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For those patients with hepatocellular carcinoma (HCC), it is really a heavy burden. Herein, the immune genes of HCC were
analyzed in groups to determine prognostic biomarkers related to immune genes in HCC. The mRNA data, clinical data in
TCGA-LIHC dataset, and immune gene in the ImmPort database were collected for the combining usage with K-means
concordance clustering to cluster HCC patients according to the immune gene matrix. Based on ssGSEA analysis result, HCC
patients were sorted into high- and low-immune subtypes, and survival curve presented that patients in high-immune subtypes
had a better prognosis. Subsequently, differential expression analysis was performed to obtain immune-related differentially
expressed genes (IRGs). Cox and lasso analyses were performed for obtaining five optimal immune genes related to prognosis,
and a risk assessment model was then established. Patient samples in the training and validation sets were, respectively,
divided into high- and low-risk groups. K-M survival curves presented a better prognosis of patients in the low-risk group
than in the high-risk group. The ROC curve indicated that this model was finely used for the prediction of prognosis. In
addition, immune infiltration assessment revealed that NR0B1 and FGF9 had potential to impact the tumor immune
microenvironment. Finally, using qRT-PCR and transwell assays, it was demonstrated that the macrophage chemotaxis was
enhanced when NR0B1 and FGF9 were highly expressed in HCC cells. In general, a 5-gene prognostic risk assessment model
was constructed based on immune genes and bioinformatics analysis methods, which provides some reference for the
prognosis of HCC as well as immunotherapy.

1. Introduction

Liver cancer is a primary cancer in the liver, and cancer aris-
ing from liver cells is called primary liver cancer. The World
Health Organization (WHO) in 2020 ranks primary liver
cancer as the sixth most frequent cancer throughout the
world [1]. Hepatocellular carcinoma (HCC) makes up for
75%–85% of primary liver cancers [1]. Current treatment
methods of HCC mainly include radiofrequency ablation,
clinical surgery, liver transplantation, and neoadjuvant che-
moradiotherapy, but the effect is not satisfactory, and only
a few patients benefit from it. However, due to the insidious
progression, poor therapeutic effect, and high recurrence

rate, the overall prognosis of patients is poor [2]. Hence,
there is an urgent need to find a biomarker closely related
to HCC development and progression in order to better pre-
dict recurrence, metastasis, and prognosis.

In recent years, the clinical development and application
of molecular targeted drugs and immunotherapeutic drugs
have become a hot spot for the treatment of HCC [3]. Over
the decades, immune checkpoint inhibitors (PD-1, CTLA-4,
etc.) have shown good therapeutic effect as adjuvant therapies
for tumors, and the approved immune checkpoint inhibitors
have become new pillars of cancer care [4–6]. Camrelizumab
is an anti-PD-1 monoclonal antibody, and apatinib represses
vascular endothelial growth factor receptor (VGEFR) [7]. An
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open label phase II study demonstrated that camrelizumab
combined with apatinib (treatment with camrelizumab by
intravenous injection every 2 weeks and a certain amount of
apatinib taken orally every day) had promising antitumor
effect in HCC in first- and second-line settings [8]. A phase
III clinical study is currently ongoing. El-Khoueiry et al. [9]
demonstrated that nivolumab, a PD-1 immune checkpoint
inhibitor, had a favorable safety profile in patients with
HCC. The impact of cancer immunotherapy is closely related
to the tumor immune microenvironment. Rapoport et al. [10]
performed immunotherapy in 20 patients with advanced mul-
tiple myeloma, of whom 16 patients (80%) developed an
immune response with TCR-T cells targeting NY-ESO-1. Shi
et al. [11] revealed that the number of PD-1+ and CD8+ T cells
within the tumor or in the circulation was positively associated
with HCC progression and recurrence. Leukocyte infiltration
around tumor vessels was also confirmed to be an indepen-
dent risk factor for HCC patients’ prognosis [12]. Conse-
quently, constructing immune-related biomarkers based on
expression of genes in tumor immune microenvironment is
feasible.

On the basis of the TCGA database, mRNA data and
immune genes of HCC were analyzed by bioinformatics
methods, and a prognostic risk assessment model of HCC
associated with immune genes was constructed and vali-
dated. Finally, the effects of NR0B1 and FGF9 on macro-
phage chemotaxis were examined in order to provide
prognostic genes and immune targeted therapy in patients
with HCC.

2. Material and Method

2.1. Data Downloadin and Preprocessing. HCC mRNA
expression dataset TCGA-LIHC (normal: 50, tumor: 374)
and its clinical data were acquired from the TCGA database
(https://portal.gdc.cancer.gov/). And immune-related gene
sets were obtained from The Immunology Database and
Analysis Portal (ImmPort; https://www.immport.org/
resources). Then, immune-related genes in HCC were
extracted for subsequent studies (Table S1).

2.2. Immune Grouping and Survival Analysis. HCC samples
were subjected to K-means concordance clustering analysis
using the R package “ConsensusClusterPlus” [13]. The dou-
ble sampling scheme was used, 80% of the samples were
sampled each time, and 1000 times were set repeatedly.

According to the CDF diagram, optimal number of clusters
was determined, and stability of clustering results could be
achieved when the number of clusters was K = 2. According
to the clustering results, the samples were subjected to
single-sample gene set enrichment analysis (ssGSEA) using
“GSVA” package [14]. Immune function gene set and rela-
tive abundance of immune cells of each sample were ana-
lyzed according to the immune gene set obtained in the
study by Bindea et al. [15]. According to immune level of
samples, samples were grouped into high- and low-
immune subtypes, “survival” package [16] was employed to
plot the survival curves of high- and low-immune subtypes,
and differences in survival time between two groups were
measured by log-rank test.

2.3. Screening of Prognostic Relevant Differentially Expressed
Immune Genes. HCC data were processed (data were con-
verted from FPKM format to TPM format), and immune
genes of high- and low-immune subtypes were analyzed
for differential expression (jlog FCj > 2, P:adj < 0:05) using
“limma” package [17], with high-immune subtype as con-
trol, to obtain immune-related differentially expressed genes
(IRGs) of HCC. GO and KEGG enrichment analyses were
conducted using “clusterProfiler” package [18], and results
were visualized using the “enrichplot” package (CRAN-
Package shadowtext (http://r-project.org/).

2.4. Establishment and Evaluation of Immune Gene-Related
Prognostic Risk Assessment Model. Data from the TCGA-
LIHC dataset, samples were randomly assigned to training
set (n = 297) and validation set (n = 127) at a 7 : 3 ratio.
Combined with the survival information of the training set
(follow − up time > 30 days), “survival” package was utilized
for univariate Cox regression analysis of IRGs (P < 0:01) to
obtain IRGs related to survival. Lasso regression was per-
formed on the IRGs screened by univariate regression anal-
ysis using the “glmnet” package [19]. Finally, “survminer”
package was utilized to perform the multivariate Cox regres-
sion model on genes screened by lasso to obtain prognostic-
related genes and construct a risk assessment model.

RiskScore = 〠
n

i=1
expi ∗ βi, ð1Þ

where n is the number of genes screened to be characteristic
of prognosis, expi is the expression value of each prognostic

Table 1: Primer sequences for qRT-PCR.

Gene Sequence

NR0B1
Forward primer 5′-TCCGCGCCCTTGCCCAGACC-3′
Reverse primer 5′-GCCGCACGAACAGCCCCAA-3′

FGF9
Forward primer 5′-CCAGGACTAAACGGCACCAGAA-3′
Reverse primer 5′-AATAAGAACCCACCGCATGAAAG-3′

GAPDH
Forward primer 5′-ATGACATCAAGAAGGTGGTG-3′
Reverse primer 5′-CATACCAGGAAATGAGCTTG-3′
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Figure 1: Continued.
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key gene, and βi is the corresponding multivariate Cox
regression coefficient.

The median risk score was utilized as a cutoff value to
classify patient samples into high-risk and low-risk groups,

and K-M survival curves were drawn using the “survival”
package. Receiver operating characteristic (ROC) curve was
plotted using “survivalROC” package [20], area under the
curve (AUC) values of 3-year and 5-year overall survival
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Figure 1: Consensus clustering and survival analysis of HCC based on hepatocyte immune-related gene sets. (a) CDF curves with different
K values. (b) CDF delta area plot, which represents relative change in the area under the CDF curve for k compared to k − 1, with abscissa
indicating k and ordinate indicating relative change in the area under the CDF curve. (c) 374 HCC patients were divided into 2 molecular
subtypes. (d) Heatmap of 29 immune gene expression levels in samples with 2 molecular subtypes. (e) Kaplan-Meier survival curves between
high- and low-immune subtypes.
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(OS) were calculated, and then model was validated using
the validation set, so as to measure the predictive ability of
the model.

2.5. Nomogram Construction and Evaluation. Univariate and
multivariate Cox regression analyses were conducted by
combining the risk scores with clinical factors (age, gender,
T, N, M) to verify the independence of the model. A nomo-
gram was plotted using “rms” package [21] combining clin-
ical information with risk scores to predict likelihood of
survival of HCC patients at 3 and 5 years, using “foreign”
package (https://cran.r-project.org/web/packages/foreign/
index.html). Then, calibration curves of nomogram for 3
and 5 years were generated to assess the predictive effect of
the nomogram.

2.6. Assessment of Immune Cell Infiltration. The TIMER
database, a database that detects the immune cell infiltration
in tumor tissues combined with RNA-Seq expression profiling

data, can provide the immune infiltration levels of six immune
cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macro-
phages, and dendritic cells) in tumors. In this study, based on
the TIMER database, the selected prognosis-related immune
genes were analyzed to evaluate correlation between immune
genes and infiltration levels of six immune cells.

2.7. Cell Culture and Transfection. Human monocytic THP-
1 cells (BNCC100407, China) were differentiated into
macrophage-adherent like cells using 10 ng/ml Phorbol 12-
myristate 13-acetate (Sigma, USA). Subsequently, hepatoma
cells HepG2 cells (BNCC338070, China) and THP-1 were
maintained in a medium containing RPMI-1640+10% FBS
with 5% CO2 at 37

°C. A blank pcDNA3.1 plasmid (oe-NC)
vector (Ribobio, China) was purchased to construct plasmid
vectors for pcDNA3.1-NR0B1 (oe-NR0B1) and pcDNA3.1-
FGF9 (oe-FGF9). The pcDNA3.1-NR0B1 plasmid,
pcDNA3.1-FGF9 plasmid, and corresponding blank
pcDNA3.1 plasmid were transfected into the hepatoma cell
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Figure 2: Differential expression analysis of immune genes as well as enrichment analyses. (a) Volcano plot of IRGs of HCC. Red: markedly
upregulated genes; green: markedly downregulated genes. GO (b) and KEGG (c) enrichment analyses bubble plot of IRGs.
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line HepG2 using Lipofectamine 2000 kit (Invitrogen, USA).
After 24 h, the transfected cells were used for the next
experiment.

2.8. qRT-PCR. RNA isolation was conducted with reference
to method of Xia et al. 22]. Total RNA from cells was ana-
lyzed by qRT-PCR using an ABI 7500 Real-Time Quantita-
tive PCR System (AB, USA) with GAPDH as an internal
reference. Finally, relative quantification was computed
using the 2-ΔΔCt method. Primer sequences utilized for
PCR are shown in Table 1.

2.9. Transwell Assay. Macrophages (2 × 105 cells/ml) were
added to the upper chamber (Corning, USA). HepG2 cells
stably transfected with oe-NR0B1 and oe-FGF9 were supple-
mented to the lower chamber and cultured with DMEM plus
10% FBS. They were then cultured for 8 h under routine

conditions, after which cells in the upper chamber that had
not crossed the membrane were removed, fixed with 4%
paraformaldehyde solution for 15min, and stained with
0.1% crystal violet for 15min. Five fields were randomly
selected to analyze invasion rate of macrophages under a
light microscope (×100), and the experiment was performed
in triplicate [22, 23].

2.10. Data Analysis. Data analysis was mainly conducted
using R software, GraphPad Prism 6 software (GraphPad
Software, USA). For bioinformatics analysis, statistical test
was conducted using the statistical test method correspond-
ing to the R package, and statistical significance was consid-
ered when P < 0:05. For macrophage migration assay and
qPCR assay, all results were presented as mean ± SD. The
differences were compared using t-test, with P < 0:05 sug-
gesting statistically significant differences.
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3. Results

3.1. Prognostic Analysis of Different Immune Gene
Subclusters. Cluster analysis of immune-related gene sets of
HCC was performed for determining HCC immune sub-
types. The results of the consensus clusters were visualized
by using plots of the empirical cumulative distribution func-
tion (CDF) and CDF delta area, where K denotes the num-
ber of isoforms (Figures 1(a) and 1(b)). The results showed
that when K = 2, the internal consistency of the clusters
was high, and the clustering worked best (Figure 1(c)). The
374 tumor patients with clinical information were therefore

divided into 2 clusters, including 195 in cluster 1 and 179 in
cluster 2. Combined with ssGSEA results, it could be seen
that cluster 1 had a low immune level and was therefore
defined as a low-immune subtype. The cluster 2 had a high
degree of immunity and was defined as a high-immune sub-
type (Figure 1(d)). Survival difference between two groups
was significant because P value of survival analysis was less
than 0.05 (Figure 1(e)).

Totally 192 differentially expressed IRGs were screened
out, including 190 upregulated genes and 2 downregulated
genes (Figure 2(a)). GO analysis illustrated that differential
genes were mainly enriched in biological functions such as
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Figure 4: 5-Gene model prediction ability assessment. K-M survival curves of patients in the high- (red) and low-risk (green) groups in
training set (a) and validation set (b). (c) ROC curves for the training set 5-gene prognostic model. (d) ROC curves for the validated set
5-gene prognostic model.
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cell chemotaxis (Figure 2(b)). KEGG enrichment analysis
showed that differential genes were mainly gathered in
immune-related signaling pathways such as cytokine-
cytokine receptor interaction, chemokine signaling pathway,
and JAK-STAT signaling pathway (Figure 2(c)).

3.2. Screening of Immune-Prognostic Genes and Validation of
Prognostic Model in HCC. Univariate Cox regression analy-
sis of IRGs using “survival” package (P < 0:01) selected 12
IRGs associated with HCC prognosis (Table S2).
Subsequent lasso regression analysis of these 12 prognostic
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Figure 6: Correlation analysis of risk scores and clinical factors with the prognosis of HCC patients and construction and assessment of
nomograms. Forest plots of univariate Cox regression analysis (a) and multivariate Cox regression analysis (b) of risk score combined
with clinical factors. (c) Nomogram of risk score combined with clinical factors to predict 3- and 5-year survival of patients; calibration
curve for nomogram prediction of 3-year survival (d) and 5-year survival (e) of HCC patients.
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relevant genes resulted in the selection of nine IRGs that
were significantly associated with prognosis (Figures 3(a)
and 3(b); Table S3). Multivariate Cox analysis of the genes
selected by lasso finally resulted in five optimal prognostic
IRGs (NR0B1, PGLYRP4, OGN, EPO, and FGF9). From
the forest plot of the prediction model, it could be seen
that the hazard ratio (HR) was greater than 1 for genes
NR0B1, PGLYRP4, EPO, and FGF9, and the HR value was
less than 1 for gene OGN (Figure 3(c); Table S4).

3.3. Prognostic Ability Assessment of 5-Gene Model. The K
-M survival curve of patients in high- and low-risk groups
was plotted. It was showed that survival of the high-risk
group presented noticeably lower survival rate than the
low-risk group as the risk score elevated (Figure 4(a)). K
-M curves of the validation set showed the same result as
in the training set (Figure 4(b)). To further assess predictive
effect of the 5-gene model, ROC curve plotting was per-
formed using the “SurvivalROC” package, which showed
that the AUC values of 3-year and 5-year survival of patients
in the training set were 0.718 and 0.715, respectively
(Figure 4(c)), while the AUC values were 0.710 and 0.679
for the 3- and 5-year survival of patients in validation set,
respectively (Figure 4(d)). Finally, differential distribution
analysis exhibited that the expression levels of the five char-
acteristic genes in the high-immune group were significantly
higher than those in the low-immune group (Figures 5(a)–
5(e)). The above results demonstrated that risk score of the
5-gene model constructed in this study had some predictive
power for HCC patients.

3.4. Validation of Independence of the 5-Gene Model. Uni-
variate Cox regression analysis of 5-gene risk score and other
clinical factors (age, gender, T, N, M) showed that risk score
and T stage were highly significant (P < 0:01), demonstrat-
ing that these two factors, risk score and T stage, had an
impact on prognosis (Figure 6(a)). Moreover, multivariate
Cox regression analysis result presented that risk score
and T stage were significant (P < 0:05). Altogether, risk
score obtained from the immune-related 5-gene risk assess-
ment model could be used as an independent prognostic
factor for HCC (Figure 6(b)). Subsequently, in order to
predict the 3- and 5-year survival rates of HCC patients,
we constructed a prognostic nomogram of HCC patients
combining risk score with clinical factors (age, gender, T,
N, M) and plotted calibration curve at 3 and 5 years. The
calibration curve showed good fitting of the characteristics,
indicating that nomogram can well predict survival of
patients. Comprehensive analysis suggested that the model
could effectively predict prognosis of HCC patients
(Figures 6(c)–6(e)).

3.5. Immune-Related Genes and Immune Cell Infiltration
Assessment. Correlation analysis of immune-related genes
and immune cell infiltration was performed based on the
TIMER database. The results showed that NR0B1 was nota-
bly correlated with macrophage (r = 0:23), neutrophils
(r = 0:17), myeloid dendritic cells (r = 0:14), and CD4+ T
cells (r = 0:13). FGF9 was correlated with macrophage
(r = 0:19) and myeloid dendritic cells (r = 0:12), and all were
positively correlated (Figure 7). These results reflect the
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potential of NR0B1 and FGF9 to influence the tumor
immune microenvironment.

3.6. Immune-Related Genes Promote Macrophage
Chemotaxis. To investigate the relationship between
immune-related genes NR0B1 and FGF9 and macrophage
chemotaxis, NR0B1 and FGF9-overexpressing HepG2 cells
were constructed, respectively, in this study. The detection
of mRNA expression levels of NR0B1 and FGF9 in HepG2
cells using qRT-PCR showed that NR0B1 and FGF9 were
significantly increased in the oe-NR0B1 and oe-FGF9
groups, respectively (Figure 8(a)), and could be used for
the next experimental study. Transwell assay was conducted
to examine effects of NR0B1 and FGF9 on macrophage che-
motaxis and revealed that when NR0B1 and FGF9 were
overexpressed in HCC cells, the number of macrophage
migration was remarkably upregulated (Figure 8(b)), indi-
cating that the overexpression of NR0B1 and FGF9 could
enhance macrophage chemotaxis to tumor tissues.

4. Discussion

Although the medical level has been continuously improving
and the understanding of HCC has been deepening, inci-
dence and mortality rates of HCC remain high, and the
prognosis is not optimistic. Therefore, accurate prognosis
estimation of patients with HCC is essential for subsequent

treatment of patients. Researchers have found that the
patient’s immune system can be modified to recognize spe-
cific antigens on cancer cells and enhance immune activity
by blocking the immune checkpoints responsible for immu-
nosuppressive signals [24]. Therefore, screening biomarkers
related to immune genes is pivotal for patient’s prognosis
and targeted therapy of HCC.

Herein, we analyzed IRGs by grouping the immune
genes of HCC, selected five IRGs (NR0B1, PGLYRP4,
OGN, EPO, and FGF9) associated with prognostic charac-
teristics, and constructed a 5-gene risk assessment model.
NR0B1 is mainly expressed in the adrenal cortex, ovary,
and Sertoli cells, and it has been found that NR0B1 (also
known as DAX-1) can suppress proliferation of HCC cells
by regulating transcriptional activity of β-catenin [25].
OGN can inhibit breast cancer cell proliferative and invasive
properties via mediating PI3K/Akt/mTOR signaling path-
way [26]. It has been demonstrated that EPO enhances
self-renewal and expansion ability of cancer stem cells. Pre-
vious study illustrated therapeutic potential of blocking
EPO/EPOR/JAK/STAT signaling in HCC patients with
polycythemia [27]. FGF9 can enhance the tumor-forming
ability and resistance to sorafenib in HCC cells, and forced
expression of FGF9 is associated with dismal prognosis in
HCC patients [28]. In comprehensive analysis, the
immune-related genes have significant potential in the clin-
ical treatment of solid tumors. Therefore, the immune-
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Figure 8: Effects of immune-related genes on macrophage chemotaxis. (a) The transfection efficiency of oe-NR0B1 and oe-FGF9 plasmids.
(b) The effect of hepatoma cells overexpressing NR0B1 and FGF9 on macrophage chemotaxis (∗P < 0:05).
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related genes of HCC are expected to be prognostic markers
for HCC.

To verify the relationship between immune-related
genes screened in this study and immune cells, we evaluated
infiltration levels of immune cells and immune-related genes
and selected two genes, NR0B1 and FGF9, that best corre-
lated with immune cells. The effects of NR0B1 and FGF9
on macrophage migration were verified, and we found that
the overexpression of NR0B1 and FGF9 could enhance mac-
rophage migration. Several studies have demonstrated dual
function of macrophages in HCC, and M2 macrophages
are generally considered to be protumor, while M1 macro-
phages are considered to be antitumor [29]. It has been dem-
onstrated that the degree of macrophage infiltration is high
in HCC, and prognosis of patients is not good [30]. Analysis
results of immune-related genes in HCC showed that
NR0B1 and FGF9 were risk factors for HCC, and experi-
ments confirmed that NR0B1 and FGF9 could enhance the
migration ability of macrophages. The study by Chang
et al. confirmed that FGF9 can enhance the immune infiltra-
tion ability of M2 macrophages [31]. KEGG enrichment
analysis demonstrated that IRGs were mainly enriched in
immune-related pathways such as chemokine signaling
pathway, which can confirm that the prognostic model con-
structed according to immune-related genes of HCC in this
study has high reliability.

This study has some shortcomings. First, the analysis is
based only on the data in the public database, and the con-
structed model is also based only on the public database,
which is not validated and needs to be validated in combina-
tion with clinical sample information. Secondly, in this
study, the genes of HCC were screened by K-means consis-
tency clustering after HCC patients were classified as high-
and low-immune subtypes. The obtained prognostic
markers of immune-related HCC had a high correlation
with nonspecific immune cells and a low degree of correla-
tion with specific immune cells. Although cell experiments
were performed for bioinformatics results, this was only lim-
ited to the laboratory. Subsequently, clinical research is
needed to confirm results of this study.

In summary, we grouped immune-related genes of HCC,
obtained five immune-related genes related to prognosis
according to the screening of immune-related genes of
HCC, and validated a prognostic risk assessment model for
HCC. And risk score obtained from the model constructed
in this study can be utilized as an important prognostic fac-
tor independent of clinical characteristics. The screened
immune-related genes are likely to be potential targets for
HCC, providing some theoretical basis for the prognosis of
HCC and the development of personalized diagnosis and
treatment plan.
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