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Background and Objective. Acute liver failure (ALF) is a rare clinical syndrome with a poor prognosis and leads to multiple organ
failure. Polygoni Cuspidati Rhizoma et Radix (PCRR) is a commonly used Chinese medicine, which is recognized as a potential
therapeutic herb against ALF. This study aimed to explore the pharmacological mechanisms of the therapeutic effect of PCRR in
ALF via network pharmacology and molecular docking.Materials and Methods. The potential bioactive compounds of PCRR and
their targets were collected from TCMSP, TCMID, and BATMAN-TCM databases with absorption, distribution, metabolism, and
excretion protocols (oral bioavailability ≥30% and drug-likeness ≥0.18). The ALF-related target genes were identified using the
GeneCards and OMIM databases. A protein-protein interaction (PPI) network among these targets was constructed using the
Cytoscape software to obtain the core targets. The genes associated with ALF were analyzed via Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses to identify the signaling pathways related to the
therapeutic effect of PCRR in ALF. Results. In total, 10 bioactive compounds of PCRR and 200 targets related to them were
obtained, and 2913 ALF-related target genes were identified. PPI network analysis pinpointed 15 core targets, namely, TP53,
AKT1, JUN, HSP90AA1, MAPK1, RELA, TNF, ESR1, IL6, MYC, MAPK14, FOS, RB1, CDKN1A, and EGFR. GO enrichment
and KEGG pathway analyses revealed that the therapeutic mechanisms of PCRR in ALF are related to cell metabolism,
oxidative stress, inflammation, and hepatocyte apoptosis. Conclusion. This is the first study to explore the therapeutic
mechanisms of PCRR in ALF via network pharmacology and molecular docking. This study provides a research platform with
candidate ALF-related targets of PRCC for the development of therapeutics against ALF.

1. Introduction

Acute liver failure (ALF) is a serious decompensation disorder
caused by various factors, including hepatic synthesis, detoxifi-
cation, excretion, and biotransformation [1]. In developed
countries, the incidence of ALF is higher than 10 cases per mil-
lion persons per year [2]. Hepatitis virus infection and acet-
aminophen are the main causes of ALF in developing [3] and
developed countries [4], respectively. Although the worldwide

survival rate in ALF has steadily improved from approximately
20% to more than 60% over the past few decades [5], there are
still no specific drugs for the treatment of this disorder.

Traditional Chinese medicine (TCM) uses natural sources
and thereby provides unique advantages in the treatment of
liver injury [6]. Polygoni Cuspidati Rhizoma et Radix (PCRR)
is a popular Chinese herb used to treat various liver diseases.
PCRR has been reported to have more than 67 bioactive com-
ponents, including quinones, stilbenes, flavonoids, and lignans
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[7]. Acute-on-chronic liver failure refers to acute decompensa-
tion in liver injury and has a similar prognosis as ALF [8, 9].
The Guidelines for Clinical Diagnosis and Treatment of
Acute-on-chronic Liver Failure in TCM recommends PCRR
as one of the main components of the prescription in treating
acute-on-chronic liver failure [10]. The results of many clinical
observations are in line with this recommendation [11, 12]. A
study has confirmed the protective effect of the PCRR against
carbon tetrachloride-induced liver injury in mice [13]. How-
ever, only a few studies on the therapeutic mechanisms of
PCRR in ALF have been reported.

The therapeutics of TCM generally involve multiple
components, targets, and pathways, and thus characterization
of therapeutic mechanisms is highly challenging in TCM.

TCMSP, BATMAN-TCM
and TCMID database

ADME evaluation

Active ingredients

TCMSP

Active targets

Acute liver failurePolygoni cuspidati rhizoma et radix

GeneCard and OMIM database
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Drug/target–pathway/disease network PPI network analysis GO analysis KEGG analysis Molecular docking

Figure 1: Detailed flowchart of the study design.

Table 1: Active pharmaceutical components of PCRR.

Molecule ID Molecule name OB DL

MOL000006 Luteolin 36.16 0.25

MOL000098 Quercetin 46.43 0.28

MOL000358 β-Sitosterol 36.91 0.75

MOL000492 (+)-Catechin 54.83 0.24

MOL002259 Physcion diglucoside 41.65 0.63

MOL002268 Rhein 47.07 0.28

MOL002280 Torachrysone-8-O-β-D-(6-oxayl)-glucoside 43.02 0.74

MOL013281 6,8-Dihydroxy-7-methoxyxanthone 35.83 0.21

MOL013287 Physovenine 106.10 0.19

MOL013288 Picralinal 58.01 0.75

PCRR: Polygoni Cuspidati Rhizoma et Radix; OB: oral bioavailability; DL: drug-likeness.

PCRR ALF

47
(1.6%)

153
(5.2%)

2760
(93.2 %)

Figure 2: The candidate target genes of Polygoni Cuspidati
Rhizoma et Radix (PCRR) and/or in acute liver failure (ALF).
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Network pharmacology is very useful to this end. In this
approach, a multilevel network of “disease/phenotype–gene/
drug” is constructed to explore the correlation between drugs
and diseases from a holistic perspective, whereby drug targets
can be identified or new drugs can be developed [14, 15].

This study sought to identify the bioactive compounds of
PCRR against ALF and the involving key genes and pathways
via network pharmacology and molecular docking methods.
The flowchart of this study is shown in Figure 1.

2. Materials and Methods

2.1. Collection of Potential Bioactive Compounds and Related
Targets of PCRR. The corresponding compounds and related
information were obtained using the Traditional ChineseMed-
icine Systems Pharmacology (TCMSP, https://tcmspw.com/
tcmsp.php) database [16], Bioinformatics Analysis Tool for

Molecular mechANism of Traditional Chinese Medicine
(BATMAN-TCM, http://bionet.ncpsb.org/batman-tcm/) [17],
and Traditional Chinese Medicine Integrated Database
(TCMID, http://www.megabionet.org/tcmid/) [18]. TCMSP
also provides absorption, distribution, metabolism, and excre-
tion (ADME)-related parameters, such as oral bioavailability
(OB) and drug-likeness (DL), of herbal components. OB indi-
cates the relative amount and rate of oral absorption of a drug
into the circulation of the body. DL is a concept based on the
physicochemical properties and molecular structure of existing
drugs. Generally, only compounds with OB≥30% and
DL≥0.18 are considered potential bioactive compounds [19].
The target information analysis function of the TCMSP plat-
form was used to obtain the gene targets of the anti-ALF bioac-
tive components of PCRR. For the components with no
corresponding targets in the TCMSP platform, a similarity
ensemble approach (SEA, https://sea.bkslab.org/) was used to
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Figure 3: Drug-components–target genes network. The red circle nodes represent the bioactive components of Polygoni Cuspidati Rhizoma
et Radix (PCRR), the blue diamond-shaped nodes represent the candidate targets, and the green square represents PCRR.
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predict the targets. The target protein species was set as Homo
sapiens, and the obtained target information was unified using
UniProt (https://www.uniprot.org).

2.2. Acquisition of ALF-Related Targets. Keywords such as
“acute liver failure”, “acute hepatic failure”, and “ALF” were
used to search ALF-related targets from the GeneCards
(https://www.genecards.org) [20] and OMIM (https://omim
.org/) [21] databases. PCRR-related targets and ALF-related
targets were input into an online Venn tool (https://bioinfogp
.cnb.csic.es/tools/venny/) to obtain the intersection genes,
which were considered candidate targets of PCRR against ALF

2.3. Analysis of the Drug/Target–Pathway/Disease Network.
The relationship between potential bioactive compounds of
PRCC and intersection genes was constructed using the
Cytoscape software (version 3.8.0) as a drug-components-
target-disease network. The average value of the degree value
of the network nodes was calculated (average value), and the
components with the degree value of the network node ≥
average value were considered as core components.

2.4. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) Analyses. The candidate targets of PCRR
against ALF obtained were used to explore the potential mech-
anism of PCRR in ALF via GO and KEGG analyses. The GO
and KEGG pathway enrichment analyses were performed
using the Database for Annotation, Visualization, and Inte-

grated Discovery tool (DAVID, https://david.ncifcrf.gov/
home.jsp). The biological processes (BPs), cellular compo-
nents (CCs), molecular functions (MFs), and key signaling
pathways were obtained to explore PCRR-related biological
pathways. The functional annotations with P-values < 0.05
were further analyzed.

2.5. Construction of a Protein-Protein Interaction (PPI)
Network. Search Tool for the Retrieval of Interacting Genes
(STRING, https://string-db.org/) was used to identify possi-
ble PPIs by uploading the candidate targets from the Venn
diagram. Species was limited to Homo sapiens with a confi-
dence score > 0.9. The analysis plugin of Cytoscape 3.8.0
was used to visualize the PPI network, in which the target
of the height value plays a pivotal role. The HUBBA plug-
in was used to calculate the degree of hub nodes and to select
out hub nodes with degree higher than the average degree as
the core targets.

2.6. Molecular Docking Simulation. The top 15 target genes
were selected. The protein crystal structures corresponding to
the core target genes were accessed from the Protein Data Bank
(PDB, https://www.rcsb.org) database, and the structures of the
bioactive components were downloaded from the TCMSP
database. The AutoDock 4.2.6 software was employed to per-
form molecular docking between receptors and ligands. Even-
tually, the results were visualized using the PyMOL software.

Table 2: Core pharmaceutical components of PCRR.

Molecule ID Molecule name OB DL 2D structure PubChem CID

MOL000006 Luteolin 36.16 0.245 5280445

MOL000098 Quercetin 46.43 0.28 5280343

MOL000358 β-Sitosterol 36.91 0.75 222284

MOL013287 Physovenine 106.21 0.19 442113

PCRR: Polygoni Cuspidati Rhizoma et Radix; OB: oral bioavailability; DL: drug-likeness.
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Figure 4: Continued.
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3. Results

3.1. Bioactive Compounds and Potential Targets of PCRR.
After searching, filtering, and duplicate removal in the
TCMSP, TCMID, and BATMAN-TCM databases, 10 bioac-
tive components of PCRR with OB ≥30% and DL ≥0.18 were
collected, including luteolin, quercetin, β-sitosterol, (+)-cate-
chin, physcion diglucoside, rhein, torachrysone-8-O-β-D-(6′
-oxayl)-glucoside, 6,8-dihydroxy-7-methoxyxanthone, physo-
venine, and picralinal (Table 1). Additionally, 200 target genes
interacting with these 10 bioactive components were identified
(Supplementary file, Table S1).

3.2. Potential ALF-Related PCRR Targets. In total, 2913 ALF-
related target genes were obtained by searching the GeneCards
andOMIMdatabases (Supplementary file, Table S2). The Venn

diagram tool was used to identify the genes found among both
ALF-related targets and PCRR targets. Consequently, 153 ALF-
related PCRR target candidates were identified (Figure 2 and
Supplementary file, Table S3).

3.3. Analysis of the Drug/Target–Pathway/Disease Network.
The 10 bioactive components of PCRR and 153 candidate
targets of PCRR against ALF were imported into the Cytos-
cape 3.8.0 software to illustrate the interaction between the
two groups (Figure 3). We identified the core components
among the 153 ALF-related PCRR target candidates by cal-
culating the degree values of the network nodes. In the order
from high to low degrees, the core components were querce-
tin (degree = 131), luteolin (degree = 51), β-sitosterol
(degree = 22), and physovenine (degree = 22) (Table 2).
According to the network analysis, multiple bioactive

RB1
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TNF

HSP90AA1 FOS

RELA

ESR1

MAPK14

CDKN1A

JUN

MYC

MAPK1

EGFR TP53

IL6

(b)

Figure 4: Protein-protein interaction (PPI) network based on the candidate target genes of Polygoni Cuspidati Rhizoma et Radix against
acute liver failure. (a) PPI network of the candidate target genes. Each node represents the protein product of an associated target gene.
The degree values of the proteins are represented by the node sizes. Colors indicate the connection sources. (b) The top 15 core target
genes were identified based on the degree values. The protein with the darkest color has the highest degree value, indicating that it plays
the most significant role in the regulation of the network.
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Figure 5: Continued.
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components of PCRR act on at least one core target gene.
The results showed that the therapeutic effect of PCRR in
ALF has multicomponent and multitarget characteristics.

3.4. GO Functional and KEGG Pathway Enrichment Analysis.
To elucidate the biological processes involved in the ALF-
related PCRR candidates targets, GO enrichment analysis
was performed. A total of 320 significantly enriched GO terms
were identified (P-value <0.05, Supplementary file, Table S4).
The top 10 significantly enriched terms, including BPs, MFs,
and CCs are presented in Figure 4(a). In the order from low
to high adjusted P-values, the top three GO-MC terms were
mainly enriched in protein domain-specific binding
(GO:0019904), steroid hormone receptor activity
(GO:0003707), and scaffold protein binding (GO:0097110);
the top three GO-CC terms were mainly enriched in
cytoplasm (GO:0005737), mast cell granule (GO:0042629),
and condensed chromosome (GO:0000793); and the top three
GO-BP terms were mainly enriched in positive regulation of
blood vessel endothelial cell migration (GO:0043536), positive
regulation of mitotic cell cycle (GO:0045931), and positive

Pathways in cancer 
Top 30 of enrichment p-value

1.2e-13

1e-13

7.5e-14

5e-14

2.5e-14

0

List hit
17 
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0 6 12
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Platinum drug resistance 
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Colorectal cancer 

EGFR tyrosine kinase inhibitor resistance

(b)

Figure 5: Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Different colors represent different P-
values, and circle size represents the counts. (a) The top 10 GO terms. Red, blue, and green bars represent molecular function, cellular
component, and biological process, respectively. (b) The top 30 KEGG pathways.

Table 3: Core targets of PCRR in the treatment of ALF and the
topological parameters.

Uniport ID Gene symbol Degree Betweenness Closeness

P04637 TP53 40 0.11 0.49

P31749 AKT1 39 0.11 0.49

P05412 JUN 36 0.09 0.50

P07900 HSP90AA1 35 0.08 0.48

P28482 MAPK1 34 0.12 0.50

Q04206 RELA 33 0.06 0.49

P01375 TNF 28 0.06 0.46

P03372 ESR1 26 0.04 0.46

P05231 IL6 25 0.04 0.44

P01106 MYC 24 0.03 0.46

Q16539 MAPK14 23 0.02 0.46

P01100 FOS 23 0.04 0.46

P06400 RB1 22 0.02 0.45

P38936 CDKN1A 21 0.01 0.43

P00533 EGFR 21 0.03 0.44

PCRR: Polygoni Cuspidati Rhizoma et Radix; ALF: acute liver failure.
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regulation of transcription from RNA polymerase II promoter
(GO:0045944).

KEGG enrichment analysis was performed to elucidate
the pathways involved in the therapeutic effect of PCRR in
the treatment of ALF. Consequently, 160 enriched KEGG
pathways were identified (P-value <0.05, Supplementary file,
Table S5). The top 30 significant signaling pathways are
shown in Figure 4(b). The top 10 ALF-related signaling
pathways were identified as pathway in cancer
(path:hsa05200), AGE-RAGE signaling pathway in diabetic
complications (path:hsa04933), hepatitis B (path:hsa05161),
prostate cancer (path:hsa05215), bladder cancer
(path:hsa05219), fluid shear stress and atherosclerosis (path:
hsa05418), interlukin (IL)-17 signaling pathway
(path:hsa04657), Kaposi sarcoma-associated herpesvirus
infection (path:hsa05167), pancreatic cancer (path:hsa05212),
and tumor necrosis factor (TNF) signaling pathway
(path:hsa04668). These pathways suggest that the therapeutic
effect of PCRR in ALF is related to cell metabolism, oxidative
stress, inflammation, and hepatocyte apoptosis.

3.5. PPI Network Analysis. To assess the synergism between the
bioactive components of PCRR, the 153 candidate target genes
were imported into the STRING database to construct an initial
PPI network with the minimum required interaction score >
0.9 (Figure 5(a)). The Cytoscape 3.8.0 software was used to
reconstruct the STRING graph, and the HUBBA plug-in was
used to select the top 15 targets for plotting (Figure 5(b)).
The core targets, which may play important anti-ALF roles,
were TP53, AKT1, JUN, HSP90AA1, MAPK1, RELA, TNF,
ESR1, IL6, MYC, MAPK14, FOS, RB1, CDKN1A, and EGFR
(Table 3).

3.6. Validation through Molecular Docking. Molecular dock-
ing is used to verify the interaction between ligands and their
receptors. Here, we applied this strategy for the 4 bioactive
compounds of PCRR and the 15 core target genes by using
AutoDock Vina (Table 4). A minimum binding potential
energy of <0 between a molecule and its target indicates that

Table 4: Results of 15 core target genes and related bioactive
compounds of molecular docking.

No. Targets
PDB
ID

Compound Binding affinity(kcal/Mol)

1

AKT1 3O96 Luteolin -9.8

Physovenine -8.6

Quercetin -9.7

β-Sitosterol -10.9

2

CDKN1A 6P8H Luteolin -6.4

Physovenine -5.9

Quercetin -6.0

β-Sitosterol -6.9

3

EGFR 1M17 Luteolin -8.4

Physovenine -7.2

Quercetin -8.5

β-Sitosterol -8.5

4

ESR1 1A52 Luteolin -8.7

Physovenine -7.6

Quercetin -8.4

β-Sitosterol -4.2

5

FOS 1A02 Luteolin -5.6

Physovenine -4.9

Quercetin -5.0

β-Sitosterol -5.5

6

HSP90AA1 7L7I Luteolin -9.8

Physovenine -8.0

Quercetin -10.2

β-Sitosterol -7.2

7

IL-6 1ALU Luteolin -8.0

Physovenine -6.4

Quercetin -7.9

β-Sitosterol -6.6

8

JUN 1JNM Luteolin -5.4

Physovenine -4.8

Quercetin -5.4

β-Sitosterol -5.4

9

MAPK1 1PME Luteolin -9.2

Physovenine -7.5

Quercetin -8.5

β-Sitosterol -8.8

10

MAPK14 1A9U Luteolin -7.5

Physovenine -6.9

Quercetin -7.2

β-Sitosterol -8.2

11

MYC 5I4Z Luteolin -6.5

Physovenine -5.6

Quercetin -6.1

β-Sitosterol -6.9

12

RB1 4EIJ Luteolin -8.5

Physovenine -7.0

Quercetin -8.4

Table 4: Continued.

No. Targets
PDB
ID

Compound Binding affinity(kcal/Mol)

β-Sitosterol -6.9

13

RELA 1NFI Luteolin -7.4

Physovenine -6.4

Quercetin -7.0

β-Sitosterol -7.0

14

TNF 1TNF Luteolin -7.0

Physovenine -5.7

Quercetin -6.9

β-Sitosterol -6.6

15

TP53 TP53 Luteolin -7.1

Physovenine -6.0

Quercetin -7.3

β-Sitosterol -6.0
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the two molecules can spontaneously bind to each other [22].
The lowest binding-free energies of β-sitosterol to AKT1, quer-
cetin to HSP90AA1, luteolin to AKT1, luteolin to HSP90AA1,
and quercetin to AKT1 were estimated at –10.9, –10.2, –9.8, –
9.8, and –9.7 kcal/mol, respectively (See Figure 6).

4. Discussion

ALF is a rare but serious clinical syndrome involving hepa-
tocyte damage and progresses rapidly, with a possibility of
causing multiple organ dysfunction [23]. For patients with

(a) (b)

(c) (d)

(e)

Figure 6: Molecular docking of the receptors and their ligands: (a) β-sitosterol to AKT1; (b) quercetin to HSP90AA1; (c) luteolin to AKT1;
(d) luteolin to HSP90AA1; (e) quercetin to AKT1.
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ALF, there is no specific treatment. With the advent of liver
transplantation, the survival rate of ALF has greatly
improved [24]. However, the lack of donors and high treat-
ment costs limited the application of this approach. PCRR is
a classical TCM therapeutic with a highlighted effect in the
prevention and treatment of various liver diseases. TCM
comprises multicomponent and multitarget therapeutics,
which are difficult to mechanistically characterize. Network
pharmacology is a simple and feasible method that solves
this difficulty. In this study, the bioactive components and
potential targets of PCRR in the treatment of ALF were pre-
dicted via network pharmacology and molecular docking.

According to ADME protocols (OB ≥ 30%, DL ≥ 0.18)
and the principle of target correspondence, four bioactive
components were screened out. Of them, the flavonoid luteolin
is found in various types of plants, including fruits, vegetables,
and herbs, worldwide [25]. Previous studies have suggested
that the protective effect of luteolin on acetaminophen-
induced liver failure in mice may be related to the inhibition
of lipid peroxidation, oxidative stress, and estrogen-receptor
stress [26, 27]. Quercetin is a bioactive flavonoid in the class
of polyphenols [28], which can prevent and treat liver injury
by preventing oxidative stress, inhibiting the release of inflam-
matory factors, and promoting the synthesis of antioxidant
enzymes [29, 30].

Based on the PPI network analysis, we predicted that the
ALF-related genes most commonly targeted by the PCRR bio-
active compounds are TP53, AKT1, JUN, HSP90AA1,
MAPK1, RELA, TNF, ESR1, IL6, MYC, MAPK14, FOS,
RB1, CDKN1A, and EGFR. The tumor suppressor gene
TP53 encodes P53 [31, 32], whose transient activation helps
prevent progression of acetaminophen-induced liver injury,
and continued activation of P53 may affect regeneration and
recovery of the liver [33, 34]. AKT1 has been reported to reg-
ulate fibrogenesis and proliferation in hepatocytes and hepatic
stellate cells [35, 36]. Additionally, previous studies have
shown that HSP90 can promote proinflammatory cytokines
and its inhibition can attenuate alcohol-induced liver injury
[37, 38]. MAPK1 (extracellular signal-regulated kinase 2,
ERK2) is involved in the regulation of cellular physiology
and pathology [39]. Altering the ERK signaling pathway
through ERK2 deficiency can reduce liver fibrosis and inflam-
mation [40]. ESR1-mediated signaling inhibits liver regenera-
tion after chemical-induced liver injury by suppressing the
Wnt signaling pathway, resulting in lower cyclin D1 activation
[41]. During the development of acute liver failure, TNF-
mediated over-immune cascade response may contribute to
massive hepatocyte apoptosis and impaired hepatocyte prolif-
eration [42, 43].

To explore the therapeutic mechanism of PCRR in ALF,
GO and KEGG pathway enrichment analyses were performed.
According to the adjusted P-values, the top three GO-MC
terms were mainly enriched in protein domain-specific bind-
ing, steroid hormone receptor activity, and scaffold protein
binding; the top three GO-CC terms were mainly enriched
in cytoplasm, mast cell granule, and condensed chromosome;
and the top three GO-BP terms were mainly enriched in pos-
itive regulation of blood vessel endothelial cell migration, pos-
itive regulation of mitotic cell cycle, and positive regulation of

transcription from RNA polymerase II promoter. The 10 cru-
cial pathways that may be regulated by PCRR in the treatment
of ALF by the KEGG pathway enrichment analysis included
pathway in cancer, AGE-RAGE pathway in diabetic complica-
tions, hepatitis B, prostate cancer, bladder cancer, fluid shear
stress and atherosclerosis, IL-17 pathway, Kaposi sarcoma-
associated herpesvirus infection, pancreatic cancer, and TNF.
The pathway enrichment results suggested that the anti-ALF
therapeutic effect of PCRR mainly results from the regulation
of immune and inflammatory responses and cell metabolism.
Cancer mechanisms are known to be relevant with ALF since
neoplastic infiltration is one of the courses of ALF progression
[44–46]. Chronic hepatitis B virus infection is one of the
important causes of acute liver failure in developing countries,
including China [47]. AGE-RAGE interaction contributes to
fat accumulation in the liver, increases oxidative stress and
chronic inflammation, and may be involved in liver injury
[48–50]. IL-17 plays an important role in the pathogenesis of
immune-mediated liver injury; IL-17 is significantly upregu-
lated in the liver and serum of BALB/cJ mice infected with
mouse hepatitis virus strain 3 [51]. The PI3K-Akt signaling
affects cell migration, mobilization, differentiation, and apo-
ptosis [52, 53] and has also been found to affect early liver
regeneration and improve survival in a mouse model of
acetaminophen-induced acute liver injury [52, 54]. Excessive
reactive oxygen species (ROS) can directly lead to oxidative
stress, which plays an important role in liver damage [55].
Activation of the PI3K/Akt signaling can alleviate liver injury
by reducing ROS levels, inhibiting apoptosis, and accelerating
hyoxia-inducible factor-1α [56].

5. Conclusion

This is the first study that has predicted the therapeutic mech-
anisms of PCRR in ALF by using network pharmacology and
molecular docking. The results suggest that the therapeutic
effect of PCRR in ALF involves multiple components, targets,
and pathways. Luteolin, quercetin, β-sitosterol, and physove-
nine are likely the major bioactive compounds of PCRR
against ALF. Accordingly, this study provides a research plat-
form with candidate ALF-related targets of PRCC for the
development of therapeutics against ALF. However, it has
several limitations as well. First, the potential bioactive com-
ponents are screened primarily by databases using ADME
protocols [58], and some componentsmay be overlooked. Sec-
ond, the study lacks experimental verification, which should
be addressed in biologically relevant platforms in the future.
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