genomic consensus cluster in CRC. (a) Heatmap analysis showing immune
in ltration of immune cells in three subgroups by the CIBERSORT algorithm. (b) Box-plot analysis showing immune in ltration levels in
three subgroups by the CIBERSORT algorithm.
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CRC cause MAPK/ERK signaling abnormal activation,
which affects cell growth and differentiation pathways [17].
Mutations in the PIK3CA gene cause the creation of an
altered p110 subunit, which permits PI3K to hypersignal
without being regulated, triggering malignant cell actions
such as proliferation and migration [18]. In addition to these
commonly mutated genes, genomic mutations in SYNE1,
TTN, NEB, and CCDC168 were found to be associated with
a poor prognosis of colorectal cancer in this study. SYNE1
encodes a spectrin repeat-containing protein Nesprin-1 that
localizes to the nuclear membrane. Mutation of SYNE1 in
exonic rs9479297 leads to the upregulation of proteins
SYNE1, which may contribute to cell proliferation and
migration in hepatocellular and transitional cell carcinoma
[19]. Loss of Nesprin-1 in CRC cells may alter cell destiny,
contributing to carcinogenesis. In our study, somatic-mu-
tated SYNE1 cases displayed a worse overall survival.
Djulbegovic et al. demonstrated that in ocular surface
squamous neoplasia, this gene mutation is the most com-
mon genetic abnormality. TTN mutations are also linked to
resistance to topical interferon alpha-2b (IFN-2b) therapy,
which promotes chromosomal instability, oncogenesis, and
a changed response to IFN-2b treatment. Xie et al.
discovered that TTNmutation was enriched in samples with
high immunostimulatory signatures and that the mutation
load within TTN implies high TMB status, which is con-
sistent with our finding that somatically mutated TTN cases
had a lower overall survival [20]. NEB encodes nebulin, a
giant protein component of the cytoskeletal matrix. In taxol-
resistant ovarian cancer cells, NEB along with DCDC2,
ANKRD18B, ALDH1A1, and ITGBL1 were overexpressed
suggesting the involvement of these AR-related genes in taxol
resistance. NEB was also identified as a potential cancer-re-
lated gene, but research into NEB in CRC is still in its early
stages. In our study, we demonstrate that NEB-mutated cases
are associated with the worse overall survival in CRC patients.

In addition, we performed the expression profiles of
significantly mutated genes in one normal group and two
tumor groups; we identified 20 DEGs; among them
CSMD3, DCHS2, LRP2, RYR2, and ZFHX4 were signifi-
cantly negatively correlated with PFS. Lu et al. discovered
that CSMD3 is linked to tumor mutation burden and
immune infiltration in ovarian cancer patients [21] and was
identified as a potential driver gene in prostate adeno-
carcinoma. However, it is unclear whether CSMD3 is a
driver protein in CRC and how CSMD3 contributed to
tumorigenesis. DCHS2 is a big protein with numerous
cadherin domains that are thought to play a role in cell
adhesion. *is gene may be relevant in the stomach and
colorectal malignancies with high microsatellite instability,
according to genome-wide association studies. It suggests
that DCHS2 may relate to the immune response of MSI-H
[22]. LRP2/megalin was one of the first endocytic cargos
identified for the Dab2 adaptor and has been found related
to poor prognosis in various cancer. In thyroid tumors,
LRP2 mediated the suppressive effect of metformin on
cancer proliferation by blocking JNK signaling [23]. LRP2/
megalin expression influences melanoma cell growth and
survival rates in frequently acquired melanoma tumors

[24]. In addition, LRP2 was reported to relate to fibrosis-
associated diseases and cancer through the TGF-β pathway.
Furthermore, RYR2 is an important player in steroid
metabolism and cancer research. Several studies uncovered
that RYR2 mutation played a positive side in tumor
prognosis. Wei et al. found that RYR2 3′UTR polymor-
phisms remained significant in the genetic susceptibility of
progesterone receptor positive breast cancer [25]. Liu et al.
found the RYR2 mutation was linked to a greater TMB and
a better clinical outcome by enhancing the antitumor
immune response in breast cancer and esophageal ade-
nocarcinoma [26]. In nonsmall cell lung cancer, RYR2
mutation may prolong survival via downregulation of
DKK1 and upregulation [27]. In this study, we found that
RYR2 expression was negatively related to the PFS in CRC.
We speculate that the heterogeneity that exists between
tumors causes RYR2 to exhibit different functions in co-
lorectal cancer or due to the insufficient sample size of the
analyzed data. ZFHX4 is a 397 kD putative transcription
factor with 4 homeodomains and 22 zinc fingers that were
discovered lately [28]. Chudnovsky et al. reported ZFHX4
interacts with CHD4 to govern the glioblastoma tumor
initiating cell state [28]. ZFHX4 is also found as a prog-
nostic factor for ovarian serous cystadenocarcinoma,
esophageal cancer, and lung adenocarcinoma. Under-
standing the role of pivotal genetic variations in CRC
cancer development and growth is a promising direction
for future research.

CRC is a highly heterogeneous disease, and clinically
similar tumors with similar pathology differ significantly in
terms of treatment response and patient survival. Pathologic
staging is critical to the efficacy of biological therapy for
CRC, and the traditional classification of CRC does not fully
reflect tumor heterogeneity and cannot accommodate the
needs of modern cancer therapy. *e concept of molecular
classification is to shift the classification of tumors from
morphological to molecular characteristics through com-
prehensive molecular analysis techniques. Afterward, with
the in-depth study of the mechanism at the molecular level
and the advancement of sequencing technology, the mo-
lecular typing methods of tumors have been expanded from
relying on single or few markers detection to the stage of
spectroscopic typing, which has led more researchers to
perform molecular typing of CRC. However, there is no
uniform standard for molecular typing of CRC for now.
After analyzing 18 different CRC gene expression datasets,
the International CRC subtyping collaborative (CRCSC)
established 4 CRCmolecular signature consensus subgroups
(CMS) in 2015, including CMS1, CMS2, CMS3, and CMS4
[29]. Among them, CMS1 (MSI immune subtype) is dis-
tinguished by MSI, BRAF mutation, high CpG island
methylator phenotype (CIMP), immune infiltration, and
poor survival; CMS2 (typical) has a high somatic copy
number alterations (SCNA) level; CMS3 (metabolic) is
characterized by low SCNA and CIMP, KRASmutation, and
metabolic dysregulation; CMS4 (mesenchymal) is charac-
terized by high SCNA, stromal infiltration, TGF activation,
angiogenesis, and short survival. CMS typing is currently
considered to be the most convincing method for colorectal
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cancer staging, and many researchers have conducted studies
on CRC-targeted therapy based on this method. In this study,
we identified the CRC subtype associated with the PFS. As
shown in Figure 5(b), subtype C1 had the longest PFS with a
median time of 8.2 years, while subtypes C2 and C3 had 4.1
and 2.7 years PFS, respectively. Patients’ clinicopathological
staging was also related to the CRC subtype that we identified.

Following the determination of the three subtypes based
on the expression of CRC-related mutated genes, the im-
mune infiltration of the three groups was evaluated by using
the CIBERSORT method. We demonstrated that B cell
native, T cell CD8+, T cell CD4+ memory activated, T cell
gamma delta, NK cell resting, macrophage M0, macrophage
M2, myeloid dendritic cell activated, mast cell activated, and
mast cell resting had differences among the three groups.
According to the findings, the three subgroups classified by
22 somatically significantly mutated genes had a high ca-
pacity to differentiate patients with different immune sta-
tuses, which is helpful for the prediction of immunotherapy
response of CRC patients.

*is study still has some limitations. First, despite the
data from CRC patients used in this study being extracted
from TCGA, the sample size was still small; second, despite
the obvious clinical significance of the newly proposed
subtypes, little is known about their underlying mechanism.
As a result, we must investigate the molecular mechanisms
of the three subtypes. *ird, there is no validation of the
functions of hub genes.

Finally, the current investigation confirmed the pre-
dictive significance of somatically altered genes and offered a
novel genomic categorization with clinical relevance. *is
discovery presented a foundation for CRC research and
molecular classification of CRC types to guide precision
therapy by interpreting genomic data.
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