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Background. Pancreatic carcinoma is a malignant tumor with a high fatality rate, and the increased resistance of pancreatic
carcinoma to chemotherapy has become a difficult problem in clinical practice. Hence, it is imperative to develop an effective
treatment for pancreatic cancer. Sestrins are a class of stress-induced proteins that have antioxidation functions, regulating cell
growth and metabolism. Curcumin is a natural pigment isolated from turmeric. Several studies have also suggested that this
molecule has multiple pharmacological effects, such as anti-inflammatory, antioxidant, and antitumor effects. However, there
are insufficient studies on curcumin cooperating with the sestrin family to inhibit tumors, and the mechanism is still unclear.
Our aim was to observe the potential anticancer effects of curcumin combined with the sestrin family on pancreatic carcinoma
and probe its possible molecular mechanisms. Methods. Lentiviral infection, real-time fluorescence quantitative PCR assays, Cell
Counting Kit-8 assays, real-time cell analysis technology, colony formation assays, wound healing assays, Transwell invasion
assays, protein extraction, and western blots (WBs) were used to evaluate the effect of curcumin combined with sestrin2 on the
proliferation, invasion, and migration of pancreatic carcinoma cells. Results. The results revealed that curcumin cooperated with
sestrin2 to significantly suppress pancreatic cancer. In addition, we determined that sestrin2 cooperated with curcumin to
inhibit pancreatic cancer by specifically targeting Nrf2/Keap1/HO-1/NQO-1. Conclusion. These findings clarify that curcumin-
mediated synergistic targeting of sestrin2 is a potentially valuable treatment for pancreatic cancer.

1. Background

Pancreatic carcinoma is a fatal malignancy of the digestive
system with a high fatality rate, accounting for roughly
432000 deaths according to GLOBOCAN 2018 estimates [1,
2]. Relevant studies have shown that pancreatic carcinoma
is the seventh leading cause of cancer-related death world-
wide and has the highest mortality rate among all major can-
cers. In the past five years, only 6% of pancreatic cancer
patients have survived [3–5]. The main risk factors for pan-
creatic carcinoma include smoking, family history, chronic

pancreatitis, diabetes, obesity, occupational exposure, a
high-fat diet, Helicobacter pylori infection, etc. [6–9].
Although the causes of pancreatic carcinoma are multiplex,
smoking and family history still play a dominant role.
Approximately 20% of pancreatic tumors result from
smoking [10].

Despite advances in current technology, surgical resec-
tion is still the only possible treatment for the disease,
followed by chemotherapy [2]. Unfortunately, pancreatic
carcinoma is insensitive to most chemotherapeutic agents
[11]. In addition, most pancreatic carcinoma patients are
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diagnosed when the lesions cannot be treated with surgery
[12]. Consequently, it is crucial to find an effective agent to
treat pancreatic cancer with fewer side effects.

In recent years, it has been shown that sestrins are a type
of stress-induced protein that is highly conserved among spe-
cies, can be induced under various stress conditions, such as
endoplasmic reticulum stress, and control primary cellular
processes, including cell viability, antioxidant defense, cell
growth, and metabolism [13, 14]. The sestrin family has three
members: sestrin1, sestrin2, and sestrin3. Sestrin1, also
known as the p53 activator gene, is activated in a p53-
dependent manner in response to stress, such as UV and
UV exposure. Sestrin2 is a vital member of the family that
protects cells from a wide variety of stresses, including
DNA damage, hypoxia, and oxidative stress. Sestrin3 is the
third member and is activated by the forkhead box O tran-
scription factor [15, 16]. Relevant studies have suggested that
sestrin2 mainly inhibits the accumulation of reactive oxygen
species (ROS) by activating the nuclear factor-erythrocyte 2-
related factor (Nrf2) pathway, leading to the expression of
antioxidant proteins and inhibiting the activity of mTORC1
[17]. In addition, sestrin2 plays a tumor suppressive role
under normal metabolic conditions. This molecule indirectly
inhibits tumor growth and activates autophagy by regulating
the mTOR/AMPK signaling pathway [18, 19]. Nrf2 is an
antioxidant gene inducer with good characteristics. Under
normal pancreatic physiology, Nrf2 and its inhibitor, the
cytoplasmic chaperone Keap1, tightly bind to inhibit its
activity, while under pancreatic pathological conditions,
Nrf2 and Keap1 resolve their conjugation, transfer into the
nucleus, recognize and bind to antioxidant response element
(ARE), and further activate heme oxygenase-1 (HO-1). HO-1
is an antioxidant gene that has a significant cytoprotective
effect in pancreatic pathology. In this process, sestrin2 mainly
enhances the transcription of Nrf2-related antioxidant genes
by promoting the autophagic degradation of Keap1, thus
achieving anticellular stress effects [20, 21].

Curcumin, a natural pigment extracted from turmeric, is
the primary active ingredient of turmeric. This molecule has
various pharmacological effects, such as antioxidative, anti-
inflammatory, antitumor, antibacterial, free radical scaveng-
ing, and neuroprotective effects [22–24]. In addition, curcu-
min has been proven to be an effective Nrf2 activator that
intervenes in the interaction of Nrf2-Keap1 and has a posi-
tive effect on sestrin2 in the AKT-Nrf2 pathway [25]. How-
ever, the effect of the interaction between curcumin and
sestrin2 on the occurrence and development of pancreatic
cancer is still unknown and should be studied for the treat-
ment of pancreatic carcinoma mediated by traditional Chi-
nese medicine. Since the sestrin family and curcumin have
obvious tumor suppressive effects in cancer, we boldly
hypothesize that curcumin and sestrin2 play an inhibitory
role in pancreatic carcinoma growth.

2. Materials and Methods

2.1. Cell Culture and Reagents. The human pancreatic cancer
cell lines PANC-1 and CFPAC-1 used in our study were pur-
chased from the Cell Bank of the Chinese Academy of Sci-

ences (Shanghai, China) and stably cultured, passaged, and
cryopreserved in our laboratory. Basic Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, USA) with 10% fetal bovine
serum (FBS, Sigma, St. Louis, MO, USA) was utilized to cul-
ture PANC-1 cells, while basic RPMI-1640 medium (Gibco,
USA) with 10% FBS (Sigma, St. Louis, MO, USA) was utilized
to culture CFPAC-1 cells, which were cultured in an incuba-
tor at 37°C, 5% CO2, and 95% humidity. The drug curcumin
was purchased from MedChemExpress (MCE, New Jersey,
USA). The anti-sestrin2 antibody was purchased from Pro-
teintech (Chicago, USA), while the anti-Nrf2 antibody, p-
Nrf2 antibody, Keap1 antibody, HO-1 antibody, and NQO-
1 antibody were purchased from Abcam (Britain).

2.2. Lentiviral Infection and the Construction of the Cell
Model. The sestrin2-overexpressing and sestrin2 knockdown
lentiviruses used in this study were purchased from Gene-
Chem (Shanghai, China). The cytotoxicity experiments were
used to identify the optimal concentration of puromycin for
PANC-1 and CFPAC-1 cells according to the characteristics
of the puromycin resistance gene of the lentivirus. In the len-
tiviral transfection experiment, PANC-1 and CFPAC-1 cells
were transfected with sestrin2 overexpression lentivirus and
sestrin2 knockdown lentivirus, respectively, and cell models
were constructed after screening with puromycin. Finally,
the two cell lines were used to form a control group, a nega-
tive virus group, an overexpression group, and a knockdown
group.

2.3. Real-Time Fluorescence Quantitative PCR Assay. PANC-
1 and CFPAC-1 cells were seeded in 6 cm petri dishes (Corn-
ing, USA) at a density of 5 × 105 cells/dish, and cells from
each group were collected after 24 h of culture. The TRIzol
reagent (Invitrogen, USA) was used to extract total cellular
RNA and determine its concentration and purity. One
microgram of total RNA was taken from each group for
reverse transcription experiments using the Revertaid First
Strand cDNA Synthesis Kit (Thermo, Manassas, USA). SYBR
GreenMaster Mix (Biosystems, Foster, USA) was used in this
q-PCR, and RT-PCR assays were carried out in a 7500 Fast
real-time PCR system (USA).

2.4. Cell Viability Assay. PANC-1 and CFPAC-1 cell
proliferation-toxicity tests and cell viability tests were per-
formed by the CCK-8 method according to the reagent
instructions. For the cell proliferation-toxicity experiment,
cells were cultured in 96-well plates (5 × 103/well) for 24h
and treated with puromycin at a specified concentration.
Then, 10μl of CCK-8 was added after further incubation
for 24 h and incubated in the incubator for 2 h. Detection of
optical density (OD) at 450nm was performed using a Mul-
tiskan spectral spectrophotometer (Thermo Fisher Scientific,
USA). In the cell viability experiment, cells were inoculated
in 96-well plates (5 × 103/well), and the OD450 at 0 h was
measured after 2-4 h of preculture. On 2-3 consecutive days,
the OD450 was detected with the same CCK-8 incubation
time to generate a cell activity curve.

2.5. Real-Time Cell Analysis. The cell culture plate E-plate 16
(ACEA, San Diego, USA) was seeded at 2 × 105 cells, and the
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ecological index of the cells was automatically recorded on
the xCELLigence RTCA TP real-time label-free cell analyzer
(Agilent, California, USA). The cell index does not represent
the actual number of cells. It reflects the proliferation state of
cells by detecting the impedance formed by adherent cells.

2.6. Colony Formation Experiment. Five hundred cells/well
were inoculated in a 12-well plate and cultured in an incuba-
tor. After a visible colony formed, the cells were treated with
curcumin for 24 h, and then, the cells were attached with 4%
paraformaldehyde and stained with crystal violet for colony
counting.

2.7. Wound Healing Assay. The cells were seeded in 6-well
plates at a density of 2 × 105 cells/well and precultured for
24 h so that the cell confluence reached more than 80% of
the bottom area. Then, a straight line was drawn in the center
of the hole with the pipette tip vertically attached to the ruler
to form a scratch. At 0 h, 24 h, and 48 h, the migration dis-
tance of the cells in the same position was observed under a
microscope.

2.8. Invasion Assay. The invasion capacity of cells in vitro was
assessed by Transwell assays. Twenty microliters of Matrigel
was placed in the upper chamber of a 12-well Transwell plate
(Corning, USA) and placed in an incubator at 37°C for sev-
eral hours until the Matrigel became solid in the upper cham-
ber. Cells from each group that had been prestarved were
plated in Transwell plates (5 ∗ 104 cells/well). In addition,
500μl of complete medium containing 10% FBS was added
to the lower chamber, and serum-free basal medium (or cur-
cumin was added to serum-free culture) was added to the
upper chamber. After cultivation in a 37°C incubator for
24-48 h, the cells in the upper chamber were transferred to
the lower chamber by invasion due to the serum. The upper
and lower chambers were cleaned with PBS, fixed with 4%
paraformaldehyde for 15 minutes, and stained with crystal
violet for 10 minutes at room temperature. Finally, the cells
on the inner membrane were wiped. For accurate counting,
three fields were randomly selected under the microscope
to calculate the number of invading cells.

2.9. Protein Extraction and Western Blot (WB). After differ-
ent treatments, the cells were dissolved in ice-cold RIPA lysis
buffer containing 10% phosphate buffer (Basel Roche, Swit-
zerland), 1% PMSF (Shanghai Beotem Company, China),
and 1% potassium dihydrogen phosphate, and the superna-
tant was obtained by centrifugation for 10min (12000 rpm,
4°C). The protein concentration was computed from the
supernatant using a BCA protein detection kit (Beyotime,
Shanghai, China). Before being transferred to a polyvinyli-
dene fluoride membrane (PVDF), the total protein was sub-
jected to 12% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE). The PVDF membrane con-
taining total proteins was sealed with 5% nonfat skim milk
for 1 h at room temperature and then incubated overnight
with specific antibodies at 4°C. The next day, the PVDF
membrane coupled with the horseradish peroxidase- (HRP-
) conjugated secondary antibody was reincubated at room
temperature for 1 h after three TBST washes (7-10min/-

wash). After another three washes with TBST for 5 minutes,
the protein bands were detected by chemiluminescence on
the autoradiography film.

2.10. Statistical Analysis. SPSS 18.0 (IBM, Armonk, USA) and
GraphPad Prism 6.0 (GraphPad Software, Inc., San Diego,
CA, USA) were used for statistical analysis
(mean ± standard deviation).

Means of each pair were compared by one-way analysis
of variance and the Student-Newman-Keuls test. A P < 0:05
was considered statistically significant.

3. Results

3.1. Construction of Pancreatic Cancer Cell Models. The opti-
mal concentration of puromycin for PANC-1 and CFPAC-1
cells was identified via the CCK-8 method and was 1.5μM for
both cell lines. After cells were infected with sestrin2 overex-
pression lentivirus and sestrin2 knockdown lentivirus, the
cells from the negative virus group were treated with puro-
mycin at 1.5μM, and cells from the sestrin2 overexpression
group and the sestrin2 knockdown group were treated at
the same concentration for 7-10 days to obtain sestrin2 over-
expression and sestrin2 knockdown cell models.

3.2. Verification of the Sestrin2 Overexpression and Sestrin2
Knockdown Cancer Cell Groups. WB and q-PCR were used
to verify the expression of sestrin2 in each group. As shown
in Figure 1, the expression of sestrin2 in the overexpression
group was remarkably higher than that in the control group,
and the expression of sestrin2 in the knockdown group was
lower than that in the control group, while the expression
of sestrin2 in the negative virus group was the same as that
in the control group.

3.3. Upregulation of Sestrin2 Expression Inhibits the Invasion
and Migration of Pancreatic Cancer Cells. In addition, we
assessed cell migration by wound healing experiments. As
shown in Figures 2(a) and 2(c), the migration distance of
the cells in the sestrin2 knockdown group was greater than
that in the control group, while the migration distance of
the cells in the sestrin2 overexpression group was lower than
that in the control group (P < 0:05, Figures 2(b) and 2(d)).
These results indicated that sestrin2 overexpression inhibited
the invasion and migration of pancreatic carcinoma cells.

3.4. Upregulation of Sestrin2 Expression Inhibits the
Proliferation of Pancreatic Cancer Cells. RTCA was used to
detect the effect of sestrin2 on the proliferation of two pan-
creatic carcinoma cell lines. As shown in Figures 2(e) and
2(f), the proliferation curve of the sestrin2 knockdown group
was faster than that of the control group, while the prolifera-
tion curve of the sestrin2 overexpression group was slower
than that of the control group. These results indicated that
overexpression of sestrin2 inhibited pancreatic cancer cell
proliferation.

3.5. Curcumin Enhances the Antitumor Proliferative Effect of
Sestrin2 in Pancreatic Cancer Cells. The effect of curcumin on
the proliferation of two pancreatic carcinoma cell lines
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overexpressing sestrin2 was detected by colony formation
assays, which showed (Figures 3(a) and 3(c)) that the cell col-
ony count of the sestrin2 overexpression group without cur-
cumin treatment was less than that of the control group but
larger than that of the sestrin2 overexpression group treated
with curcumin (P < 0:005, Figures 3(b) and 3(d)). Further-
more, we determined cell proliferation by the CCK-8
method. Consistently, the proliferative ability of cells
decreased significantly after treatment with curcumin
(Figures 3(e) and 3(f)). These findings showed that curcumin
synergistically strengthened the ability of sestrin2 to suppress
the proliferation of pancreatic cancer cells.

3.6. Curcumin Enhances the Antitumor Migratory and
Invasive Effect of Sestrin2 in Pancreatic Cancer Cells. Further-
more, we detected the effect of curcumin on the migration of
the two pancreatic cancer cell lines overexpressing sestrin2
via wound healing experiments. The results are shown in
Figure 4. The migration distance of the sestrin2 overexpres-
sion group without curcumin treatment was lower than that
of the control group but greater than that of the sestrin2 over-
expression group treated with curcumin (P < 0:001,
Figures 4(b) and 4(d)). In addition, we assessed cell invasion

by Transwell assays. Consistently, the invasive ability of cells
decreased significantly after adding curcumin (P < 0:005,
Figure 5). These results suggested that sestrin2 synergistically
strengthened the ability of curcumin to inhibit the invasion
and migration of pancreatic cancer cells.

3.7. Curcumin Enhances the Antitumor Growth Effect of
Sestrin2 through the Nrf-2-Keap1/HO-1/NQO-1 Signaling
Pathway in Pancreatic Cancer Cells. We further identified
the possible molecular mechanism of tumor growth inhibited
by sestrin2 and curcumin, and the expression of oxidative
stress-related proteins in the cells with sestrin2 overexpres-
sion was determined using western blotting. As shown in
Figure 6, sestrin2 overexpression increased the protein
expression of p-Nrf2, HO-1, and NQO-1 in pancreatic can-
cer cells compared with that in the control group, and the
expression of the Nrf-2 binding protein Keap1 decreased.
Interestingly, we also found that curcumin treatment
remarkably increased the expression of p-Nrf2, HO-1, and
NQO-1 compared with that of the sestrin2 overexpression
group, while Keap1 expression was remarkably decreased
compared with that of the sestrin2 overexpression group.
We speculated that sestrin2 cooperates with curcumin to
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Figure 1: Evaluation of the pancreatic cancer cell models modified by sestrin2 overexpression/knockdown lentivirus. The expression of
sestrin2 in pancreatic cancer cells infected by sestrin2 overexpression and knockdown lentivirus was visualized by western blotting (a, b),
while the β-actin was utilized to be an internal control; the expression of sestrin2 mRNA in pancreatic cancer cells infected by sestrin2
overexpression and knockdown lentivirus was visualized by q-RT PCR (c, d).
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Figure 2: Upregulation of sestrin2 can inhibit the abilities of proliferation and migration of pancreatic cancer cells. The changes in the
migration ability of the PANC-1 cell-sestrin2 overexpression group (sestrin2+) and sestrin2 knockdown group (sestrin2-) (a); the distance
change of the migration is presented in the form of a histogram (b); data are represented as the mean ± SEM (n = 3). ∗P < 0:05 compared
with control groups, ∗∗P < 0:005 compared with control groups. The changes in the migration ability of the CFPAC-1-sestrin2
overexpression group (sestrin2+) and sestrin2 knockdown group (sestrin2-) (c); the distance change of the migration is presented in the
form of a histogram (d); data are represented as the mean ± SEM (n = 3). ∗∗P < 0:005 compared with control groups; the real-time cell
analysis technology was utilized to examine the ability of proliferation of PANC-1 and CFPAC-1 cells after being infected with sestrin2
overexpression/knockdown lentivirus (e, f).
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Figure 3: Curcumin synergistically enhances the antitumor proliferation effect of sestrin2. The changes in the proliferation ability of the
PANC-1-sestrin2 overexpression group (sestrin2+) and sestrin2+/curcumin group (a); the cloning counts are presented in the form of a
histogram (b). The changes in the proliferation ability of the CFPAC-1-sestrin2 overexpression group (sestrin2+) and sestrin2+/curcumin
group (c); the cloning counts are presented in the form of a histogram (d); data are represented as the mean ± SEM (n = 3). ∗∗P < 0:005
compared with control groups, ∗∗∗∗P < 0:0001 compared with control groups, and ##P < 0:005 compared with sestrin2+ group; the CCK-8
assay was utilized to observe the change in the proliferation ability between the sestrin2+ group, sestrin2+/curcumin group, control group,
and blank group in PANC-1 and CFPAC-1 cells (e, f).
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inhibit the growth of pancreatic carcinoma through the
Nrf2/Keap1/HO-1/NQO-1 signaling pathway.

4. Discussion

Pancreatic carcinoma is a highly malignant tumor of the
digestive system, and its special tumor microenvironment is
the direct cause of chemotherapy resistance. For example,
gemcitabine is commonly used in clinical practice and sub-
stantially improves survival in cancer patients. However,
the effectiveness of these chemotherapeutic drugs in treating
pancreatic cancer is limited [26, 27]. Related studies have
confirmed that low microvascular density and intense
fibroinflammatory reactions are typical characteristics of

pancreatic ductal adenocarcinoma (PDAC). Therefore,
according to the biological characteristics of tumors, the
depletion of tumor stroma seems to be a feasible treatment
strategy. However, this method has contradictory results.
The animal models suggested that stromal depletion with
increased tumor vascularity improved the survival rate of
mice, but the increase in angiogenesis was also related to
tumor progression [28]. Hence, agents for treating pancreatic
cancer are still restricted.

Recent studies have suggested that some natural products
may be new candidates for the treatment of pancreatic carci-
noma [11]. For example, the extracts of Bangladeshi medici-
nal plants exhibited obvious cytotoxicity against pancreatic
cancer cell lines [29]. Curcumin is a compound mainly
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Figure 4: Curcumin synergistically enhances the antitumor migration effect of sestrin2. The changes in the migration ability of the PANC-1
cell-sestrin2 overexpression group (sestrin2+) and sestrin2+/curcumin group (a); the distance change of the migration is presented in the
form of a histogram (b). The changes in the migration ability of the CFPAC-1 cell-sestrin2 overexpression group (sestrin2+) and sestrin2
+/curcumin group (c); the distance change of the migration is presented in the form of a histogram (d); data are represented as the mean
± SEM (n = 3). ∗∗∗P < 0:001 compared with control groups, ∗∗∗∗P < 0:0001 compared with control groups, ##P < 0:005 compared with
sestrin2+ group, and ###P < 0:001 compared with sestrin2+ group.
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extracted from turmeric plants. The protective effect of cur-
cumin in various diseases, including pancreatic carcinoma,
has been evaluated in human studies. For example, curcumin
inhibits multiple signaling pathways and suppresses cell pro-
liferation, invasion, metastasis, and angiogenesis [30, 31]. Its
wide range of medical applications includes antibacterial,
analgesic, anti-inflammatory, antioxidant, antimalarial, and
wound healing effects [32]. In recent years, there has been
particular interest in the antioxidant and anti-inflammatory
properties and suppression of angiogenesis of curcumin,
which may provide a therapeutic window for the treatment
of tumors [33]. In addition, curcumin has recently been used
in several clinical studies, and Cheng et al. reported no
treatment-related toxicity after 8 g of curcumin was taken
orally daily. An experimental phase I clinical study showed
that curcumin was safe even if 12 g was taken daily for 3
months [31, 34]. Recently, the curcumin analogs UBS109
and EF31 were found to downregulate the expression of
angiogenic factors such as HIF-1α, Hsp90, and COX-2 in
xenograft models of PDAC, suggesting antitumor and anti-
angiogenic effects [28]. In addition, curcumin restrained
tumor angiogenesis in colorectal tumors [35]. Moreover,

studies have confirmed that curcumin can suppress angio-
genesis through the VEGF-VEGF receptor 2 signaling path-
way in some types of cancer [36]. Sestrins are an
evolutionarily conserved family of proteins that are primarily
induced by various stressors. Of the sestrin isoforms, sestrin2
was first identified as a p53-dependent antioxidant protein
that regenerated overoxidized peroxiredoxin and exhibited
oxidoreductase activity in vitro, regulating cell viability, anti-
oxidant defense, metabolism, and other major cellular pro-
cesses [13]. Growing evidence indicates that sestrin2 is
upregulated by oxidative stress, hypoxia, and Toll-like recep-
tor ligands, which promote cell adaptation to stress by reduc-
ing ROS generation, inducing autophagy, and suppressing
the mTOR complex [37]. However, the role of curcumin
and sestrin 2 in pancreatic cancer is still unknown. In our
study, we showed that sestrin2 cooperated with curcumin
to inhibit the proliferation, invasion, and migration of
human pancreatic cancer cells.

Alterations in signaling pathways in cells often lead to
abnormal proliferation, invasion, and migration. In recent
years, Nrf2, a protective antioxidant responsible for regulat-
ing cellular redox balance, has become a therapeutic target
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Figure 5: Curcumin synergistically enhances the antitumor invasion effect of sestrin2. The changes in the invasion ability of the PANC-1-
sestrin2 overexpression group (sestrin2+) and sestrin2+/curcumin group (a); the migrated cell counts are presented in the form of a
histogram (b). The changes in the invasion ability of the CFPAC-1-sestrin2 overexpression group (sestrin2+) and sestrin2+/curcumin
group (c); the migrated cell counts are presented in the form of a histogram (d); data are represented as the mean ± SEM (n = 3). ∗∗P <
0:005 compared with control groups, ∗∗∗P < 0:001 compared with control groups, and ###P < 0:001 compared with sestrin2+ group.
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for oxidative stress. Activation of Nrf2 is a crucial strategy to
control oxidative stress and inhibit the generation of ROS
[38–40]. HO-1, also known as heat shock protein 32, is a
cytoprotective antioxidant enzyme that can be highly
induced by all kinds of compounds or different physiological
and pathological conditions, including oxidant stress and
hemorrhagic shock [41, 42]. Although interest in HO-1 was
initially focused on its heme degradation function, relevant
research results have indicated that HO-1 also has other
important biological functions. Current research also shows
that HO-1 plays a crucial role in the regulation of cell growth
and differentiation [43]. However, the effect of HO-1 on cell
proliferation is highly variable and appears to be cell type
specific. For example, it has been shown that HO-1 has pro-
proliferative effects in endothelial cells and some tumor cells,
while the antiproliferative effects in vascular and airway
smooth muscle cells have also been proven [44–47]. NQO-
1 and HO-1 are important antioxidant enzymes in the
Nrf2-ARE pathway, and NQO-1 regulates the cellular stress
response by reducing quinone [48, 49]. Normally, Nrf2 is
located in the cytoplasm and translocates into the nucleus
after stimulation. In addition, to determine the role of ses-
trin2 in pancreatic cancer cells, we transfected cancer cells
with the corresponding lentivirus. The results showed that
sestrin2 overexpression increased the phosphorylation of
Nrf2 and effectively inhibited the growth of pancreatic cancer
cells. This finding was consistent with previous studies show-
ing that sestrin2 could further activate p-Nrf2 expression by
activating Keap1 autophagic degradation. Nrf2 binds to
AREs in the nucleus and enhances the expression of down-
stream target genes, including HO-1 and NQO-1. Curcumin
is a natural Nrf2 agonist that can upregulate the expression of
pNrf2, negatively regulate pancreatic carcinoma cells, and
suppress tumor angiogenesis. In our study, western blotting

showed that curcumin-treated sestrin2-overexpressing cells
had significantly increased expression levels of p-Nrf2 and
further enhanced the activity of HO-1 and NQO-1, which
confirmed previous research results. In summary, curcumin
synergistically enhances the antipancreatic cancer growth
effect of sestrin2 through the Nrf2-Keap1/HO-1/NQO-1 sig-
naling pathway.

5. Conclusions

Based on several cell experiments, our results suggested that
sestrin2 could effectively inhibit pancreatic cancer growth
and development. Interestingly, we found that curcumin sig-
nificantly enhanced the inhibitory effect of sestrin2 on pan-
creatic carcinoma. In addition, we further explored the
potential mechanism of curcumin and sestrin2 in inhibiting
pancreatic cancer and found that sestrin2 inhibits the growth
of pancreatic cancer by specifically targeting the Nrf2/Kea-
p1/HO-1/NQO-1 signaling pathway.We also found that cur-
cumin markedly enhanced the expression of sestrin2-
mediated Nrf2 and downstream target genes. These findings
indicated that curcumin cooperated with sestrin2 to inhibit
pancreatic cancer by specifically targeting Nrf2/Keap1/HO-
1/NQO-1.
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