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Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related
mortalities. Given this pressing scenario, there is a burgeoning need to identify efective biomarkers for both the diagnosis and
therapeutic guidance of bladder cancer. Tis study focuses on evaluating the potential of high-defnition computed tomography
(CT) imagery coupled with RNA-sequencing analysis to accurately predict bladder tumor stages, utilizing deep residual networks.
Data for this study, including CT images and RNA-Seq datasets for 82 high-grade bladder cancer patients, were sourced from the
TCIA and TCGA databases. We employed Cox and lasso regression analyses to determine radiomics and gene signatures, leading
to the identifcation of a three-factor radiomics signature and a four-gene signature in our bladder cancer cohort. ROC curve
analyses underscored the strong predictive capacities of both these signatures. Furthermore, we formulated a nomogram in-
tegrating clinical features, radiomics, and gene signatures. Tis nomogram’s AUC scores stood at 0.870, 0.873, and 0.971 for 1-
year, 3-year, and 5-year predictions, respectively. Our model, leveraging radiomics and gene signatures, presents signifcant
promise for enhancing diagnostic precision in bladder cancer prognosis, advocating for its clinical adoption.

1. Introduction

Cancer of the urothelium lies between the renal pelvis and
the urethra, accounting for approximately 3 percent of all
cancer-related deaths in the United States [1]. Two diferent
risk factors are associated with this disease that most
commonly occur in the bladder [2]. In the Western world,
smoking and exposure to environmental and industrial
carcinogens pose the most serious health risks [3]. Tere are
two distinct but somewhat overlapping pathways in the
development of bladder cancer, termed papillary and
nonpapillary, corresponding to two distinctly clinical and
pathogenetically distinct types [4]. Tere are approximately
80% of bladder neoplasms that are superfcial papillary le-
sions caused by difuse mucosal hyperplastic changes known
as low-grade urothelial neoplasia [5]. It is still difcult to

predict the outcome for patients with advanced or
chemotherapy-resistant bladder cancer, despite progress in
surgical techniques and drug therapy [6].

For the diagnosis of bladder cancer, computed tomog-
raphy (CT) is the most common method [7]. When bladder
cancer is diagnosed preoperatively, preoperative staging can
be more accurate, and recurrence can be detected earlier
after surgery with preoperative diagnosis [8].Te acquisition
of traditional medical CT examination images, on the other
hand, requires a great deal of time and space since more
information is contained in them about the human tissues
[9]. It is therefore not only more difcult but also more
expensive to segment CT images using CT image segmen-
tation technology [10]. In medical CT images, it is easy to
cause mis-segmentation, especially when body tissues have
abnormalities, such as severely damaged tissues [11].
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Over the past few years, radiomics has gained more and
more attention. Medical images are converted into high-
dimensional, mineable data using high-throughput quan-
titative feature extraction, followed by data analysis to
support decision-making [12]. As pattern recognition tools
and dataset sizes have grown, radiomics has made progress,
which may improve oncology prediction accuracy [13]. A
number of previous studies have demonstrated the potential
of objective and quantitative imaging descriptors as prog-
nostic and predictive biomarkers [14].

An RNA-sequencing study measures the mRNA, small
RNA, noncoding RNA, and other expression levels in
a transcriptome by using the high-throughput sequencing
technology. Since the early 2000s, the RNA-Seq technology
has grown rapidly and has become one of the most essential
tools for analyzing transcriptome-wide gene expression
changes and alternative splicing of mRNAs. It has become
possible to apply RNA-Seq technology to a broader range of
applications with the development of next-generation se-
quencing technology. Multiple biomarkers from the RNA-
sequencing study can guide the diagnosis and treatment of
cancer patients. As a marker powerful enough to transform
clinical management, a panel of biomarkers rather than their
individual analyses provides the most promising approach.
Terefore, in this work, we aim to construct the model based
on the RNA-sequencing analysis and radiomics for the
better prediction of the prognosis and the treatment of
bladder cancer patients. In addition, we also evaluate the
immune cell infltration analysis based on the combination
of RNA-sequencing analysis and radiomics. Te GO and
KEGG enrichment analysis was applied to explore the po-
tential pathways.

2. Methods

2.1. ImagingData of Patients with Bladder Cancer. Te TCIA
website (Te Cancer Imaging Archive) hosts large volumes
of cancer medical images that are deidentifed and made
publicly available for download. Te data are organized into
“collections,” such as patient imaging data associated with
one disease (such as lung cancer), type of image (such as
MRI and CT), or research topic (such as digital histopa-
thology). DICOM is the main fle format utilized by TCIA
for radiology images. Furthermore, there are supplementary
data available, including patient results, specifcs of treat-
ment, genomics, and expert evaluations. Tis study acquired
82 CT scans of patients with bladder cancer from the TCIA
dataset, which is associated with the TCGA database.

2.2. Te RNA-Sequencing from the TCGA Database. Te
study collected RNA-sequencing data and relevant clinical
data on bladder cancer from Te Cancer Genome Atlas
(TCGA) database.

2.3. Image Segmentation. Te segmentation of CT images,
a critical step in our study, was performed by using
a semiautomated method to delineate the regions of interest
(ROIs) corresponding to the bladder cancer tumors. Each

ROI was carefully reviewed and adjusted by two experienced
radiologists to ensure accuracy, with discrepancies resolved
by consensus.

2.4. Feature Extraction. Following segmentation, radiomics
features were extracted from the delineated ROIs using
“PyRadiomics” for Python. Tis comprehensive feature
extraction process involved calculating a variety of features,
including shape, intensity, texture, and wavelet-based fea-
tures, to capture the tumor’s phenotypic characteristics. Te
feature extraction parameters were set as follows: list key
parameters, e.g., “bin width� 25 and resampling voxel
size� 1× 1× 1mm3,” based on best practices in the literature
to ensure robustness and reproducibility of the feature set.

2.5. Feature Preprocessing and Selection. A feature pre-
processing process consists of two steps: step 1 is to remove
outliers and nulls and Step 2 is to normalize values in order
to remove the dimensionality efect. Te selection of features
is one of the most crucial steps for better generalizing
models, since high-dimensional data are often cluttered with
irrelevant features, which can cause overftting. Conse-
quently, the variable space becomes simpler, and the vari-
ables are independent of one another. Te fnal step is to
construct radioactive features based on selected features by
using AdaBoost cross-validation with leave-one-out.

2.6. Diferentially Expressed Analysis in Bladder Cancer
Cohort. Te Limma package of the R language was used to
analyze diferential expression. An adjustment was made to
the P values in TCGA in order to correct for false positives.
To identify variations in mRNA expression, a threshold of
“adjustable P< 0.01 and log2 (fold change) >2 or log2 (fold
change) <−2” was utilized.While a log2 fold change (FC) of 1
(equivalent to a twofold change) is commonly used to denote
statistical signifcance, we opted for a more stringent
threshold to ensure the biological relevance of our fndings.
A log2 FC greater than 2 or less than −2 indicates a fourfold
change in expression, highlighting genes with potentially
greater biological impact and reducing the likelihood of
identifying changes due to random variation or minor
fuctuations in gene expression.

2.7. Te Pathway Enrichment Analysis. Te data underwent
a functional enrichment analysis to validate the potential
roles of the targets. GO (Gene Ontology) is a widely used
tool to annotate genes with functions, such as molecular
functions, biological pathways, and cellular components.
Examining KEGG enrichment is a useful method for un-
derstanding gene function and genome function at a broad
level. Enrichment analysis using GO and KEGG was con-
ducted in the R programming environment.

2.8. Construction of Radiomics Signature through Feature
Selection. Te lasso technique was employed for regression
analysis on data with many variables to identify the most
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valuable predictive characteristics from the initial dataset.
Te selection of the regularization parameter, λ, in lasso
regression is critical as it determines the extent of the penalty
applied to the features. To select an optimal λ, we utilized
a cross-validation approach, specifcally the 10-fold cross-
validation method. Tis method involves dividing the
dataset into ten parts, training the model in nine parts, and
validating it in the remaining part. Tis process is repeated
ten times, with each part serving as the validation set once.
Te optimal parameter was selected based on the λ value that
produced the lowest cross-validation error. Tis approach
ensures that the chosen λ is not only efective in minimizing
the prediction error but also prevents overftting by not
overly penalizing the model, thereby preserving the pre-
dictive power of important features.

2.9. Creating a Personalized ForecastingAlgorithm. To create
a personalized prediction model using clinical information
and RNA expression data, we conducted Cox regression
analysis. First, a single-variable Cox regression analysis was
conducted to identify characteristics with possible prog-
nostic signifcance. Variables with a signifcance level below
0.05 in this initial examination were taken into account for
incorporation in the multivariable model. Subsequently, we
employed a stepwise selection process, considering both
forward selection and backward elimination, to refne the list
of variables included in the fnal model. Tis approach
ensured that the fnal model contained only variables that
signifcantly contributed to the prediction of patient out-
comes, thereby enhancing the model’s specifcity and
generalizability.

2.10. Statistical Analysis. Statistical analyses were performed
in R, making use of its “radiomics” package for feature
extraction and “survival” for survival analysis. Python was
used for image processing tasks, by employing the PyR-
adiomics library for extracting radiomic features and scikit-
image for image segmentation and preprocessing. Te
survival package in R allows for the execution of
Kaplan–Meier survival analysis and log-rank tests. Log-rank
tests were carried out to assess the statistical discrepancies in
survival probabilities depicted in the Kaplan–Meier curves.
Tis technique involves comparing the actual survival results
with the predicted results assuming there is no distinction
between the groups. A p value below 0.05 was deemed to be
statistically signifcant. Te relationship between the risk of
survival and HR was assessed through the Spearman cor-
relation test and the Cox proportional hazards model. We
determined statistical signifcance by performing a rank sum
test on the two datasets. A p value below 0.05 was deemed to
be statistically signifcant. To mitigate the risk of false
positives, we applied the Bonferroni correction method.Tis
method entails modifying the importance level by dividing
the standard p value of 0.05 by the total number of tests
conducted.

3. Results

3.1. Te Basic Information of 82 Bladder Cancer Patients.
In this work, a total of 82 bladder cancer patients were
involved in the analysis from the TCGA dataset. Out of the
group, there were 28 individuals with bladder cancer who
were younger than 65 and 54 individuals with bladder cancer
who were older than 65. In addition, a total of 20 bladder
cancer patients were female and a total of 62 bladder cancer
patients were male. All the bladder cancer patients were
involved in high grade. In terms of stage, there were 27
patients with bladder cancer in stage II, 31 patients with
bladder cancer in stage III, and 24 patients with bladder
cancer in stage IV. For the T stage, 1 bladder cancer patient
was involved in the T0 stage, a total of 6 bladder cancer
patients were in the T2 stage, a total of 8 bladder cancer
patients were in the T2a stage, a total of 14 bladder cancer
patients were in the T2b stage, a total of 10 bladder cancer
patients were in the T3 stage, a total of 16 bladder cancer
patients were in the T2a stage, a total of 13 bladder cancer
patients were in the T3b stage, 1 bladder cancer patient was
in the T4 stage, a total of 8 bladder cancer patients were in
the T4a stage, and a total of 5 bladder cancer patients were in
the unknown T stage. In terms of the N stage, a total of 47
bladder cancer patients were in the N0 stage, a total of 9
bladder cancer patients were in the N1 stage, a total of 14
bladder cancer patients were in the N2 stage, a total of 11
bladder cancer patients were in the NX stage, and 1 bladder
cancer patient was in the unknown N stage. For the M stage,
a total of 42 bladder cancer patients were in the M0 stage,
a total of 3 bladder cancer patients were in the M1 stage, and
a total of 37 bladder cancer patients were in the MX stage.
Figure 1 introduces the process of this work in detail.

3.2. Results from Imaging Using Computed Tomography in
Patients with Bladder Cancer. In the frst step, all CT im-
aging results of 82 bladder cancer patients were uploaded
to the 3D Slicer software, which allows to visualize,
process, segment, register, and analyze medical, bio-
medical, and other 3D images and meshes for free and
open source. Here, the CT of two patients with bladder
cancer is shown in the fgure. Figure 2 shows a male
bladder cancer patient with high grade, 65 years old, stage
III, T3a stage, N0 stage, and M0 stage (Figures 2(a) and
2(b)). In addition, Figure 3 shows a male bladder cancer
patient with high grade, 64 years old, T2a stage, M0 stage,
and N0 stage (Figures 3(a) and 3(b)). In the next step, we
outline the ROI (region of interest), as well as each slice of
the CT, so that we can extract the three-dimensional
features of each bladder cancer image. Te main com-
ponent of the tumor is believed to be its ROI. Te tumor
tissue was reconstructed using a 2mm dilation algorithm
in this study. An NRRD format fle will be produced for
each sample after it is sketched and exported (Figures 2(c),
2(d), 3(c), and 3(d)).
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3.3. Extraction of Imaging Features in BladderCancer Patients
and Radiomics Signature Construction. After analyzing the
data, we identifed a combined total of 129 visual charac-
teristics. Initially, the group of patients with bladder cancer
was split into a training set and a testing set, with a ratio of 7:
3. Ten, we performed the lasso regression analysis. Lasso
logistic regression reduced 129 features to four potentially
predictive factors and one predictor with a nonzero co-
efcient (Figures 4(a) and 4(b)). Model� 0.11 + (−1.019)∗

Least Axis Length + (0.403) ∗Maximum 2D Diameter
Column + (−1.019) ∗ Surface Area. Te forest plot in the
train cohort and test cohort demonstrated that these 3
features may be important factors in the bladder cancer
cohort (Figures 5(a) and 5(e)). Te AUC score of the ROC
curve in the train set was 0.805. Te AUC score of the ROC
curve in the test set was 0.587 (Figures 5(b) and 5(f )).
Furthermore, we created the nomogram for both the
training and testing datasets. In the training and testing

computed
tomography

RNA-seq

Clinical characteristics

Prognositc model

Figure 1: Te mechanism diagram shows the process of analysis.

(a) (b)

(c) (d)

Figure 2: (a, b) Te CT image of a 65-year-old bladder cancer patient and (c, d) the ROI of the CT image of a 65-year-old bladder cancer
patient.
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datasets, the nomogram’s C-index was 0.805 (95% CI:
0.774–0.836) and 0.587 (95 CI: 0.475–0.699), respectively,
as shown in Figures 5(c) and 5(g). Te nomogram showed
strong predictive ability in both the training and testing
sets, as indicated by the calibration curve (Figures 5(d) and
5(h)).

3.4. Te Genes Tat Are Expressed at Varying Levels in the
Bladder Cancer Cohort. To investigate the genes closely
linked to bladder cancer, we conducted diferential ex-
pression analysis comparing the normal group with the
bladder cancer cohort. Te fndings indicated that 546 genes
were identifed as diferentially expressed, with 136 genes
showing an increased expression and 410 genes showing
a decreased expression (Figure 6(a)).Te heatmap illustrated
the genes that were expressed diferently in the bladder
cancer group compared to the normal group (Figure 6(b)).

3.5. Te Potential Routes Linked to Genes with Varying Ex-
pression Levels in the Bladder Cancer Group. We then
assessed the possible routes linked to the genes that are
expressed diferently. In KEGG enrichment analysis, the
pathways with the highest enrichment of upregulated genes
are the p53 signaling pathway, viral carcinogenesis, platinum
drug resistance, and oocyte meiosis as shown in Figure 7(a).

Te pathways that are most enriched in downregulation
include cGMP-PKG signaling, vascular smooth muscle
contraction, TNF signaling, and tryptophan metabolism
(Figure 7(b)). Te pathways most upregulated for GO en-
richment analysis include sister chromatid segregation,
regulation of sister chromatid segregation, regulation of
nuclear division, and regulation of mitotic sister chromatid
segregation (Figure 7(c)). Furthermore, the pathways with
the most downregulated activity include the development of
striped muscle tissue, the regulation of blood vessel devel-
opment, the regulation of muscle system processes, and the
regulation of muscle contractions as shown in Figure 7(d).

3.6. Te Integrated Predictive Model Based on the Radiomics
Signature and Gene Signature. After analyzing the previous
data, we were able to identify the genes that were expressed
diferently in the bladder cancer group. Following this, an
investigation will be conducted to identify the genes that
have a strong correlation with the survival outlook of in-
dividuals with bladder cancer. Initially, we conducted
a univariate Cox regression analysis which revealed that 8
genes with diferential expression were linked to the
prognosis of individuals with bladder cancer (Figure 8(a)).
Ten, the lasso regression analysis was performed to further
explore the prognosis-related genes. Te multivariate Cox
regression analysis revealed that four genes could potentially

(a) (b)

(c) (d)

Figure 3: (a-b) Te image shows the CT of a 64 years old bladder cancer patients; (c-d) the Identifcation of ROI in CT image.
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play a crucial role in determining the prognosis of patients
with bladder cancer (Figures 8(b) and 8(c)). We also con-
structed the gene signature by using the following formula:
PABPC1L∗−0.30049004562043 +MAGEA3∗ 0.088511211
0183904 + BDKRB2∗ 0.244350992743845 + ID4∗−0.16800
7057831507. To improve the outlook for individuals with
bladder cancer, we developed a nomogram using clinical
data, radiomics signature, and gene signature (Figure 8(d)).
Te nomogram we developed was created by analyzing
a range of clinical and radiomic factors, such as age, sex,
tumor grade, stage, and specifc radiomic characteristics
derived from CT images. Each variable was assigned
a weight in the nomogram based on its prognostic signif-
icance, determined through Cox regression analysis. Vari-
ables such as tumor grade and stage, which are pivotal in
bladder cancer prognosis, were given signifcant weights,
refecting their importance in the model. Te ROC graph
illustrated AUC scores of 0.870, 0.873, and 0.971 for 1-year,
3-year, and 5-year, respectively, as shown in Figure 8(e). In
addition, the calibration curve indicated that the nomogram
has strong predictive accuracy in the bladder cancer group
(Figure 8(f )).

4. Discussion

According to GLOBOCAN statistics, bladder cancer makes
up 3% of global cancer cases and is especially common in
developed nations [15]. According to data from the
United States, bladder cancer ranks as the sixth most
prevalent type of cancer [16]. Individuals aged 55 and above
account for 90% of bladder cancer cases, with men being
four times more susceptible to the disease compared to
women [17]. In the United States, the 5-year survival rate for
patients with metastatic cancer is only 5%, which is sig-
nifcantly lower than the overall 5-year survival rate of 77%.
Terefore, it is very urgent to explore the promising bio-
markers for the better prediction of bladder cancer and for
seeking diagnosis and treatment for the bladder cancer
patients [18].With the development of multiple images,
cancer can be diagnosed easily [19]. A CTscan is a frequently
used technique for diagnosing bladder cancer [20]. Early
detection of bladder cancer before surgery can lead to ac-
curate preoperative staging and early detection of recurrence
postoperatively. Conventional CT scans necessitate addi-
tional storage and processing time as they encompass
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Figure 4: (a, b) Te lasso regression analysis was applied to select the imaging features of CT.
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extensive details regarding the human anatomy [21]. Hence,
proper segmentation of CT images is crucial for improving
the diagnosis and treatment of individuals with bladder
cancer [22]. In this work, we frst obtained the CT images of
82 bladder cancer patients. Ten, we outlined the ROI and
each CT slice in order to extract the three-dimensional
features from each image of bladder cancer. Finally, we
successfully constructed the radiomics signature. Te ROC
curve and nomogram demonstrated that the radiomics
signature shows good predictive value in bladder cancer

patients. Recently, as bioinformatics analysis has advanced
quickly, an increasing number of research projects are in-
vestigating biomarkers for cancer patients. A radiological
model was created to forecast the survival of cervical cancer
patients using medical images, statistical models, and ma-
chine learning, as demonstrated in a previous study. In
addition, another study demonstrated that deep learning
algorithms based on CT images and ceramide glycosylation
have important application value in bladder cancer di-
agnosis [23]. In the selection of AdaBoost (adaptive
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Figure 5: (a) Te forest plot demonstrated the imaging features in the train set, (b) the ROC curve demonstrated the predictive value of the
radiomics signature in the train set, (c) the nomogram of radiomics signature in the train set, (d) the calibration curve reveals the predictive
value of the nomogram in the train set, (e) the forest plot demonstrated the imaging features in the test set, (f ) the ROC curve demonstrated
the predictive value of radiomics signature in the test set, (g) the nomogram of radiomics signature in the test set, and (h) the calibration
curve reveals the predictive value of the nomogram in the test set.
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boosting) for the cross-validation in feature selection, our
decision was motivated by several factors that align with the
goals of our study. AdaBoost is renowned for its capacity to
convert a series of weak classifers into a strong classifer,
making it particularly suitable for our dataset where the
predictive power of individual features might be modest
[24]. Trough iterative processes, this algorithm rectifes
errors made by weak classifers and modifes the weights of
misclassifed instances, thereby enhancing the model’s ca-
pacity to generalize beyond the training data to new
data [25].

Furthermore, due to advancements in next-generation
sequencing technology, RNA-Seq technology can now be
used in a wider range of applications. RNA sequencing can
provide cancer patients with a variety of biomarkers to aid in
their diagnosis and treatment. Following this, we conducted
an analysis of genes with varying expression levels and
developed a prognostic prediction model based on 4 genes
using Cox and lasso regression techniques. Obtaining bio-
markers with various indicators, including clinical charac-
teristics, radiomics signature, and gene signature, is crucial
due to their strong predictive value in cancer patients. In this
study, we have efectively developed a prognostic prediction
model by integrating the radiomics signature with the gene
signature. Te nomogram, along with the ROC curve,
further confrmed the model’s precision. Te ability to ac-
curately stage bladder cancer with CT technology will
gradually improve as the technology continues to be updated
and improved. As deep learning algorithms become more
sophisticated, CT scanning may become a routine screening
for bladder cancer in the future. It is believed that radiomic

features will also become an efective target for bladder
cancer treatment in the future, since these features are
closely related to prostate cancer development and prog-
nosis. For KEGG enrichment analysis, the increase in ac-
tivity of the p53 signaling pathway, viral-induced cancer
development, resistance to platinum drugs, and pathways
related to oocyte maturation indicate an intricate interaction
involving genetic changes, environmental infuences, and
resistance to chemotherapy in bladder cancer. Tese path-
ways are pivotal in cell cycle regulation, DNA damage re-
sponse, and apoptosis, indicating their critical roles in tumor
development and response to treatment. On the other hand,
the suppression of pathways such as cGMP-PKG signaling,
vascular smooth muscle contraction, TNF signaling, and
tryptophan metabolism could indicate the tumor micro-
environment’s adjustment, facilitating tumor development
and avoiding immune detection.

Te integration of clinical, radiomics, and gene data
represents a signifcant advancement in developing a mul-
tifaceted prognostic model for bladder cancer. However, the
interplay between these data types is complex and warrants
further discussion. Clinical data provide a foundational
understanding of patient health and disease characteristics,
while radiomics and genetic data ofer deeper insights into
the tumor’s phenotypic and molecular landscape. While our
study highlights the potential of CT technology and deep
learning algorithms in improving the accuracy of bladder
cancer staging, we recognize the challenges in generalizing
these fndings universally. Variations in healthcare in-
frastructure, access to advanced diagnostic tools, and pop-
ulation genetics can infuence the applicability and
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Figure 6: (a) Te volcano map demonstrated the diferentially expressed genes in the bladder cancer cohort and (b) the heatmap
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efectiveness of these technologies. Furthermore, the di-
versity in patient demographics underscores the need for
models that are robust across diferent ethnicities, ages, and
genders. In order to increase the generalizability of our
fndings, upcoming research should strive to incorporate
a wider range of patients and take into account the difer-
ences in healthcare delivery systems. Tis method not only
improves the applicability of the results but also ofers
a more thorough understanding of the possible obstacles and
aids in incorporating these technologies in diferent situa-
tions. It is crucial for advancing personalized medicine and
ensuring that innovations in cancer diagnosis and treatment
are accessible and efective for all segments of the pop-
ulation, regardless of geographical or socioeconomic status.
Moreover, the integration of these technologies into clinical

practice involves overcoming regulatory, ethical, and lo-
gistical hurdles. It is imperative to conduct further research
to validate these approaches in diverse populations and
settings and to continuously monitor their performance in
real-world clinical scenarios.

In conclusion, it has been demonstrated that deep
learning can be applied to CT images of bladder cancer to
efectively segment lesions. CT images based on algorithmic
algorithms are signifcantly more accurate than ordinary
imaging examinations for staging bladder cancer. In addi-
tion, it was discovered that bladder cancer tissue harbors
genes associated with prognosis, which can efectively
forecast patient outcomes. Te prognostic prediction model,
based on radiomics signature and gene signature, efectively
forecasts the outcome for individuals with bladder cancer.
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