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22q11.2 deletion syndrome (22q11.2DS) is a microdeletion syndrome with a broad and heterogeneous phenotype, even though
most of the deletions present similar sizes, involving ∼3Mb of DNA. In a relatively large population of a Brazilian 22q11.2DS
cohort (60 patients), we investigated genetic variants that could act as genetic modifers and contribute to the phenotypic
heterogeneity, using a targeted NGS (Next Generation Sequencing) with a specifc Ion AmpliSeq panel to sequence nine candidate
genes (CRKL, MAPK1, HIRA, TANGO2, PI4KA, HDAC1, ZDHHC8, ZFPM2, and JAM3), mapped in and outside the 22q11.2
hemizygous deleted region. In silico prediction was performed, and the whole-genome sequencing annotation analysis package
(WGSA) was used to predict the possible pathogenic efect of single nucleotide variants (SNVs). For the in silico prediction of the
indels, we used the genomic variants fltered by a deep learning model in NGS (GARFIELD-NGS). We identifed six variants, 4
SNVs and 2 indels, inMAPK1, JAM3, and ZFPM2 genes with possibly synergistic deleterious efects in the context of the 22q11.2
deletion. Our results provide the opportunity for the discovery of the co-occurrence of genetic variants with 22q11.2 deletions,
which may infuence the patients´ phenotype.

1. Introduction

Te 22q11.2 deletion syndrome (22q11.2DS) results from
the loss of chromosome 22 DNA segments and is the most
frequent microdeletion syndrome. Te presence of blocks of
repetitive and similar DNA (low copy repeats, LCRs) in the
22q11.2 region predisposes to nonallelic homologous re-
combination, resulting in greater instability in this genomic
region [1]. Most of these deletions (∼90%) comprise 3Mb
between the LCR22A and LCR22D, involving around 60
genes [1, 2]. Te manifestation of the clinical signs of
22q11.2DS is broad and may afect diferent organs and
systems, ranging from mild to severe. Even though most
patients have similar-sized deletions, it can result in variable

phenotypes, even in cases of inherited deletions or mono-
zygotic twins [3–5]. 22q11.2DS phenotypes include con-
genital cardiac malformations, velopharyngeal dysfunction,
metabolic and immunological disorders, and behavioral and
cognitive difculties, with an increased incidence of de-
pressive anxiety, attention disorders, and schizophrenia
[1, 4, 6, 7]. It has already been shown that genes outside the
deleted region might be associated with psychiatric, cardiac,
and immunophenotypes in the 22q11.2DS [8, 9]. One of the
hypotheses lies in the fact that allelic variation, such as SNVs
and indels, within the nondeleted 22q11.2 allele or in other
genes mapped outside the 22q11.2 region, could infuence
the phenotype outcome of the 22q11.2DS [10]. Driven by
this hypothesis, the whole-genome sequencing of patients
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with 22q11.2DS gave indications that theHADC1 (Histidine
Decarboxylase) and ZFPM2 (Zinc Finger Protein, FOG
Family Member 2) genes may act as genetic modifers as-
sociated with cardiac defects [11–13]. Changes in the im-
mune system, such as infammation and T-cell-mediated
immune response, were shown to be associated with
schizophrenia [14–16]. Garber et al. [17] saw that a sub-
population of T-cells, the T17 cells, infuenced the devel-
opment and/or regulation of psychotic symptoms in
22q11.2DS. A combined dysfunction of the relationship
between the MAPK1 (Mitogen-Activated Protein Kinase 1)
and CRKL (Like Proto-Oncogene, Adaptor Protein) genes
also appears to be related to the syndrome’s phenotypic
variability. In particular, CRKL appears to be involved in the
occurrence of cardiac abnormalities, mostly tetralogy of
Fallot [6, 9, 18, 19]. Still, the genetic analysis of 22q11DS
remains highly elusive and is complicated by the complex
regulatory circuits of early embryonic formation as well as by
phenotypic heterogeneity [20, 21]. Te advances in NGS
(Next Generation Sequencing) have signifcantly increased
the possibilities of genetic analysis in general, improving the
chance of detecting gene variants in a substantial proportion
of patients.

Studies in the literature show that some genes in
hemizygosity must contribute to the phenotype of patients.
Hestand et al. [22] performed candidate gene sequencing in
the 22q11.2 region in 127 patients. Tey suggested that
nonsynonymous variants found in several genes associated
with the syndrome’s phenotypes, including PI4KA (Phos-
phatidylinositol 4-Kinase Alpha), could result in partially
functional proteins [23–25]. In addition, the HIRA gene
(Histone Chaperone Complex) was indicated to be necessary
for efcient suppression of viral infection, being involved in
the chromatinization of viral DNA, and participating in
intrinsic antiviral immunity [26].

Targeted NGS with gene panels ofers a unique op-
portunity to sequence multiple genes at a lower cost and
with less efort and thus is an efcient tool for mutation
screening in the clinical diagnostic setting [27, 28]. Tis
approach was used by Heike et al. [29] to sequence the
TBX1 region in patients with 22q11.DS to identify genetic
variants in TBX1 that could infuence the phenotype, and
by Pulignani et al. [30] to sequence the ZFPM2 gene in
patients with nonsyndromic congenital heart defects. It is
believed that the investigation of mechanisms infuencing
the 22q11.2DS phenotypic heterogeneity can help to un-
derstand the developmental pathways of the clinical traits
involved and shed light on the management challenges of
these patients [1, 31, 32]. Nevertheless, to date, no
22q11.2DS study based on targeted NGS was carried out in
the Brazilian population, which is essential since the
Brazilian population is mixed, whereby requires care to
estimate the allelic frequencies of polymorphisms in
a representative way and is a challenge considering only
international databases, given that Latino populations are
underrepresented. Tis is the frst study that aimed to
perform a targeted NGS of a specifc gene panel in a Bra-
zilian population of 22q11.2DS.

2. Methods

2.1. Sample. Te sample of the present study consists of 60
patients with ∼3Mb deletions in 22q11.2 (average age of
19± 3 years in the frst clinical evaluation), recruited at the
Medical Genetic Center of the Universidade Federal de São
Paulo (UNIFESP), at the Child Institute of the Faculty of
Medicine of the Universidade de São Paulo (FMUSP), and
the University Hospital of the Universidade Estadual de
Campinas (UNICAMP), all in Brazil. Parental analysis of the
22q11.2 deletion was performed for at least one parent for 27
patients. Among the sample of patients, cases with and
without cardiac and immunological or psychiatric alter-
ations were evaluated. Te statistical power of the sample
size was calculated using the tool G Power (Universität
Düsseldorf, Germany), which resulted in a statistical power
of 81% with an α of 0.02 and an OR >20.

2.2. Custom 22q11.2 Gene Panel for the Risk of Cardiac or
Immune-Psychiatric Phenotypes. Te choice of genes for the
panel was performed based on the gene expression micro-
array data from a previous study carried out by our research
group [8], additionally to the gathering information using the
following online tools: PubMed [33], to consult the literature
for articles and scientifc reviews; GeneCards [34], to general
aggregate data on the function and pathways in which the
gene is involved; UCSC Genome Browser [35], to check the
genomic coordinates, size, and number of exons and introns
of the gene; and OMIM (Online Mendelian Inheritance in
Man) [36], to fnd out if the gene has ever been linked to
comorbidity. Te following genes were selected for the study:
CRKL,MAPK1,HIRA, TANGO2, PI4KA,HDAC1, ZDHHC8,
ZFPM2, and JAM3 (based on Table 1).

2.3. Targeted NGS. Te gene panel was designed with the
online tool Ion AmpliSeq Designer [37] to capture coding
regions, splicing sites, and immediately adjacent intron
sequences. Te sequencing of selected genes was performed
on the equipment Ion Torrent (Termo Fisher). Te con-
struction of libraries was performed by the Ion AmpliSeq
Library Kit 2.0–96 and quantifed by the Ion Library
Equalizer Kit (Termo Fisher). Te template was subjected
to clonal amplifcation in micelles using the Hi-Q Ion OTKit
(Termo Fisher) in Ion OneTouch 2 (Termo Fisher). Te
template enrichment was performed on the Ion OneTouch
ES (Termo Fisher) and applied to the Ion 316 Chip
(Termo Fisher). Te tools Ion Torrent Suite and Ion Re-
porter (Termo Fisher) were used for the initial data
analysis. Te Ion Reporter and Torrent Suite software were
initially used for sequence alignment, coverage number, and
determination of samples´ genotypes.

2.4. Analysis of Variants and Filtering. Te annotation and
fltering of variants were performed from the VCF fle
(Variant Call Format) generated by the Ion Reporter tool
(Termo Fisher) in the UNIX environment. Variants with
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low sequencing coverage (<30x), according to [38], were
excluded. Variants with minor allele frequency (MAF,
Minor Allele Frequency)< 5% were selected from the
gnomAD database [39] and the Brazilian reference cohort
database with 609 human genome samples ABraOM
(Brazilian Online Archive of Mutations) [40]. To assess the
veracity of the identifed indel, the GENOMIC VARIANTS
FILTERING BY DEEP LEARNING MODELS IN NGS
(GARFIELD-NGS) [41] was used, which rely on machine
learning models to distinguish true positive from false
positive indels call. To study the possible efect of the var-
iants, in silico prediction was performed using the WGSA
(Whole Genome Sequencing Annotation) analysis package
according to Liu et al. [42]. Te package has an annotation
pipeline for human genome sequencing studies, aggregating
databases, and prediction tools of various types; for the
prediction of pathogenicity of variants, the databases and
scores that were considered are shown in Supplementary
Figure 1 (Supplementary Figure 1).

2.5. SNP Burden. Te SNP-set (sequence) Kernel Associa-
tion Test (SKAT) [43], based on Fisher’s method, was used to
examine whether all sequenced variants together contribute
to the risk of cardiac or immunopsychiatric phenotypes.

2.6. Variants Validation. Sanger sequencing was performed
to validate variants with pathogenic potential obtained from
in silico analyses. Te primers were designed for amplif-
cation reactions in the Primer3 program [44, 45], and the
quality was verifed by the OligoAnalyzer ™ Tool [46].
Amplifcation was performed using the PCR Master kit
(Promega). Te generated amplifcation products were
purifed with the QIAquick PCR Purifcation kit (Qiagen)
and submitted to the sequencing reaction using the com-
mercial kit BigDye version 3.1 (Applied Biosystems) and the
Genetic Analyzer 3130xl equipment (Applied Biosystems).

3. Results

3.1. Parental Analysis. For 16 patients, parental analysis was
performed for both parents; for 10 patients, it was performed
only for the mother; and for one patient, it was performed
only for the father. Among the patients for whom only the
mother sample was available, three mothers presented the

typical 3Mb deletion in the 22q11.2 region. Two of them
were part of the 60 patients included in this study. No other
parent had deletions in the 22q11.2 region.

3.2. Phenotyping and SNV Burden. A total of 60 individuals
with the canonical ∼3Mb deletion between LCR22A and
LDR22D were assessed for traditional 22q11.2 phenotypes.
Our population of patients with 22q11.2DS exhibited cardiac
and immunopsychiatric phenotypes consistent with pre-
viously published literature [1], being 32 (52%) patients with
cardiac malformations and 28 (46%) patients with immu-
nopsychiatric alterations.

Among these, 19 (31%) patients had both presented
cardiac malformations together with immunopsychiatric
alterations. Te burden analysis (SKAT) did not show any
association with the absolute number of variants sequenced
in the genes and the phenotype groups assessed (cardiac
malformations and immunopsychiatric alterations were
compared with patients without cardiac alterations and
without immunopsychiatric alterations, respectively) by
Fisher’s exact test (p< 0.05).

3.3. Variant’s Prediction. A total of 2,923 variants were
identifed in the nine genes sequenced in 60 patients, with an
average of 40 variants per patient, without the application of
flters (Figure 1, Supplementary Table S1). All target genes
had sequencing coverage above 85% of its extension
(Supplementary Table S2). After the pipeline for fltering the
variants with potential efects, four single nucleotide variants
and two indel variants remained. Regarding SNVs, four
variants were interpreted with a possible efect on the
phenotype (Table 2): rs897688340, rs13058, rs41282607,
mapped in MAPK1, and rs7936421, mapped in JAM3 (Ta-
ble 2). Te coordinate identifed is also a transcription factor
binding site and a target for miRNA (MAPK1 miR-14303p).
Two SNVs were predicted to be an eQTL and a transcription
binding site. Te variant rs897688340 is mapped at the
UTR3 region of the MAPK1 gene. It was predicted as po-
tentially deleterious by CADD and FATHMM-XL, and it
was also predicted to be likely to afect binding by Reg-
ulomeDB. Te other two variants in this same gene (rs13058
and rs41282607) are registered at dbSNP by rs897688340
and rs41282607, respectively, and both are predicted as
deleterious by the FATHMM-XL and CADD tools. Finally,

Table 1: Genes curated for the NGS-panel.

Gene Position Ref seq. no. OMIM Association
HIRA 22q11.21 NP_003316.3 600237 Cardiac anomalies
CRKL 22q11.21 NP_005198.1 602007 Cardiac anomalies
MAPK1 22q11.22 NM_138957.3 176948 Cardiac anomalies
HDAC1 1p35.2 NP_004955.2 601241 Cardiac anomalies
ZFPM2 8q23 NP_036214.2 603693 Cardiac anomalies
JAM3 11q25 NP_116190.3 606871 Cardiac anomalies
TANGO2 22q11.21 NP_690870.3 616830 Immunopsychiatric disorders
ZDHHC8 22q11.21 NP_037505.1 608784 Immunopsychiatric disorders
PI4KA 22q11.21 NP_477352.3 600286 Immunopsychiatric disorders
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the variant rs7936421, also associated in a genome-wide
association study for cardiac valves, was the SNV in the
JAM3 gene, also located at an eQTL region, and predicted as
deleterious by the CADD and FATHMM-XL tools. We also
identifed two indel variants that were highly predicted as
pathogenic in all prediction tools consulted (Table 3). One of
them, registered in the dbSNP with rs199956937 and
mapped at the ZFPM2 gene, was predicted to be at the target
region of four miRNA (miR-130-3p; miR-17-5p; miR-143-
5p; miR-340-5p). Te other indel, identifed in the JAM3
gene, was registered in the dbSNP with rs3216140 and was
predicted to be in the binding site of the transcription
factor EZH2.

4. Discussion

In this study, we identifed six genomic variants with pos-
sible efects on the phenotype of 22q11.2DS by a targeted
NGS approach followed by appropriate fltering strategies.
Tese variants will be discussed according to their prediction
groups and the phenotypes of the patients in which they
were identifed (Table 2): [1] Expression Quantitative Trait
Locus (eQTL), and Transcription Factor (TF) targets; [2]
Hits on genomic association studies in a related phenotype
(Table 2).

4.1. Expression Quantitative Trait Locus (eQTL) and Tran-
scription Factor (TF) Targets. Te analysis of the identifed
SNVs as potential eQTLs provided relevant results for three
SNVs, whose genotypes could afect the expression of their
related genes. Te variants rs13058 and rs41282607 in

MAPK1 were found to be diferentially associated in dif-
ferent tissues, including arteries, stomach, and thyroid,
suggesting that these variants are likely to afect gene
functions that are important for the body as a whole, which
makes sense once they were identifed in patients with
cardiac malformations and immune-psychiatric alteration,
respectively [47, 48]. We identifed indels in the ZFPM2 and
JAM3 genes that may be possibly pathogenic; they could be
playing a role as a phenotype modifer in the patients.
ZFPM2 variants were found in three patients with cardiac
malformations and had previously been associated with
tetralogy of Fallot, a conotruncal heart defect commonly
observed in patients with 22q11.2DS [12, 49]. Te ZFPM2
protein acts as a cofactor for dosage-sensitive GATA
transcription factors during embryonic heart development
in mouse models, and it is speculated that variants in this
gene could lead to conotruncal heart defects [12, 50]. Re-
garding the JAM3, this gene is one of the candidate genes of
the cardiac phenotype in patients with 11q25 hap-
loinsufciency which is an analogous syndrome to the
22q11.2DS [51, 52]. Te indel variant in JAM3 was identifed
in the binding site of transcription factor EZH2 which
controls the methylation of H3K27 histone and can also act
through methylation of nonhistone proteins, being a po-
tential mechanism for EZH2-mediated gene activation, the
perturbation of this pathway can lead to cardiac defects and
was already established as a driven mechanism in some types
of cancer [53–55].

4.2. Hits on Genomic Association Studies in a Related
Phenotype. Te SNV in the JAM3 gene (rs7936421), mapped
in chromosome 11, found in 16 patients with diverse
phenotypes, and even with a higher frequency in the pop-
ulation, is of interest. Since this same SNV has already been
associated in an association study for the cardiac phenotype
in the GRASP database, this database includes variants that
have been signifcantly associated in genome-wide associ-
ation studies [56]. It is known that SNVs in eQTL can in-
fuence mRNA expression levels [57]. Tat is the case of the
rs793642, which was predicted to be at an eQTL region in the
artery aorta and muscle-skeletal tissues according to the
GTEX database. Most importantly, we identifed the same
variants in more than one patient, suggesting that the co-
occurrence of two or more rare variants may have an ad-
ditive or synergistic deleterious efect with the deletion in
22q11.2. Accordingly, we can speculate that each variant
alone could be tolerated. Still, when combined with another
genetic event, as with the deletion, it would lead to the
diference of penetrance of some of the syndrome pheno-
types [28, 58]. Hestand et al. [22] studied 127 individuals
with the 22q11.2DS using next-generation sequencing to
sequence the genes in the 22q11.2 region of the intact allele
and it was prepared a catalog of 22q11.2 hemizygous var-
iation that could be used as a blueprint for future experi-
ments to correlate 22q11.DS variation with the phenotype in
the Caucasian population. Tese authors provided insight
into the phenotypic contributions of some genes in the
region, but in our study, none of the variants reported were

NGS
Gene Panel

Coverage and
MAF filtering

Pathogenicity
prediction

• exons, introns, and UTRs

• > 30 coverage
• < 5% in gnomAD
• < 5% in ABraOM

• WGSA pipeline
• Sanger validation

• SKAT
• GARFIELD-NGS (indels)

Burden

Figure 1: Data analysis pipeline.
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identifed. Importantly, since variant frequencies vary across
populations, in our study, because we have a Brazilian
sample, we also chose to use the Brazilian variant database
ABraOM in the process of fltering and interpretation of the
variants [22, 59]. One of the limitations of our study is the
lack of functional assays performed on the large number of
variants detected and the possibility that some variants that
did not pass the flter pipeline could afect the phenotype.
Secondly, other genes not targeted in this study may be
responsible for the 22q11.2DS phenotypic variability. Fi-
nally, target NGS data processing methods are limited in
detecting genomic structural variants (partial gene deletions
or duplications) that have been implicated in the patho-
genesis of 22q11.2DS. Despite these limitations, we provide
relevant information about the genetic variants found in our
cohort that may merit further studies to clarify the phe-
notypic heterogeneity in 22q11.2DS.

5. Conclusions

In conclusion, we performed targeted NGS in a cohort of
60 22q11.2DS Brazilian patients to investigate variants that
could act as genetic modifers. We identifed six variants
with possible deleterious efects in the context of the 22q11.2
deletion distributed in three genes: MAPK1, JAM3, and
ZFPM2. Tese variants and genes could be related to cardiac
malformations and immune-psychiatric alterations, both
phenotypes present in 22q11.2DS. Moreover, the same
variants could be identifed in more than one patient,
suggesting that the co-occurrence of two or more rare
variants may have an additive or synergistic deleterious
efect with the deletion in 22q11.2. To the best of our
knowledge, this study was the frst to apply a designed NGS
target panel of 22q11.2DS-associated genes that include
genes from the region deleted and outside the region,
performed in a Brazilian population sample. Nevertheless,
the studies that associated the selected genes with the

phenotypes studied were carried out in the majority of the
Caucasian population, highlighting the relevance of studying
their association in the Brazilian population with 22q11.2DS.

Data Availability
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Ethical Approval

Te study was performed in accordance with the guidelines
established by the Brazilian National Health Council.

Consent

Te patients, their parents, and/or guardians signed an
informed consent form according to the Research Ethics
Committee of Universidade Federal de São Paulo, approved
under number 1,156,489.

Disclosure

We certify that the submission is an original work.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Table 3: Identifed indels and their predictions in the present sample (n� 60).

Gene ZFPM2 JAM3
dbSNP∗ rs199956937 rs3216140
Position (hg19) chr8: 106816289C>CTT chr11: 134014673C>CCT
MAF (AbraOM) Not identifed in Brazilian population 0.032787
MAF (gnoMAD) 0.005 0.00003207
Genecanon Damage Damage
FATHMM-indel Damage Damage
SIFT-indel 09% closer to exon 42% closer to exon
RegulomeDB NA Binding site of transcription factor EZH2∗∗
miRNA-target miR-130-3p, miR-17-5p, miR-142-5p, miR-340-5p NA
Patients 3 patients with congenital cardiac malformations 40 patients
Conclusion Possibly pathogenic Possibly pathogenic
∗Variant ID from dbSNP (b151); MAF: minor allele frequency; ∗∗ChiP-Seq cluster from ENCODE with motifs.
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Figure S1: Prediction tools and scores used for pathogenicity
prediction of variants. Table S1: Variants detected by the
NGS panel before fltering. Table S2: Overall coverage per
target gene of the NGS panel. Figure S1 shows the diferent
prediction tools used for pathogenicity prediction of the
diferent types of variants found on the patients. Missense
variants with CADD >20, FATHMM >0.8, and SIFT <0.05
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the nine target genes before fltering application. Location
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