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Objectives. This study investigated the functional mechanism of transmembrane protein 100 (TMEM100) as a tumor inhibitor gene
in CRC cells and offered a reference for the treatment of CRC.Methods. The mRNA expression data of CRC were acquired from the
TCGA database to mine differentially expressed mRNAs. The role of TMEM100 in the progression of CRC cells was evaluated by
MTT, colony formation, scratch healing, and Transwell assays. The influence of TMEM100 on the TGF-β signaling pathway was
detected by western blot. Results. TMEM100 was markedly lowly expressed in CRC. CRC cell growth was significantly suppressed
by overexpressing TMEM100 but noticeably facilitated by silencing TMEM100. Overexpression of TMEM100 inhibited the
activation of the TGF-β signaling pathway, thus inhibiting malignant progression of CRC. Conclusion. TMEM100 is lowly
expressed in CRC, which can suppress CRC cell growth by regulating the TGF-β signaling pathway.

1. Introduction

Colorectal cancer (CRC) ranks 3rd concerning incidence rate
(10.2%) and 2nd regarding mortality rate (9.2%), which has
become a serious threat to people’s health [1]. Research
has suggested that patients with early CRC tend to have bet-
ter therapeutic effect [2]. However, most CRC sufferers are
already at an advanced stage when being confirmed. There
is still a lack of effective therapeutic method for advanced
CRC sufferers, and over 90% of them have local recurrence
and distant metastasis [3–5]. Accordingly, it is rather impor-
tant to fully understand the exact molecular mechanism of
occurrence and development of CRC and find the key
regulatory gene in CRC in order to provide further guidance
for CRC treatment.

Currently, studies have indicated that the mutation of
many genes is vital in the development of CRC. For instance,
the tumor suppressor genes P53 [6] and PTEN [7] tend to
mutate and foster tumorigenesis in CRC. Besides, research
has also showed that miRNA is able to repress the occurrence

and metastasis of CRC by silencing K-ras [8]. A trans-
membrane protein (TMEM) acts as a channel to allow
the movement of particular substances cross the biological
membranes [9]. TMEM proteins perform important phys-
iological functions in various cell types. For example,
TMEM45A is associated with keratinization [10]; TMEM16
is closely related to cell autophagy [11]. In addition, TMEM
proteins are reported to express differentially in various can-
cers and capable of regulating growth of tumors. For
instance, TMEM48 is expressed notably high in non-small-
cell lung cancer (NSCLC), while silencing it could signifi-
cantly stimulate cell apoptosis and inhibit the adhesion,
migration, invasion, and tumorigenesis of cells in nude mice
[12]. TMEM100 is noticeably downregulated in gastric can-
cer (GC) tissue. Overexpressing TMEM100 hampers inva-
sion and migration of GC cells but does not affect their
growth. And TMEM100 expression could restore the chemo-
sensitivity of GC cells to drugs such as 5 fluorouracil (5-Fu)
and cisplatin [13]. Nevertheless, the role of TMEM100 in
CRC has not been investigated so far.
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Consequently, the present study explored the molecular
mechanism by which TMEM100 regulated CRC cell growth
via a set of in vitro experiments, so as to better understand
CRC pathogenesis and provide a novel idea for clinical treat-
ment of CRC.

2. Materials and Methods

2.1. Cell Incubation and Collection of Samples. Normal
human colorectal cell line FHC and CRC cell lines HCT116
(ATCC® CCL-247EMT), HCT-15 (ATCC® CCL-225),
NCI-H498 (ATCC® CCL-254), and SNU-C2B (ATCC®
CCL-250) were purchased from Genetimes ExCell Technol-
ogy, Inc. (Shanghai, China) and incubated in RPMI 1640
(Gibco, 11875093) medium added with 10% fetal bovine
serum (FBS; Gibco, 10099141C). The incubation conditions
were 37°C and 5% CO2.

Twenty pairs of CRC tumor and normal adjacent tissue
samples of patients from the Department of Colorectal and
Anal Surgery, Lishui Municipal Central Hospital, were col-
lected with informed consent from all of them. After surgical
resection, samples were immediately preserved in liquid
nitrogen at -80°C for experiment. This experiment obtained
the approval of the Ethics Committee of Lishui Municipal
Central Hospital.

2.2. Gene Overexpression and Knockdown. Small interfering
RNA (siRNA) targeting TMEM100 was designed by Sangon
Biotech (Shanghai) Co., Ltd. pEGFP1 vector was applied to
construct pEGFP1-TMEM100 and pEGFP1-Smad2/Smad3
recombinant plasmids. CRC cells were subjected to trans-
fection with siRNA, recombinant plasmids, and corre-
sponding controls by using Lipofectamine®3000 reagent
(Invitrogen, USA).

2.3. Real-Time Quantitative PCR (qRT-PCR). Total RNA was
obtained from CRC tissue and cells by using TRIzol reagent
(Invitrogen). Then, complementary DNA (cDNA) was
obtained from extracted RNAwith the Reverse Transcription
Assay Kit (Invitrogen). The ABI 7900HT (Applied Biosys-
tems, USA) was used to perform qRT-PCR with the miScript
SYBR Green PCR Kit (Qiagen, Germany) under the follow-
ing thermocycling conditions: initial denaturation at 95°C
for 10min, 95°C for 2min, 40 cycles at 95°C for 5 s, and
60°C for 30 s. GAPDH served as an internal control for
TMEM100. Quantitative value was expressed in the 2-ΔΔCt

value to analyze difference in the relative expression of
TMEM100 between the control group and test group. The
experiment was conducted in triplicate. Supplementary
Table 1 listed the information of primers.

2.4. MTT Assay. NCI-H498 cells (5 × 103) were placed into a
96-well plate. Each treatment consisted of three triplicates. At
1 d, 2 d, 3 d, 4 d, and 5d, cells were added with sterile MTT
solution (Beyotime) for proliferation evaluation as per the
manufacturer’s specification. At last, absorbance at 570nm
was identified by the microplate reader (Molecular Devices,
Sunnyvale, CA, USA).

2.5. Colony Formation Assay. Transfected NCI-H498 cells
(5 × 102 cells/well) were cultured in a 6-well plate for 2 weeks.
Thereafter, cells were treated with 4% paraformaldehyde for
15min and dyed with 1ml of 0.1% crystal violet for 30min.
Photos were taken, and colonies qualified were counted.

2.6. Scratch Healing Assay. NCI-H498 cells (1 × 106) were
placed into a 6-well plate. When 80% of cell confluency was
achieved, a scratch was created on cells using the tip of a
200μl pipette. The floating cells were removed by washing
the medium twice, after which cells were cultured for another
24 h in a fresh medium. The cells were observed and photo-
graphed using a microscope at 0 and 24 h.

2.7. Transwell Assay. About 2 × 104 cells were inoculated into
the Matrigel-coated upper compartment. The lower com-
partment was added with Dulbecco’s modified Eagle’s
medium (DMEM) plus 10% FBS (Thermo Fisher, USA).
After cells were incubated at 37°C for 48 h, noninvasive cells
in the upper compartment were removed. While invasive
cells in the lower compartment were stained with 0.5% crys-
tal violet. Afterwards, cells were observed, photographed, and
counted under a microscope.

2.8. Western Blot. After 48 h of transfection, cells were
washed with precooled phosphate-buffered saline (PBS;
Thermo Fisher, USA) in triplicate and then subjected to
10min of lysis on ice by using whole-cell lysate. Proteins
obtained were quantitated by applying BCA Protein Assay
Kit (Thermo Fisher, USA), boiled along with 10μl loading
buffer at 95°C for 10min, and sequentially separated by
sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) at a voltage of 100V. Then, the samples were
loaded to nitrocellulose membranes at 100mA within
120min. Membranes were subsequently blocked in 5%
BSA/TBST for further 60min. Afterwards, primary rabbit
antibodies were cultured with the membranes overnight at
4°C. Subsequently, the incubation of horseradish peroxidase-
(HRP-) conjugated secondary antibody goat anti-rabbit IgG
and the membranes was performed at room temperature
for 120min. Finally, enhanced chemiluminescence (ECL)
assay kit (Solarbio, Beijing, China) was used to visualize pro-
tein bands and images were captured for further observation.
Supplementary Table 2 exhibited details of antibodies. The
experiment was conducted in triplicate.

2.9. Statistical Analysis.All data analyses were processed using
SPSS 22.0 software. All measurement data were exhibited as
mean ± standard deviation (SD). Student’s t-test was used
for analyzing differences between the two groups. ∗p < 0:05
indicated statistically significant difference, and ∗∗p < 0:01
indicated highly statistically significant difference.

3. Results

3.1. TMEM100 Shows Low Expression in CRC Tissue and
Cells. The mRNA expression data of CRC were acquired
from the TCGA-COAD dataset. Differentially expressed
mRNAs (DEmRNAs) were screened by using “edgeR”
package ð∣logFC∣>2, padj < 0:05). 2069 DEmRNAs were
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discovered (Figure 1(a)), among which TMEM100 was signif-
icantly poorly expressed in the tumor tissue (Figure 1(b)).
Research has unveiled that TMEM100 is able to suppress
GC cell migration and enhance the chemosensitivity of GC
cells [13]. Additionally, the downregulation of TMEM100 is
found to be remarkably linked to the poor prognosis of
NSCLC sufferers [14, 15]. Here, we assessed the TMEM100
expression in tumor and adjacent normal tissues via qRT-
PCR, discovering that TMEM100 expression was noticeably
low in CRC tissue in comparison with the expression in adja-
cent normal tissue (Figure 1(c)). Besides, TMEM100 expres-
sion in normal colorectal cell line FHC and CRC cell lines
HCT116, NCI-H498, SNU-C2B, and HCT-15 was detected,
finding that compared with normal cell line, TMEM100 was
markedly downregulated in CRC cell lines (Figure 1(d)).
Taken together, the above results indicated that TMEM100
had low expression in CRC tissue and cells.

3.2. TMEM100 Restrains CRC Cell Proliferation. To explore
the role of TMEM100 in proliferation and colony formation

of CRC cells, NCI-H498 cells were treated with TMEM100
siRNA (si-TMEM100) and TMEM100 overexpression vec-
tor (oe-TMEM100). qRT-PCR revealed that TMEM100
was markedly knocked down after transfection with si-
TMEM100 but significantly upregulated after transfection
with oe-TMEM100, which uncovered high transfection
efficiency (Figure 2(a)). MTT assay suggested that the
NCI-H498 cell proliferation ability was noticeably enhanced
upon TMEM100 silencing but markedly weakened upon
TMEM100 overexpression (Figure 2(b)). Additionally, the
colony formation capacity of NCI-H498 cells was remark-
ably raised upon TMEM100 knockdown but significantly
decreased upon TMEM100 overexpression (Figure 2(c)).
Collectively, the above experiments demonstrated that
TMEM100 could suppress CRC cell proliferation.

3.3. TMEM100 Represses CRC Cell Migration and Invasion.
To explore the influence of TMEM100 on the migration
and invasion of CRC cells, scratch healing and Transwell
assays were adopted. The former indicated that the
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Figure 1: TMEM100 expression is decreased in CRC tissue and cells. (a) Volcano plot of DEmRNAs. Red for highly expressed genes, and
green for lowly expressed ones. (b) Relative expression of TMEM100 in the normal group and tumor group. (c) qRT-PCR determined the
TMEM100 expression in the tumor and normal samples. (d) TMEM100 expression in normal human colorectal cells and CRC cells. ∗p <
0:05.
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Figure 2: TMEM100 inhibits NCI-H498 cell proliferation. (a) TMEM100 expression upon TMEM100 silencing or overexpression analyzed
by qRT-PCR. (b) MTT assay was performed to evaluate NCI-H498 cell proliferative ability upon TMEM100 silencing or overexpression. (c)
The colony formation capacity of NCI-H498 cells upon TMEM100 silencing or overexpression was measured by colony formation assay.
∗p < 0:05, ∗∗p < 0:01.
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NCI-H498 cell migratory ability was noticeably enhanced
upon TMEM100 silencing but markedly inhibited upon
TMEM100 overexpression (Figure 3(a)). The latter showed
that the NCI-H498 cell invasion capacity was remarkably
increased upon TMEM100 knockdown but markedly
repressed upon TMEM100 overexpression (Figure 3(b)).
Moreover, western blot determined the influence of

TMEM100 on epithelial-mesenchymal transition (EMT) of
NCI-H498 cells, unveiling that knockdown of TMEM100
silenced the epithelial marker (E-cadherin) of NCI-H498 cells
but upregulated the mesenchymal markers (vimentin and
N-cadherin). On the contrary, overexpressing TMEM100
elevated E-cadherin but downregulated N-cadherin and
vimentin (Figure 3(c)). These results suggested that the high
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Figure 3: TMEM100 restrains the migration and invasion of NCI-H498 cells. (a) Scratch healing assay detected the migration of NCI-H498
cells upon TMEM100 silencing and overexpression. (b) Transwell assay assessed invasion of NCI-H498 cells upon TMEM100 silencing and
overexpression. (c) Western blot tested the effect of TMEM100 on EMT of NCI-H498 cells. ∗p < 0:05.
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Figure 4: Continued.
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Figure 4: Continued.
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expression of TMEM100 in NCI-H498 cells could inhibit cell
migration and invasion.

3.4. TMEM100 Represses CRC Cell Growth by Regulating
TGF-β Signaling Pathway. Gene set enrichment analysis
(GSEA) pointed out that TMEM100 was markedly concen-
trated in the TGF-β signaling pathway (Figure 4(a)). There-
fore, we further investigated whether TMEM100 regulated
the TGF-β signaling pathway. Notably, western blot indi-
cated that TMEM100 overexpression reduced TGF-β
expression, as well as the phosphorylation of Smad2 and
Smad3 (Figure 4(b)). To verify that TMEM100 modulated
malignant growth of CRC cells via the TGF-β signaling
pathway, we simultaneously overexpressed Smad2/Smad3
and TMEM100, finding that the inhibitory effect of
TMEM100 overexpression on the progression of NCI-H498
cells were all reversed by overexpressing Smad2/Smad3
(Figures 4(c)–4(f)). Collectively, it could be concluded that
TMEM100 suppressed CRC cell growth by repressing TGF-
β signaling pathway activation.

4. Discussion

CRC is a kind of malignancy worldwide that poses a huge
threat to human health [16]. CRC metastasis is a primary
cause of death in CRC patients [17]. In the United States,
CRC patients with focal hepatic lesion have a 5-year overall
survival rate of 90%, while that of patients with distant
metastasis is only 5%-8% [1]. Besides, EMT is the reason con-

tributing to the distant metastasis of CRC sufferers [18]. Con-
sequently, it is of great importance to find a new therapeutic
method for CRC, especially for metastatic CRC.

TMEM100 is located at 17q32 and encodes a 134-amino
acid protein. A recent study has indicated that upregulation
of TMEM100 activity in vivo inhibited lungmetastasis of gas-
tric cancer cells, suggesting that TMEM100 may be linked
with tumor invasion and metastasis [13]. In this study,
TMEM100 was discovered to be noticeably downregulated
in CRC patients via bioinformatics analysis and in vitro
experiments. But the role of TMEM100 in CRC has not been
reported yet. As a result, we further studied the function of
TMEM100 in CRC cells, discovering that TMEM100 knock-
down could facilitate progression of CRC cells. On the con-
trary, overexpression of TMEM100 had an inhibiting effect
on CRC cell progression. EMT is a major participant in reg-
ulating tumor metastasis [19]. Downregulation of E-cadherin
and up-regulation of N-cadherin and vimentin are key char-
acteristics of EMT, resulting in unstable adhesion junctions.
EMT has been confirmed to be associated with aggressive
or metastatic phenotypes in CRC. In our study, knockdown
of TMEM100 promoted EMT in CRC, while overexpression
of TMEM100 caused an opposite result. These results
suggested that TMEM100 inhibited the EMT process by
affecting the expression of CRC phenotypic proteins, thus
increasing invasive and migratory abilities of CRC cells.

To have a deeper understanding into the mechanism of
TMEM100 in CRC, GSEA was used to find that TMEM100
was mainly enriched in the TGF-β signaling pathway. The
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Figure 4: TMEM100 suppresses CRC cell growth by regulating TGF-β signaling pathway. (a) The signaling pathway regulated by TMEM100
was analyzed by GSEA. (b) Western blot assessed the expression of TGF-β signaling-related proteins upon TMEM100 overexpression. The
proliferative, colony formative, invasive, and migratory abilities of NCI-H498 cells were determined by conducting (c) MTT assay, (d) colony
formation assay, (e) Transwell assay, and (f) scratch healing assay upon simultaneously overexpressing Smad2/Smad3 and TMEM100. ∗
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signaling pathway is a series of transforming growth factor-
mediated signal transduction processes, which is important
in growth, development, and differentiation of cells and tis-
sues, as well as in the occurrence, development, and metas-
tasis of a number of tumors [20]. Studies have unveiled
that TGF-β suppresses tumor cell growth at the early stage
of tumorigenesis but fosters tumor progression at the
advanced stage [21–23]. In this study, we discovered that
TMEM100 overexpression could inhibit phosphorylation
of Smad2 and Smad3, as well as the expression of TGF-β1
in CRC cells, but the inhibitory effect of TMEM100 overex-
pression on the progression of CRC cells could be reversed
by overexpressing Smad2/Smad3. Cai et al. [24] reported
that tumor-associated macrophages could promote the
EMT process via the TGF-β/Smad2, 3-4/Snail signaling
pathway. Additionally, epidermal growth factor (EGF) can
induce EMT of breast cancer cells via the phospho-Smad2/3
Snail signaling pathway [25]. These evidences strongly dem-
onstrated that by restraining the activation of the TGF-β sig-
naling pathway with TMEM100, Smad2/3 phosphorylation,
and phenotypic transformation of EMT process in CRC cells
can be inhibited, and finally, the malignant progression of
CRC can be suppressed.

All in all, the present research uncovered the molecular
mechanism of TMEM100 in CRC (Figure 5). As a tumor sup-
pressor gene, TMEM100 restrained CRC malignant progres-
sion by regulating the TGF-β signaling pathway. It will
provide new ideas and theoretical basis for developing treat-
ment strategies for colorectal cancer and other malignant
diseases.

However, there are still some deficiencies in our research.
For example, only the role of TMEM100 in CRC cell lines
was studied, and no corresponding in vivo experiments were
conducted. We will conduct in vivo experiments and clinico-
pathological correlation analysis in subsequent studies to
obtain more accurate and reliable results.
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