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Background. Te association between acute myeloid leukemia (AML) and macrophage remains to be deeply explored. Methods.
Gene expression profles and clinical variable characteristics of AML patients were collected from TCGA, GEO, and TARGET
databases. Consensus clustering was employed to construct the macrophage-related clusters. Te macrophage-related index
(MRI) was constructed using the LASSO and multivariate Cox analysis. Te GSE71014 and TARGET datasets were utilized as
external validation sets. Single-cell sequencing data for AML (GSE116256) was adopted to analyze modeled gene expression levels
in cells. Results. Two macrophage-related clusters with diferent prognostic and immune infltration characteristics were con-
structed in AML. Cluster B had a poorer prognosis, more cancer-promoting pathway enrichment, and an immunosuppressive
microenvironment. Relied on the MRI, patients of diferent groups showed diferent levels of immune infltration, diferent
mutations, and prognoses. LGALS1 and BCL2A1 may play roles in promoting cancer in AML, while ELANE may have a sig-
nifcant efect on suppressing cancer. Conclusion. Macrophage-related genes (MRGs) had signifcant impacts on the occurrence
and progression of AML. MRI may better evaluate the prognosis and immune features of AML patients.

1. Introduction

AML is one of themost aggressive hematologic malignancies
and is a highly heterogeneous leukemia [1, 2]. Currently,
chemotherapy and stem cell transplantation are considered
the main treatments for patients with AML [3, 4]. However,
most AML patients are prone to relapse, and the 5-year
survival rate is still less than 30% [5–7]. Terefore, in order
to better treat AML patients, it is necessary to screen out
biomarkers that can predict prognosis as early as possible.

Tumor-associated macrophages (TAM) are one of the
most important immune-related stromal cells in the tumor
microenvironment [8]. TAM can not only help tumor cells
to modify the microenvironment but also promote tumor
proliferation and metastasis and inhibit antitumor immune
response [9, 10]. Macrophages mainly include two pheno-
types, namely, M1 and M2 macrophages [11]. It is well
known that M2 macrophages play a procancer role in

tumors [12, 13]. When the M1/M2 polarization balance is
broken, TAM will appear to support and stimulate the
growth of tumor cells [14]. AML can reestablish monocytes
and Mφs as phenotypes supporting M2-like leukemia
through cell-to-cell contact [15]. Meanwhile, M2 macro-
phages maintained a close association with poor prognosis
in AML, and M1-like macrophages helped prolong patient
survival and appeared to inhibit the proleukemic efect
[14, 16]. Terefore, macrophage had signifcant efects on
tumor progression, but there was no study to analyze the
specifc mechanism of macrophage-related genes in AML.

All in all, we comprehensively evaluated the prognostic
and immune signatures of MRGs in AML and constructed
macrophage-related clusters with diferent prognostic and
immune characteristics. In addition, we employed the
Cancer Genome Atlas (TCGA), TARGET, and GSE71014
datasets to construct and validate a macrophage-related
prognostic model to evaluate the prognosis of AML.
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Besides, we further used a single-cell sequencing dataset
(GSE116256) to evaluate the expression levels of modeled
genes in cells.

2. Methods

2.1. Data Acquisition and Processing. Table S1 shows the
proprietary terms and their corresponding abbreviations.
Transcriptome data and clinical data of AML patients were
acquired from TCGA and Gene Expression Omnibus (GEO)
databases. Te GSE71014 [17] and TARGET [18] datasets
were utilized as external validation datasets. Immunotherapy
data were obtained from the IMvigor210.

2.2. Screening of Macrophage-Related Genes. GSE116256
data were derived from Tumor Immune Single-Cell Hub 2
(TISCH2) [19]. In GSE116256 [20], macrophage diferential
genes were screened based on the adjusted p value <0.001
and |logfc|>0.5. Immune-related genes were collected from
ImmPort portal (https://www.immport.org/home) and
InnateDB (https://www.innatedb.ca/). Te intersection
genes of immune-related genes and macrophage diferential
genes were MRGs.

2.3. Construction of the Macrophage-Related Clusters.
First, the prognostic MRGs were screened by univariate Cox
regression analysis. We employed the consensus clustering
algorithm to further evaluate the potential mechanism of
action of MRGs in AML. Kaplan–Meier (KM) method
was employed to assess the survival diference between
the macrophage-related clusters. In order to further
analyze the diferences in biological pathways among the
clusters, we screened the diferentially expressed genes
(DEGs) (|logFC>1| and adj. p value <0.001). Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were utilized to analyze the
underlying mechanisms of DEGs. Te gene set variation
analysis (GSVA) was a method to further explore the bi-
ological signaling pathway. Tus, we performed the GSVA
analysis to explore the diferences in biological pathways
between the macrophage-related clusters.

2.4. Establishment of the Macrophage-Related Signature.
Depending on the expression profle of prognostic-related
MRGs, we further constructed a prognostic model using the
least absolute shrinkage and selection operator (LASSO) and
multivariate Cox analysis. Te MRI was calculated as fol-
lows: MRI�Coef A∗Exp A+Coef B∗Exp B +. . .Coef
N∗Exp N. Coef was the coefcient calculated by multi-
variate Cox analysis and Exp was the expression of MRGs.
Te KM curve was utilized to evaluate survival diferences
between high and low MRI groups. Te time-dependent
receiver operating characteristic (ROC) curve was employed
to evaluate the prognostic accuracy of the macrophage-
related model.

2.5. Evaluation of the Immunogenomic and Mutation
Landscape. Tumor microenvironment (TME) may have
a signifcant infuence on the process of tumors, so we
employed the ESTIMATE algorithm to evaluate the TME
score (ImmuneScore, StromalScore, and tumor purity) of
AML samples. Te single-sample gene set enrichment
analysis (ssGSEA) algorithm was constructed to assess the
immune function pathway score and immune cell infation
of AML samples. Somatic variant data for AML patients
were downloaded from the TCGA database. In the targeted
drug therapy analysis, the “pRRophetic” package was
adopted to evaluate the half maximum inhibitory concen-
tration (IC50) of 8 common AML chemotherapy drugs.

3. Results

3.1. Establishment of the Macrophage-Related Clusters and
Biological Analysis. Figure 1 shows the research process of
this study. A total of 95 MRGs were screened (Figure 2(a)).
Tirty-two prognostic-related MRGs were included by
univariate Cox regression analysis (Figure 2(b)). We utilized
the consensus clustering algorithm to establish 2 disparate
macrophage-related clusters according to 32 MRG expres-
sions (Figure 2(c)). Figure 2(d) presents the distribution of
the clinical variables and MRG expression. PCA showed the
sample distribution in the two macrophage-related clusters
(Figure 2(e)). Te KM curve revealed that macrophage-
related cluster B patients had a worse prognosis (Fig-
ure 2(f)). Te results of GSVA suggested that tumor-related
pathways and immune-related pathways were obviously
concentrated in cluster B (Figure 2(g)). GO analysis in-
dicated that DEGs were concentrated in the immune process
and cytokine receptor activity (Figure 2(h)). Te results of
KEGG suggested that DEGs were focused on immune-
related pathways and chemokine signaling pathways
(Figure 2(i)).

3.2. Identifcation of the Immune Characteristics of
Macrophage-Related Clusters. To further explore the causes
of survival diferences among macrophage-related clusters,
we analyzed the characteristics of immune cell infltration.
Te heat map presented the distribution of TME scores and
immune cells between macrophage-related clusters
(Figure 3(a)). Moreover, multiple immune function path-
ways were obviously highly expressed in cluster B
(Figure 3(b)). Figure 3(c) shows that immunosuppressive
cells (myeloid-derived suppressor cells (MDSC), macro-
phage, and regulatory T cell) were signifcantly enriched in
cluster B. Besides, TME scores (ImmuneScore, ESTIMA-
TEScore, and StromalScore) and most immunosuppressive
checkpoints were highly expressed in cluster B (Figures 3(d)
and 3(e)).

3.3. Establishment and Validation of the Macrophage-Related
Index. After the Lasso regression analysis of 32 prognostic
MRGs, we screened out 5 prognostic genes (Figures 4(a) and
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Figure 1: Flowchart of investigation.
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Figure 2: Establishment of macrophage-related clusters and biological analysis: (a) screening of macrophage-related genes, (b) univariate
Cox results for macrophage-related genes, (c) diferent macrophage-related clusters of the TCGA cohort were identifed for k� 2, (d)
distribution of gene expression and clinicopathological variables, (e) sample distribution between classifcations, (f ) overall survival
diference between cluster A and B, (g) GSVA enrichment analysis showed the enrichment distribution of biological pathways in
macrophage-related clusters, and (h, i) the results of GO and KEGG enrichment analyses.
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4(b)). Ten, we further used multivariate Cox regression
analysis to select three MRGs to construct the model
(Figure 4(c)) (MRI� 0.2478668∗ LGALS1Exp + 0.12
453683∗BCL2A1Exp + (−0.09398426) ∗ELANEExp). Te
KM curve and survival status distribution suggested that
high MRI was associated with poor prognosis (Figures 4(d)
and 4(e)). ROC curves of MRI in 1, 2, and 3 years were 0.789,
0.809, and 0.749 (Figure 4(f)). GSE71014 and TARGET
datasets were adopted as external validation datasets to
verify the stability of MRI. Te KM curve and survival status
distribution in the GSE71014 dataset showed that MRI was
associated with poor prognosis (Figures 4(g) and 4(h)). ROC

curves of MRI in 1, 2, and 3 years in the GSE71014 dataset
were 0.708, 0.753, and 0.702 (Figure 4(i)). Te same results
were obtained in the TARGET group (Figures 4(j)–4(l)).

3.4. Identifcation of the Immunological Characteristics of
Macrophage-Related Index. Ten, we further evaluated the
correlation between MRI and immunoinfltrating cells.
Immunosuppressive cells (regulatory T cell, MDSC, and
macrophage) were obviously overexpressed in the high MRI
group (Figure 5(a)). Immunofunctional pathways such as
checkpoint, CCR, and infammation-promoting were
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Figure 3: Identifcation of the immune cell infltration characteristics of macrophage-related clusters: (a) the distribution of immune cell
and TME scores, (b) diferential expression of immune function score between macrophage-related clusters, (c) diferential expression of
immunosuppressive cells (MDSC, macrophage, and regulatory T cell) between macrophage-related clusters, (d) diferential expression of
TME scores (ImmuneScore, ESTIMATEScore, and StromalScore) between macrophage-related clusters, and (e) diferential expression of
immunosuppressive checkpoints between macrophage-related clusters.
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Figure 4: Establishment and validation of the macrophage-related index: (a) LASSO regression of the 5 prognostic macrophage-related
genes, (b) LASSO coefcients for 5 prognostic macrophage-related genes, (c) multivariate Cox results for 3 modeled genes, (d, g, and j) the
risk curve of each sample reordered by macrophage-related index and the scatter plot of the sample survival overview. D: TCGA, G:
GSE71014, J: TARGET, (e, h, and k) KM curve showing the prognostic diference between high and lowmacrophage-related index groups. E:
TCGA, H: GSE71014, K: TARGET, and (f, i, and l) ROC curves about disulfdptosis related signature in 1, 2, and 3 years. F: TCGA, I:
GSE71014, L: TARGET.
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obviously overexpressed in the high MRI group
(Figure 5(b)). Besides, the StromalScore, ImmuneScore, and
ESTIMATEScore were all signifcantly overexpressed in the
high MRI group (Figure 5(c)). Most immunosuppressive
checkpoints were signifcantly overexpressed in the high
MRI group (Figure 5(d)).

3.5. Mutation and Immunotherapeutic Responses of the
Macrophage-Related Index. Since tumor mutational burden
(TMB) may infuence the efcacy of immunotherapy, so we
further explored TMB changes in separatedMRI groups.Te
mutation rate was 19/42 (45.24%) in the highMRI group and
20/42 (47.62%) in the lowMRI group. In addition, the top 20
genes with mutation rates were the same in the two MRI
groups (Figures 6(a) and 6(b)). In addition, TMB was
overexpressed in the low MRI group and was negatively
associated with MRI (Figures 6(c) and 6(d)). Meanwhile, the
low TMB group was linked with poor prognosis
(Figure 6(e)). Ten, we analyzed the merit of combining
MRI with TMB to predict the prognosis of AML. Te KM
survival curve revealed that L-TMB+H-MRI had the worst
prognosis, and H-TMB+L-MRI had the best prognosis
(Figure 6(f)). We further found that MRI was signifcantly
overexpressed in the SD/PD group in the IMvigor210 dataset
(Figure 6(g)). Te KM curve showed that MRI was asso-
ciated with poor prognosis in the IMvigor210 dataset
(Figure 6(h)). ROC curves of MRI in 1, 2, and 3 years in the
IMvigor210 dataset were 0.566, 0.559, and 0.540
(Figure 6(i)).

3.6. Drug Sensitivity Analysis and Biological Analysis of the
Macrophage-Related Index. To further guide clinical strat-
egy development, we analyzed the IC50 diferences of 8
chemotherapeutic agents in MRI groups. Te results in-
dicated that the IC50 of sorafenib, dasatinib, pazopanib, and
bortezomib was higher in the low MRI group
(Figures S1A–D) and the IC50 of midostaurin, cytarabine,
camptothecin, and axitinib was higher in the high MRI
group (Figures S1E–H), suggesting that these 4 drugs
(sorafenib, dasatinib, pazopanib, and bortezomib) may be
more suitable for patients with higher DMS patients. Te
results of GSVA enrichment analysis of HALLMARK and
KEGG suggested that multiple tumor-associated pathways
including mTOR, JAK-STAT, and P53 pathways were
enriched in the high MRI group (Figures S2A and B). As
a further validation, the results of GO revealed that DEGs
were mainly localized to the immune process, MHC protein
complex, and cytokine binding (Figure S2C). Simulta-
neously, KEGG analysis demonstrated that DEGs were fo-
cused on multiple immune-related pathways (Figure S2D).

3.7. Identifcation of Prognostic andExpressionCharacteristics
of the Modeled Genes. Figure 7(a) showed that among the
three modeled genes, ELANE and BCL2A1 were signif-
cantly overexpressed in tumors, while LGALS1 was sup-
pressed (Figure 7(a)). Te KM survival curve indicated that
patients with high BCL2A1 and high LGALS1 were

associated with poor prognosis, while those with high
ELANE had the opposite prognosis (Figure 7(b)). Besides,
ELANE expression was low and BCL2A1 and LGALS1
expressions were high in dead patients (Figure 7(c)). Te
expression distribution of multiple cell subgroups in
GSE116256 is shown in Figure 8(a). Te cells were classifed
into diferent cell lines and labeled with the expression of
typical marker genes as shown in Figure 8(b). Te pro-
portion of multiple cell subgroups in each GSE116256 pa-
tient is shown in Figure 8(c). LGALS1 was highly enriched in
malignant, mono/macro, and promonocytes. ELANE was
highly enriched in malignant, GMP, and promonocytes.
BCL2A1 was highly focused on mono/macro (Figures 8(d)–
8(f )). LGALS1 was obviously highly expressed in malignant,
mono/macro, and promonocytes (Figure 8(g)). ELANE was
signifcantly highly expressed in GMP (Figure 8(h)).
BCL2A1 was highly expressed in mono/macro (Figure 8(i)).

4. Discussion

AML is an aggressive myeloid malignancy, and most pa-
tients exhibit unsatisfactory prognostic outcomes [21]. With
the deepening of research, stem cell transplantation and
chemotherapy are of great help to AML patients [21].
However, due to the high recurrence rate of AML, the
prognostic survival rate is still not satisfactory [22, 23].
Macrophages play important roles in the immune micro-
environment and are widely involved in a variety of tumor
development processes [24, 25]. Terefore, we further an-
alyzed the molecular function of MRGs in AML based on
their expression profles, which may help develop more
suitable treatment plans and ultimately improve the prog-
nosis of AML patients.

TAM is an important component of TME and plays
a complex role in tumor progression [26, 27]. In general,
macrophages rely on antigen presentation and secretion of
signaling molecules to regulate immunity [27, 28]. However,
in tumors, macrophages can be induced into the M1 type
with antitumor efects or the M2 type with the induction of
anti-infammatory factors [29]. At the same time, the di-
versity of TAM in the process of tumor progression also has
a certain infuence on the efcacy of immunotherapy [30].
Accumulating evidence suggests that TAM is a key mech-
anism in leukemogenesis and chemoresistance, which has
made it an attractive therapeutic target for recent studies.
However, the specifc mechanism and prognostic model of
TAM in AML have not been extensively studied. Tus, in
our study, we constructed two macrophage-related clusters
with diferent prognoses. On the one hand, due to the en-
richment of immunosuppressive cells and immunosup-
pressive checkpoints in cluster B, an immunosuppressive
microenvironment was formed to facilitate tumor pro-
gression. On the other hand, procancer pathways were
signifcantly enriched in cluster B. Besides, the macrophage-
related prognostic model was constructed, and the accuracy
and stability of the model were verifed by external datasets.
In TME, invasive immune cells have a signifcant impact on
tumor progression and are extremely signifcant therapeutic
targets [31, 33]. Te poor prognosis of the high MRI group
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may be due to the enrichment of cancer-promoting path-
ways and immunosuppressive microenvironment. In ad-
dition, Wang et al. constructed a prediction model in glioma
using 9 TAMs, and the risk score was signifcantly correlated
with patient prognosis and tumor microenvironment [32].

At the same time, Liu et al. established a risk model based on
10 TAMs in head and neck squamous cell carcinoma
(HNSCC) and a nomogram that can be used to predict long-
term clinical survival [33]. However, developing the best
individual treatment plan is a challenge for physicians. In
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Figure 7: Identifcation of prognostic and expression characteristics of modeled genes: (a) diferential expression of the three modeled genes
(ELANE, BCL2A1, and LGALS1) between normal and AML tissues, (b) survival analysis of the three modeled genes (ELANE, BCL2A1, and
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our study, we used the IMvigor210 data to analyze the
diferences in immunotherapy in the MRI group. MRI ex-
pression was signifcantly low in the CR/PR group, and the
prognosis was poor in the highMRI group in the IMvigor210
dataset. In addition, the high MRI group was more sensitive
to sorafenib, dasatinib, pazopanib, and bortezomib. Tese
results suggest that the macrophage-related prognostic
model may be employed as an important indicator to
evaluate the response of AML patients to targeted therapy
and immunotherapy and contribute to the formulation and
development of personalized treatment for AML patients.

LGALS1 belongs to the galactose lectin family and
participates in the construction of the immunosuppressive
microenvironment and the regulation of multiple signaling
pathways, especially the carcinogenic pathway [34, 35].
LGALS1 has been found to be involved in regulating im-
munosuppressive microenvironments to regulate tumor
progression in many human cancers [36–38]. For example,
in glioma, downregulation of LGALS1 inhibited immuno-
suppressive factors and reshaped the glioma immunosup-
pressive microenvironment by downregulating M2
macrophages and MDSCs [39]. BCLA2 is an important cell
death regulatory factor that controls the release of cyto-
chrome C from mitochondria in the endogenous apoptotic
pathway. Research has shown that BCL2A1 is signifcantly
overexpressed in various tumors, including hematological
malignancies and solid tumors [40–42]. For example, in
a mouse model of MYC-driven leukemia, BCL2A1 can
cooperate with MYC to accelerate leukemogenesis [43].
ELANE is one of the key components that take part in the
control of the innate immune system, and it participates in
the regulation of tumor progression through various
mechanisms. Cui et al. showed that ELANE can selectively
kill a variety of cancer cells, suggesting a promising anti-
cancer strategy [44]. Besides, in radiation-induced lung
cancer, ELANE promotes polarization of M2 macrophages
by downregulating PTEN, thus promoting cell proliferation,
migration, and invasion in vitro [45]. Our study found that
LGALS1 and BCLA2 played a cancer-promoting role in
AML and were highly expressed in macrophages.

In our study, we frst analyzed the prognostic and im-
mune role of MRGs in AML, which may help guide clinical
treatment. Although we have extensively analyzed the
possible carcinogenic function of MRGs in AML and ob-
tained some reliable results, there were still some defciencies
that needed to be addressed. First, we only used public data
to construct and retrospectively validate our fndings.
Terefore, prospective studies were critical to evaluate
clinical efcacy in patients with AML. Second, further bi-
ological studies were needed to confrm our fndings.

5. Conclusion

In brief, we classifed AML patients into two macrophage-
related clusters with diferent prognoses and immune cell
infltration characteristics. Moreover, the macrophage-
related prognostic model was constructed in AML

patients, whichmay be amarker to predict the prognosis and
immune response of AML patients.
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Figure S1: drug sensitivity analysis of the macrophage-
related index. Sensitivity analysis for sorafenib (A), dasati-
nib (B), pazopanib (C), bortezomib (D), midostaurin (E),
cytarabine (F), camptothecin (G), and axitinib (H) in pa-
tients between low and high macrophage-related index
groups. Figure S2: biological analysis of macrophage-related
index: (A, B) the results of GSVA enrichment analysis of
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representative enriched KEGG terms of DEGs in
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