
Research Article
Necroptosis-Related Prognostic Signature and Nomogram
Model for Predicting the Overall Survival of Patients with
Lung Cancer

Yunpeng Xuan , Xiangfeng Jin , Mingzhao Wang , and Zizong Wang

Department of �oracic Surgery, �e Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China

Correspondence should be addressed to Zizong Wang; wangzizong@qdu.edu.cn

Received 6 May 2022; Accepted 21 July 2022; Published 31 August 2022

Academic Editor: Yaying Sun

Copyright © 2022YunpengXuan et al.+is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Necroptosis is a type of programmed cell death mode and it serves an important role in the tumorigenesis and tumor
metastasis. +e purpose of this study is to develop a prognostic model based on necroptosis-related genes and nomogram for
predicting the overall survival of patients with lung cancer. Method. Differentially expressed necroptosis-related genes (NRDs)
between lung cancer and normal samples were identified. Univariate and LASSO regression analyses were performed to establish a
risk score (RS) model, followed by validation within TCGA and GSE37745. +e correlation between RS model and tumor
microenvironment, mutation status, or drug susceptibility was analyzed. By combining clinical factors, nomogram was developed
to predict 1-, 3-, and 5-year survival probability of an individual. +e biological function involved by different risk groups was
conducted by GSEA. Results. A RS model containing six NRDs (FLNC, PLK1, ID1, MYO1C, SERTAD1, and LEF1) was con-
structed, and patients were divieded into low-risk (LR) and high-risk (HR) groups. Patients in HR group were associated with
shorter survival time than those in the LR group; this model had better prognostic performance. Nomogram based on necroptosis
score, T stage, and stage had been confirmed to predict survival of patients. +e number of resting NK cells and M0 macrophages
was higher in HR group. In addition, higher tumor mutational burden and drug sensitivity were observed in the HR group.
Patients in HR group were involved in p53 signaling pathway and cell cycle. Conclusion. +is study constructed a robust six-NRDs
signature and established a prognostic nomogram for survival prediction of lung cancer.

1. Introduction

Lung cancer is a common cancer worldwide and a leading
cause of cancer-related death. It is estimated that there are
about 1.79 million deaths and 2.2 million new cases each
year [1]. With a general understanding of the molecular
biology of disease, the application of predictive biomarkers
and improvement of therapy methods have positively af-
fected the outcomes of many patients with lung cancer [2].
Meanwhile, the discovery of predicted signatures has created
novel opportunities for targeted therapy and immuno-
therapy of lung cancer [3]. However, effective targets that
can be used to predict prognosis and improve clinical
treatment of patients are still lacking.

Necroptosis is a type of programmed cell death mode
independent of caspase activation, and it is mainly activated

by the formation of necrosome [4]. Evidence suggests that
necroptosis serves an important role in the biological pro-
cesses of various tumors, including tumorigenesis and tumor
metastasis [5, 6]. However, the regulation mechanism of
necroptosis on tumor cells is complex. Some studies suggest
that necroptosis cells and cancer are friends.+e cell rupture
caused by necroptosis releases intracellular components
such as inflammatory molecules to the surrounding envi-
ronment, promoting the inflammatory response, which in
turn causes damage to healthy tissue. +ese damages may
ultimately prevent the effectiveness of cancer therapy; in
addition, it may promote the spread of cancer cell [7, 8].
Notably, necroptosis is more reported as a foe of cancer. In
brief, it may trigger the antitumor immunity in cancer
treatment and can be regarded as a promising new target for
tumor therapy [9]. An in vivo experimental study shows that
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induction of necroptosis can significantly increase survival
time and reduce the growth and metastasis of tumor in mice
with pancreatic cancer [10]. Moreover, the combined
treatment of berberine and cisplatin can induce the nec-
roptosis of ovarian cancer cells via activating the RIPK3-
MLKL pathway and finally may improve the anticancer
effect of chemotherapy drugs [11]. +erefore, it is necessary
to discover potential biomarkers related to necroptosis,
which can help to improve the early diagnosis and anti-
cancer treatment.

In lung cancer, multiple signal pathways have been re-
ported involving in necroptosis process, such as TNF-alpha
pathway [12] and AMPK/mTOR and JNK pathways [13]. A
previous study has explored the relationship of necroptosis-
related regulators with clinical features and prognosis of
patients with lung cancer. For example, Park et al. [14]
identified three key regulators related to necroptosis, RIPK1,
RIPK3, and MLKL, which were downregulated in nonsmall
cell lung cancer (NSCLC); they could be used to predict early
recurrence after radical resection. Lim et al. [15] indicated
that necroptosis-related factors such as RIPK3 and PEL11
were positively associated with survival time of patients with
stage I lung squamous cell carcinoma. However, only a few
studies have investigated the role of necroptosis-related
signatures in the prognosis of lung cancer.

In the present study, we first identified necroptosis-re-
lated differentially expressed genes (NRDs) between lung
cancer and normal samples and then the construction of a
RS model via LASSO regression analysis. Moreover, a no-
mogrammodel was generated by a combination with clinical
features of patients for predicting the probability of survival
in 1, 3, and 5 years.+e new developed prognostic model can
effectively predict prognosis of lung cancer in clinical
practice and can help clinicians to formulate better adjuvant
treatment strategies.

2. Data Sources and Methods

2.1. Data Collection and Preprocessing. +e gene expression
data and clinical follow-up data of patients with lung cancer
were extracted from the Cancer Genome Atlas (TCGA) based
on the UCSC Xena platform (https://xenabrowser.net/). After
excluding the patients with overall survival (OS) time
<30 days, 968 lung cancer and 110 normal samples were
remained for further analyses. Meanwhile, gene expression
data and corresponding clinical information of GSE37745
were retrieved from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/). +is dataset was
analyzed on the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array platform. After re-
moving patients with an OS time of less than 30 days, 194
patients were remained for validation analysis. In addition,
necroptosis-related genes were acquired from GeneCard
online website (https://www.genecards.org/).

2.2. Screening of NRDs between Lung Cancer and Normal
Samples. According to the data in TCGA, limma package
(version 3.34.7) in R4.1.2 was applied to compare the tumor

and normal samples. Differentially expressed genes (DEGs)
in lung cancer vs. normal were identified with the thresholds
of false discovery rate (FDR)< 0.05 and |log2fold change
(FC)|> 1. Pheatmap (version 1.0.8) was used to plot a
heatmap for displaying the DEGs. +en, Venn analysis was
performed to integrate the DEGs and necroptosis-related
genes, and the overlapping genes were defined as NRDs.

2.3. Identification of Prognosis-Related NRDs. To assess the
prognostic value of NRDs, univariate Cox regression anal-
ysis in survival package (version 3.2–13) was performed.
Genes with p< 0.05 were regarded as prognosis-related
NRDs and selected for further analysis.

2.4. Construction and Verification of RS Model. +e prog-
nosis-related NRDs were entered into the LASSO algorithm
using lars package (version 1.2), and optimal gene com-
position was screened via penalty parameter tuning con-
ducted by 10-fold cross-validation. +en, stepwise Cox
regression analysis was performed to build RS model.
Necroptosis score (NS) was calculated using the formula: h0
(t)∗ exp (β1X1 + β2X2 + ... + βnXn); β indicates the re-
gression coefficient and h0(t) indicates the benchmark risk
function.

NS for samples in the TCGA and GSE37745 was cal-
culated, and then patients in the two datasets were separately
divided into low-risk (LR) and high-risk (HR) groups based
on median value of NS. Kaplan-Meier (KM) curve analysis
was performed to assess the differences in survival time
between LR and HR groups. +e predictive performance of
this model was assessed using the areas under the curve
(AUC) values of the receiver-operating characteristic (ROC)
curve.

2.5. Correlation Analysis between NS and Clinicopathology
Factors. After collecting clinical information of patients
with lung cancer in TCGA, the relationship between NS and
clinical factors (T, N, and M status and stage) was analyzed.

2.6. Correlation Analysis between Different Risk Groups and
Tumor Microenvironment (TME). TME is composed of a
variety of immune cells, stromal cells, and extracellular
matrix molecules, which can define the immunophenotype
of cancer and thus affect the prognosis of patients with
cancer [16]. In this study, the proportion of 22 immune cells
in patients from TCGA was calculated by using CIBER-
SORTA (https://cibersort.stanford.edu/index.php). Next,
differential immune cells (DICs) between LR and HR groups
were screened by using Wilcoxon test.

2.7. Mutational Characteristics Analysis of RS Model.
Based on the mutational data obtained from TCGA, the
mutation of each gene in all samples was counted. +e
number of mutations was arranged from large to small, and
the top 20 mutations were selected for display. +en, the
mutation frequency of top 20 genes was calculated by using

2 Genetics Research

https://xenabrowser.net/
https://www.ncbi.nlm.nih.gov/
https://www.genecards.org/
https://cibersort.stanford.edu/index.php


maftools package (version 2.8.0). Moreover, tumor mu-
tation burden (TMB) of samples was calculated, and dif-
ferences in TMB between HR and LR groups were
compared.

2.8.Drug SensitivityAnalysis. +e IC50 value of six common
drugs (cisplatin, cyclopamine, docetaxel, doxorubicin,
gemcitabine, and vinblastine) was collected based on the
Genomics of Drug Sensitivity in Cancer (GDSC) database,
and then the pRRophetic R package was used to predict the
differences in IC50 of patients with lung cancer between LR
and HR groups, which could reflect the chemotherapeutic
response for each sample. Wilcoxon test was used to assess
the difference between the two groups and p< 0.05 was
regarded as statistically significant.

2.9. Independent Prognostic Analysis of RS Model. To assess
whether NS and clinical factors were independently prog-
nostic indicators, univariate and multivariate Cox regression
analyses were conducted. Factors with p< 0.05 were
regarded as significant difference. Results were displayed
using the forest plot.

2.10. Development and Validation of a Nomogram Model.
According to the independent prognostic factors, rms
package (version 6.2–0) was applied to establish a nomo-
grammodel. Calibration curves for the 1, 3, and 5 years were
plotted to observe the consistency between predicted and
actual prognosis. In addition, the significance of predicting
prognosis was evaluated using AUC and KM analysis.

2.11. Gene Set Enrichment Analysis (GSEA). GSEA is an
algorithm used to assess whether a gene set shows a sta-
tistically significant difference between two biological states
[17]. +us, we used GSEA to investigate the pathways
significantly enriched by LR group or HR group; p< 0.05
and |NES| > 1 was the cut-off threshold.

2.12. Statistical Analysis. All statistical analyses were per-
formed using SPSS version 23.0 and R software version 4.2.0.
+e R packages “lars” (version 1.2) and “survminer” (version
0.4.9) were used to construct the prognostic model.
Meanwhile, the “rms package” (version 6.2–0) was used to
develop a nomogram model. KM survival analysis was
applied to assess distinctions in prognosis between HR and
LR with a log-rank p value. +e Wilcoxon test was used to
evaluate the differences in immune cells or IC50 for drugs
between LR and HR groups. A p value< 0.05 or FDR <0.05
was considered statistically significant.

3. Results

3.1. Screening ofDEGs. After differential expression analysis,
5243 (2173 upregulated and 3070 downregulated) DEGs in
lung cancer vs. normal were obtained. +ese DEGs were
shown in the volcano plot (Figure 1(a)). Heatmap showed
the top 50 up- and downregulated DEGs (total 100,

Figure 1(b)), which can clearly divide the samples into two
groups (normal and tumor).

Moreover, 583 necroptosis-related genes were collected
from GeneCard and then were integrated with DEGs. Fi-
nally, 123 NRDs were selected for further analysis
(Figure 1(c)).

3.2. Screening of Prognosis-Related NRDs. Survival package
was used to identify prognosis-related NRDs based on the
123 NRDs. +en, 22 NRDs with prognostic value were
obtained (Figure 1(d)).

3.3. Generation and Validation of the Six-Gene RS Model.
LASSO was used to screen optimized gene combination.
LASSO coefficient and logλ are shown in Figures 2(a) and
2(b). Finally, six prognosis-related NRDs were selected for
generation of RS model, including FLNC, PLK1, ID1,
MYO1C, SERTAD1, and LEF1 (Figure 2(c)). NS was cal-
culated using the formula: RS� 0.099 ∗ FLNC+ 0.114
∗PLK1+ 0.066 ∗ ID1+ 0.161 ∗MYO1C+ 0.065
∗ SERTAD1−0.087 ∗ LEF1.

Next, we verified the predictive performance of the RS
model in TCGA and GSE37745 datasets. After calculation of
NS, all patients in the two datasets were assigned into LR and
HR groups, respectively. As for TCGA data, the distribution
of RS for each patient is shown in Figure 3(a); meanwhile, a
positive correlation between RS and death cases was ob-
served (Figure 3(b)). Patients in the LR group had signifi-
cantly improved OS than those in the HR group (p< 0.0001,
Figure 3(c)). ROC curves showed that the AUC values for 1,
3, 5 years were 0.70, 0.70, and 0.71, respectively (Figure 3(d)).
In terms of GSE37745 dataset, more death events were
observed in the HR group (Figures 3(e) and 3(f )). Similarly,
a significantly longer survival time was found in the LR
group than those in the HR group (p< 0.0001, Figure 3(g)).
AUCs were 0.70, 0.71, and 0.73 achieved in the 1-, 3-, and 5-
year survival, respectively (Figure 3(h)). +ese results in-
dicated that RS model had high reliability and accuracy in
predicting the prognosis of patients with lung cancer.

3.4. Correlation of NS and Clinical Factors. We also inves-
tigated the relationship between NS and clinical factors.
Results showed that higher NS was significantly observed in
male (p � 0.041, Figure 4(a)), patients with T3 stage
(p< 0.001, Figure 4(b)), patients with N1 stage (p< 0.001,
Figure 4(c)), and patients with stage III (p< 0.001,
Figure 4(d)). However, no significant correlation was found
between NS and M stage (Figure 4(e)).

3.5. Correlation of Different RiskGroups with TME. Based on
the TCGA data, the landscape of immune infiltration is
shown in Figure 5(a). A total of 12 DICs was screened
between the LR and HR groups (Figure 5(b)). In brief, the
number of resting NK cells and M0macrophages was higher
in the HR group than in the LR group, whereas the number
of monocytes and resting mast cells was higher in the LR
group. We also assessed the association between 12 DICs
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and NS. Results revealed that resting mast cells and resting
dendritic cells were negatively correlated with RS; M0
macrophages and activated memory CD4 T cells were
positively associated with RS (Figure 5(c)).

Differences in the expression level of human leukocyte
antigen (HLA) family between the LR andHR groups were also
analyzed. Compared with the HR group, the expression levels
of several genes, such as HLA-DMA, HLA-DPB2, HLA-DQB2,
were significantly increased in the LR group (Figure 5(d)).

3.6. Mutation Status of Different Risk Groups. Top 20 mu-
tations in patients with lung cancer from the LR and HR
groups are displayed in Figures 6(a) and 6(b), respectively.
Common mutated genes included TP53, TTN, CSMD3,
MUC16, RYR2, and LRP18; the common type of mutation

was missense. Meanwhile, significantly higher TMB was
observed in the HR group compared to the LR group
(p � 0.003, Figure 6(c)). A significant positive correlation
was found in TMB and NS (r= 0.10, p � 0.0025,
Figure 6(d)).

3.7. Sensitivity of Different Risk Groups to Six Chemotherapy
Drugs. Further, the IC50 values of six common chemo-
therapeutic drugs between the LR and HR groups were
compared. Results showed that the IC50 value of six drugs
(cisplatin, cyclopamine, docetaxel, doxorubicin, gemcita-
bine, and vinblastine) was significantly lower in the HR
groups than in the LR groups (all p< 0.05, Figure 7), in-
dicating that patients in the HR group were more likely to
benefit from these agents.
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Figure 1: Identification of necroptosis-related differentially expressed genes (NRDs) between lung cancer and normal groups. (a) Volcano
plot of differentially expressed genes (DEGs). Blue and red nodes represent down- and upregulated DEGs. (b) Heatmap of top 100 up- and
downregulated DEGs. (c) Venn of DEGs and necroptosis-related genes (from GeneCards). (d) Forest plot of prognostic-related NRDs.
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3.8. Generation and Validation of a Nomogram Model.
After univariate and multivariate Cox regression analysis,
three independent prognostic factors, including T stage,
stage, and NS, were screened (p< 0.05, Figure 8(a)), which
were then used for generation of a nomogram model
(Figure 8(b)). In performance evaluation analysis, predicted
1-, 3-, and 5-year survival were similar to the actual survival
(Figure 8(c)). Moreover, the AUC values for 1, 3 and 5 years
were 0.72, 0.71, and 0.70 (Figure 8(d)). Survival analysis

revealed that patients in the LR group had better prognosis
based on the nomogram model (Figure 8(e)). +erefore, this
nomogram model was a stable and independent prognostic
factor for lung cancer.

3.9. Functional Pathways of the Different Risk Groups.
+e potential pathways of the different risk groups were
explored by using GSEA, and 14 differential pathways in the
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Figure 2: LASSO analysis of 123 prognostic-related NRDs. (a) LASSO coefficient profiles of prognostic-related NRDs. (b) Cross-validation
in the LASSO-Cox regression model. (c) Forest plot of six genes obtained from multivariate Cox regression analysis.
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Figure 3: Assessment of prediction performance for RSmodel in the TCGA and GSE37745 datasets. (a) Distribution of RS in the TCGA set.
(b) Distribution of survival status in the TCGA set. (c) KM curve of OS in the TCGA dataset. (d) Time-dependent ROC curve validation at 1-
, 3-, and 5-year survival of prognostic rate in the TCGA. (e) Distribution of RS in the GSE37745. (f ) Distribution of survival status in the
GSE37745. (g) KM curve of OS in the GSE37745. (h) Time-dependent ROC curve for 1, 3, and 5 years survival in the GSE37745.
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LR vs. HR groups were obtained. As shown in Figure 9(a),
patients in the LR groups were significantly enriched in
seven pathways, such as taurine and hypotaurine meta-
bolism, fatty acid metabolism, and butanoate metabolism.
Meanwhile, patients in the HR group were also involved in
seven pathways, such as p53 signaling pathway, cell cycle,
small cell lung cancer, and ubiquitin mediated proteolysis
(Figure 9(b)).

4. Discussion

Necroptosis is involved in the pathogenesis of many dis-
eases, such as cardiovascular disease, cancer, and metabolic
disease [18]. Increasing research has indicated that nec-
roptosis plays an important role in tumor cells. Several
therapeutic drugs have developed to work against cancer via
manipulating necroptosis [19]. Moreover, necroptosis reg-
ulators may be regarded as biomarkers for prognosis of
cancer [20]. In this study, NRDs between lung cancer and
normal samples were identified, and then the correlation
between NRDs and clinical outcomes of patients with lung
cancer was assessed. Finally, a RS model consisting of six
NRDs was established, which could independently predict
prognosis of patients with lung cancer. Furthermore, we also
evaluated the relationship between different risk groups and
immune infiltration as well as mutation status, revealing that
necroptosis may affect the prognosis of patients with lung
cancer through regulating TME and TMB.

A total of six genes were involved in the RSmodel: FLNC,
PLK1, ID1, MYO1C, SERTAD1, and LEF1. Filamin C
(FLNC) encodes gamma filament protein and is involved in
the anchoring of membrane proteins on the actin cyto-
skeleton [21]. Shi et al. [22] indicated that methylation of
FLNC was associated with poor prognosis of patients with
gastric cancer. Polo-like kinase1 (PLK1) is highly expressed
during mitosis and is overexpressed in various types of
tumors; it has been confirmed as a potential therapeutic
target for cancer [23]. Previous study showed that PLK1 was
upregulated in prostate cancer cell, and necroptosis regu-
lated by inhibition of PLK1 might be an effective inter-
vention for castration-resistant prostate cancer [24].
Inhibitor of DNA binding 1 (ID1) is involved in cell dif-
ferentiation and cell cycle, which may serve a role in the
occurrence and metastasis of various tumors [25]. +e
prognostic value of ID1 was reported in lung cancer and
overexpression of ID1 was connected with poor survival of
patients with lung adenocarcinoma [26]. Tan et al. [27]
showed that necroptosis induced by ID1 overexpression
enhanced the sensitivity of NSCLC to gefitinib treatment.
Myosin IC (MYO1C) was differentially expressed in lung
cancer and normal tissues [28]. SERTA domain containing 1
(SERTAD1) plays roles in different types of cell death re-
sponse [29] and is regarded as a key nuclear transcription
factor in carcinogenesis, including lung cancer [30]. Lym-
phoid enhancer binding factor 1 (LEF1) belongs to the LEF/
T-cell factor family, and mutations in this gene are found in
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cancers, especially somatic sebaceous tumor [31]. Previous
study indicated that knockdown of LEF1 resulted in TNF-α
induced necroptosis in chronic lymphocytic leukemia cells
[32]. In addition, knockdown of LEF1 inhibited migration of
lung cancer [33]. Taken together, the above studies suggested
that these genes had a certain relationship with the nec-
roptosis of cancer as well as prognosis of patients.

Based on this RS model, all patients were assigned to the
LR and HR groups. Patients in the HR groups had poor
survival; this model with good predictive performance
could independently predict the prognosis of patients with
lung cancer. Next, a nomogram model containing T stage,
stage, and NS was established, which could predict the 1-,
3-, and 5-year survival probabilities of individuals and was
consistent with the actual probabilities. Together, the new
developed necroptosis-related signature and nomogram
were effective indicators for predicting the outcome of
patients with lung cancer, and these models could assist
clinicians to formulate better strategies for lung cancer
treatment.

+e correlation between risk groups and immune cells or
mutations was also analyzed in this study. Higher fractions
of resting NK cells and M0 macrophages were observed in
the HR group. Consistent with the study of Cai et al. [34],
they also found a higher infiltration of these two immune
cells in the HR group of patients with lung adenocarcinoma.
NK cells are innately selective for tumor cells and can serve
as a promising tool for cancer immunotherapy [35].
Meanwhile, the proportion of NK cells were markedly re-
lated to survival time of lung cancer [36]. Increased numbers
of M0 macrophages were contributed to poor prognosis of
patients with early lung cancer [37], which was also observed
in our study. TMB is an effective prognostic predictor in
patients with lung cancer, suggesting that the higher level of
TMB was associated with shorter survival time [38]. We also
observed the same results in this analysis; specifically, pa-
tients in the HR group had higher TMB level. In terms of
drug response, we discovered that patients in the HR group
were linked to higher drug sensitivity for cisplatin,
cyclopamine, docetaxel, doxorubicin, gemcitabine, and
vinblastine, indicating that patients with LR score might
benefit from these drugs’ therapy.

Further, the biological function enriched by the LR
and HR groups was explored. Several pathways, such as
p53 signaling pathway and cell cycle, were observably
enriched in the HR group. +e findings were also revealed
by Jin et al. [39], and these pathways could be regulated by
a prognostic factor (namely RRM2) for lung cancer.
Abnormalities of p53 signaling pathway exist in almost all
cancers, and therapeutic methods targeting this pathway
have attracted extensive attention [40]. Dysregulation of
the cell cycle is a common event in NSCLC and adversely
affects prognosis; this maladjustment also leads to un-
controlled cell proliferation and has been observed in lung
cancer [41]. Previous research pointed out that the cell
cycle offered predictive, prognostic, and therapeutic
possibilities for cancer, and further in-depth study of this
pathway may improve the status of patients with lung
cancer [42].

To our knowledge, this study is the first to establish a
risk model based on the necroptosis-related signature and
then investigate its prognostic value in lung cancer.
However, this analysis still has certain limitations. First,
the specific function of the identified genes in lung cancer
or necroptosis process has not been investigated. Second,
when developing the nomogram model, some clinical
factors that may affect the prognostic of patients with lung
cancer were not taken into account, such as gender,
smoking status, and treatment method. Furthermore, our
results were only validated in one dataset. Finally, all
patients included in our study were lung cancer, and we
did not distinguish the specific subtype of each patient,
such as lung adenocarcinoma or lung squamous cell
carcinoma. Consequently, we will incorporate more
complete clinicopathological factors and detailed treat-
ment information and then perform validation analyses in
other datasets to confirm the predictive ability and ac-
curacy of this model.

5. Conclusion

A novel prognostic model involving six necroptosis-related
genes was constructed to predict the survival time of patients
with lung cancer. +e model with high sensitivity and
specificity may serve as an independent prognostic factor for
lung cancer.+ese six genes may be useful for elucidating the
molecular mechanisms related to necroptosis and may be
considered as potential therapeutic targets for lung cancer.

Data Availability

+e data could be downloaded at https://xenabrowser.net/,
https://www.ncbi.nlm.nih.gov/, and https://www.gene-
cards.org/, and the codes used during the present study are
available from the corresponding author on reasonable
request.

Additional Points

(1) A prognostic model involving six necroptosis-related
genes was constructed. (2) Genes included in the model were
FLNC, PLK1, ID1, MYO1C, SERTAD1, and LEF1. (3) A
prognostic model and a nomogram had better predictive
performance. (4) +e number of resting NK cells and M0
macrophages was higher in the HR group.
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