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Inflammatory bowel disease is a group of chronic, recurrent, nonspecific inflammatory diseases of the intestine that severely affect
the quality of life of patients. The pathogenesis of this disease is caused by complex and interactive neural networks composed of
factors such as genetic susceptibility, external environment, immune disorders, and intestinal barrier dysfunction. It is well known
that there is a strong link between environmental stressors (also known as circadian clocks) that can influence circadian changes
and inflammatory bowel disease. Among them, the biological clock is involved in the pathogenesis of inflammatory bowel disease
by affecting the function of the intestinal barrier. Therefore, this review is aimed at systematically summarizing the latest research
progress on the role of the circadian clock in the pathogenesis of inflammatory bowel disease by affecting intestinal barrier
functions (intestinal mechanical barrier, intestinal immune barrier, intestinal microecological barrier, and intestinal chemical
barrier) and the potential clinical value of clock genes in the management of inflammatory bowel disease, for the application of
circadian clock therapy in the management of inflammatory bowel disease and then the benefit to the majority of patients.

1. Introduction

Inflammatory bowel disease (IBD) is a group of chronic,
nonspecific, recurrent inflammatory diseases caused by
genetic [1], environmental [2], immune [3], intestinal
microecology [4, 5], and other factors [6]. It mainly includes
two subtypes of ulcerative colitis (UC) and Crohn’s disease
(CD) [7]. The disease not only affects the gastrointestinal
system but also has a wide range of extraintestinal manifes-
tations such as the eyes [8], skin [9], and joints [10]. In addi-
tion, patients with IBD have an increased risk of
cardiovascular disease [11], Parkinson’s disease [12], cere-
brovascular disease [13], diabetes [14], psychosis, and sui-
cide [14], in which all seriously affect the quality of life of
patients and cause a huge economic burden. IBD is a 21st-
century global disease [15]. There are approximately 3 mil-
lion patients with IBD in the United States and Europe,
and the prevalence of IBD is estimated to exceed 0.3% in
many countries in North America, Oceania, and Europe,
but the incidence is stable or declining in North America

and Europe and rising in the newly industrialized countries
[16]. In addition, the study believes that by 2020, the inci-
dence of IBD in newly industrialized countries will be accel-
erated [17]. This means that the management of IBD in
various countries will face a severe situation in the future.

Although many factors are involved in the pathogenesis
of IBD, intestinal barrier dysfunction is one of the key links
in the pathogenesis of IBD [18]. Previous studies have iden-
tified defects in many specific components of the gut barrier
in IBD patients, ranging from the composition of the mucus
layer to adhesion molecules that regulate paracellular per-
meability, and these alterations contribute to the persistence
of chronic mucosal inflammation [19], which is also one of
the root causes of persistent IBD disease. Another study
found that intestinal barrier dysfunction was several years
earlier than the clinical diagnosis of IBD, which led to new
thinking to prevent the occurrence of IBD through early
intervention of intestinal barrier function [20].

Based on the above-mentioned new strategies to prevent
the occurrence of IBD by maintaining the homeostasis of the
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intestinal barrier at an early stage, it is the primary task to
actively search for the key factors that can lead to the distur-
bance of the intestinal barrier. Studies suggest that patho-
gens, xenobiotics, and food can disrupt the intestinal
barrier, promote systemic inflammation and tissue damage,
and even lead to other diseases including IBD [21]. It is well
known that the biological clock is an intrinsic adaptive
mechanism of the human body, which plays an important
role in maintaining human body health and disease activities
[22]; however, due to the rapid development rhythm and the
high pressure of life in modern society, the disturbance of
biological clock has become a common feature of modern
society [23]. More and more studies have found that there
is a certain relationship between abnormal circadian rhythm
and IBD [24–30]. Among them, part of the reason is that the
biological clock can affect the intestinal barrier function and
participate in the pathogenic link of IBD [23, 31, 32]. There-
fore, this paper reviews the potential role of the circadian
clock in the pathogenesis of IBD and its clinical application
value from the perspective of affecting the intestinal barrier
function of IBD, to better utilize the principle of the circa-
dian clock to manage IBD, and then benefit IBD patients.

2. The Composition and Function of the
Intestinal Barrier

The intestinal barrier is a highly complex “precise instru-
ment” that interacts with the body’s daily intake of a large
number of nutrients and various pathogenic microorgan-
isms. It is composed of the intestinal mechanical barrier,
intestinal immune barrier, intestinal microecological barrier,
and intestinal chemical barrier (Figure 1). These four bar-
riers interact and together constitute a complex interactive
neural network to maintain human intestinal health and
repair.

2.1. The Intestinal Mechanical Barrier. The intestinal
mechanical barrier is the structural basis for epithelial selec-
tive permeability and barrier function. It is well known that
the intestinal mechanical barrier is composed of intestinal
mucosal cells and intercellular junctions [21]. Among them,
epithelial cells are composed of absorptive cells, goblet cells,
and a small number of endocrine cells, which are monolayer
columnar. It should be noted that the small intestine also has
Paneth cells and undifferentiated cells, which are always in
constant renewal, which can ensure their absorption of
nutrients, electrolytes, and water; at the same time, it can
maintain the effective defense function against various
toxins and antigens in the intestinal cavity. Additionally, epi-
thelial cells maintain their selective barrier function by form-
ing complex protein-protein networks that mechanically
connect adjacent cells and seal intercellular spaces. The pro-
tein network connecting epithelial cells forms 3 adhesion
complexes are as follows: tight junctions, desmosomes, and
adherens junctions. These complexes consist of transmem-
brane proteins that interact with neighboring cells extracel-
lularly and with adaptor proteins attached to the
cytoskeleton inside the cell; the mechanical barrier is the
largest and most important barrier against various patho-

genic microorganisms in the gut [33]. Among them, studies
have found that tight junctions are dynamic structures com-
posed of apical multiprotein complexes, including tetraspa-
nins of the claudin family and occludin-related Marvel
domain proteins, and junctional adhesion molecules. Dense
“patches” of scaffolding molecules are anchored to trans-
membrane proteins, including occlusive bands, which are
directly linked to the intracellular cytoskeleton (actin and
microtubules) and regulatory proteins such as aPKC, G pro-
teins, Rab1, and Rab3B connected; strong expression of
these molecules reduces paracellular permeability, thus lim-
iting the possibility of passage of bacteria and substances. In
addition, tight junctions, as one of the important compo-
nents of the epithelial barrier, are frequently threatened by
proinflammatory mediators, pathogenic viruses, and bacte-
ria [34]. Therefore, tight junctions must be able to respond
quickly and coordinate, which requires a complex manage-
ment system to coordinate the assembly state of the tight
junction polyprotein network [30]. In conclusion, tight junc-
tions are important “ramps” regulating epithelial permeabil-
ity and paracellular diffusion, and their structural and
functional defects are the main cause of increased epithelial
permeability and paracellular permeability. In addition to
this, desmosomes are localized dense plaques linked to
keratin filaments that are specialized for strong adhesion,
with a strong adherent state, providing mechanical integ-
rity to the intestinal mucosal barrier. Adhesin junctions
mediate cell-cell adhesion through the action of connexins
and cadherins, which play a key role in epithelial integrity
and exhibit remarkable plasticity [33]. In conclusion,
impaired intestinal epithelial barrier function allows a vari-
ety of toxins, pathogens, symbionts, dietary food compo-
nents, and other small molecules to enter the deeper
layers of the gut from the lumen. Continued invasion of
the gut subepithelial lamina propria by any of the above
factors results in the recruitment and activation of
immune cells, which can lead to inflammation [35].

2.2. The Intestinal Immune Barrier. The intestinal immune
barrier is the “pioneer warrior” of the intestinal barrier
against various pathogenic factors. It maintains intestinal
homeostasis by cooperation between distinct immune cell
subsets in the epithelium, lamina propria, and gut-
associated lymphoid tissue [36]. Among them, the epithelial
layer is not only the intestinal mechanical barrier but also
the first and most important innate immune barrier, which
plays an important role in maintaining immune function.
In addition, immune cells located in the lamina propria
and gut-associated lymphoid tissue also play important
physiological functions in intestinal immunity. Studies have
found that natural killer T cells play an important role in
host intestinal defense and maintenance of intestinal barrier
function by controlling microbial colonization and coordi-
nating the functions of other intestinal cells. Specifically,
gut NK T cells sense lipids presented by CD11c+ cells,
thereby regulating NKT cell homeostasis and activation. In
turn, natural killer T cells (directly and indirectly) regulate
the function of other gut immune cells and the composition
and stratification of gut bacteria. CD1d-mediated cross talk
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between natural killer T cells and intestinal epithelial cells
regulates IL-10 secretion, while CD1d involvement in group
3 ILC3 induces IL-22 production, both cytokines that con-
tribute to the control of intestinal track’s steady state [37].
Intestinal intraepithelial lymphocytes (IELs) are a special
group of mucosal T lymphocytes that exhibit high activation
thresholds and low reactivity to most antigens from the
intestinal lumen to maintain intestinal immune tolerance.
In particular, CD8αα+ TCRαβ+ IELs, TCRγδ+ IELs, and
CD4+ CD8αα+ IELs show great potential in maintaining
intestinal immune tolerance and regulating intestinal immu-
nity. However, once the intestinal microenvironment is
abnormal or intestinal tolerance is disrupted, intestinal
intraepithelial lymphocytes may be abnormally activated
and lead to the occurrence of disease [38]. Of course, there
are other immune cells such as mast cells and macrophages
that secrete inflammatory mediators, activate complement,
increase blood flow, dilate capillaries, increase permeability,
and deposit fibrin networks, which are involved in the path-
ogenesis of CD [39].

2.3. The Intestinal Microbial Barrier. The intestinal micro-
bial barrier is composed of microbes (including bacteria,
fungi, and viruses) and microbial metabolites that live in
the gut. The composition of this microbial barrier is host-
specific, evolves continuously throughout the life of an indi-
vidual, and is susceptible to exogenous and endogenous fac-
tors. The gut microbiota is particularly relevant to host
defense, immune response, metabolic energy intake, and
nutrition [30]. Among them, gut microbes are a double-
edged sword for human health. Probiotic strains currently
in development are an effective form of treatment for induc-
ing remission in patients with mild to moderate UC [40].
However, studies have found that the intestinal flora secretes
a variety of metabolites and bacteriocins, and some bacteria

also activate the immune system by expressing specific anti-
gens, adhering to the intestinal epithelium, and interacting
with pattern recognition receptors, prompting immune cells
to secrete large amounts of proinflammatory factors, thereby
causing intestinal inflammation [41]. For example, it has
been found that lipopolysaccharide, a toxin produced by
intestinal bacteria, can induce HEK-TLR4 cells to produce
NF-κB and proinflammatory IL-8 in a TLR4-dependent
manner, leading to the occurrence of IBD [42]. In addition,
short-chain fatty acids can alter chemotaxis and phagocyto-
sis, induce reactive oxygen species production, alter cell pro-
liferation and function, have anti-inflammatory, antitumor,
and antibacterial effects, and alter intestinal integrity, all of
which suggest that they are essential for maintaining intesti-
nal and major players in immune homeostasis [43].

2.4. The Intestinal Chemical Barrier. The intestinal chemical
barrier is mainly composed of a mucus layer composed of
digestive juice, various digestive enzymes, lysozyme, bile
acids, and mucin. The study found that the mucus layer on
the surface of luminal epithelial cells is composed of glyco-
sylated mucin polymers produced by goblet cells. A bilayer
mucus layer on the epithelial surface protects the host from
pathogenic microorganisms and their inflammatory media-
tors in the gut. The first layer of mucus is approximately
50mm, which is almost bacteria-free and able to keep the
microbiota away from the epithelial barrier and limit inflam-
mation. In the second layer of mucus, the microbiota is pres-
ent and involved in its degradation, a process that is
constantly changing every day [44]. Among them, various
substances that make up the intestinal chemical barrier have
certain functions. Lysozyme can hydrolyze peptidoglycan in
bacterial cell walls to exert antibacterial effect [45], digestive
enzymes can decompose macromolecular substances in food
into small molecular substances for easy digestion and

Gut microbiome barrier

Gut chemical barrier

Gut mechanical barrier

Gut immune barrier

Figure 1: Compositional pattern of four gut barriers.
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absorption [46], and bile acids can affect gastrointestinal
motility, sensation, secretion, regulation of function, intesti-
nal barrier permeability, and inflammatory responses [47].
In conclusion, the intestinal mucus layer plays a major role
in protecting the gut from mechanical, chemical, and biolog-
ical factors and contributes to the maintenance of intestinal
homeostasis [48].

2.5. IBD Intestinal Barrier Function. Intestinal barrier dys-
function has emerged as a hallmark event of IBD [49]. Some
studies on human subjects have shown that compared with
healthy control subjects, IBD patients have reduced fecal
and mucosa-associated microbiome diversity, decreased
probiotic microorganisms, and increased pathogenic bacte-
ria biota [50, 51], which is undoubtedly a disruption of gut
microbial homeostasis. In addition, the various components
of the mucosal immune system in IBD include intestinal epi-
thelial cells, innate lymphocytes (macrophages/monocytes,
neutrophils, and dendritic cells), adaptive immune cells (T
and B cells), and abnormal changes in the mediators (cyto-
kines and chemokines) it secretes; these immune factors
may lead to activation of innate immune responses through
autophagy, mucosal susceptibility, or defective luminal
antigen-antibody binding responses, which may be mediated
by enhanced Toll-like receptor activity. Antigen-presenting
cells then mediate the differentiation of naive T cells into
effector T helper (Th) cells, including Th1, Th2, and Th17,
which alter intestinal homeostasis and lead to IBD [52].
Mucin, as the main component of the intestinal chemical
barrier, plays an important role in maintaining the intestinal
barrier function, but changes in the number of secreted
mucins, structural changes in the core of mucin glycopro-
teins, and mucin oligosaccharides occur in IBD patients. Sul-
fation and sialylation of residues are associated with reduced
mucus barrier function [53].

3. Molecular Mechanism of the Biological Clock

The biological clock is habitually called circadian rhythm,
which is an inherent adaptive mechanism in the process of
biological evolution. From most single-celled organisms to
humans, there is a 24-hour biological rhythm pattern, which
plays an important role in maintaining human health

3.1. Effect. In human physiological activities, the biological
clock determines the most basic physiological changes such
as the sleep-wake cycle, respiration, blood pressure, heart
rate, body temperature, and hormone secretion. Therefore,
once the biological clock is disturbed, it will lead to mental
illness and neurodegenerative diseases, infection, inflamma-
tion, cardiovascular disease, tumor, diabetes, and other dis-
eases [22]. It is precisely because the human body’s gene
expression, cell metabolism, organ operation, and system
control all operate regularly like a clock and play an impor-
tant role in maintaining the health of the human body.
Therefore, countless researchers invested a lot of precious
time and energy to explore the molecular mechanism of its
inner working mode, and finally, three American geneticists
Jeffrey C. Hall, Michael Rosbash, and Michael W. Young

revealed its specific molecular mechanism. The core of this
circuit consists of bHLH and the PAS heterodimeric tran-
scriptional activator (CLOCK or NPAS2 with BMAL1). In
mammals, activating genes bind to E-box elements in the
core circadian clock period (Per1, Per2, or Per3) and crypto-
chrome genes (Cry1 or Cry2) and then give negative feed-
back to control their transcription. Feedback timing is
regulated by posttranscriptional modifications, especially
posttranslational modifications. A common regulatory motif
is rhythmic phosphorylation and rhythmic degradation of
circadian clock components, which are usually accomplished
through the ubiquitin-proteasome system. This core loop is
enhanced by embedding other transcriptional feedback
loops through the activation of Rev-erbα and Rorα by
CLOCK-BMAL1. Other transcription factors provide feed-
back and regulate CLOCK activity, including USF1 and
Dec1-Dec2. Studies in mice with disrupted core circadian
clocks have shown that the rhythmicity of physiological pro-
cesses results from the expression of oscillatory genes located
downstream of this core transcriptional oscillator [22]. In
general, the molecular mechanism network of the circadian
clock is formed by the mutual control coupling of different
genes under the influence of positive and negative feedback
[54] (in Figure 2).

4. Biological Clock Gene Expression in IBD

The most extensive immunohistochemical analysis of IBD
intestinal mucosal samples has found that the expression
of five core circadian proteins (BMAL1, PER1, PER3, TIME-
LESS, and NAPS2) in the mucosal epithelium of IBD
patients is reduced compared with controls. The expression
of BMAL1 and PER1 was more significantly decreased in
UC patients, the expression of PER3, TIMELESS, and
NPAS2 was decreased in CD patients, and the expression
of BMAL1 in mucosal inflammatory cells in IBD patients
was decreased [27]. In another study, 29 patients with IBD
(15 with CD and 14 with UC) were recruited, and mucosal
biopsies from inflamed or adjacent noninflamed areas of
the colon were used to assess IBD using genome-wide cDNA
microarray analysis.

4.1. Circadian Gene Expression. The study examined a total
of 150 circadian genes involved in pathways that control
key cellular processes and tissue function. In CD specimens,
50 genes were differentially expressed, and 21 genes were
upregulated compared with healthy colonic mucosa. In UC
specimens, 50 genes were differentially expressed, and 27
genes were upregulated compared with healthy colonic
mucosa. The core clock genes ARNTL2 and RORA were
upregulated, while CSNK2B, NPAS2, PER1, and PER3 were
downregulated in CD specimens. In contrast, ARNTL2,
CRY1, CSNK1E, RORA, and TIPIN were upregulated in
UC, whereas NR1D2 and PER3 were downregulated in
UC. In conclusion, there are differences in circadian gene
expression between normal and diseased intestinal mucosa
in CD and UC patients [55]. This study reveals that dysreg-
ulated genes identified by transcriptome analysis in major
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IBD may play key roles in pathophysiological mechanisms
and may suggest novel therapeutic approaches.

5. The Biological Clock Affects the Intestinal
Barrier Function and Participates in the
Pathogenesis of IBD

The circadian clock also exists in the gut as a highly conserved
and orchestrated molecular timer. Many digestive functions
have daily rhythms, and circadian rhythms are associated with
gut immune system function, gut microbes, mechanical bar-
riers, and chemical barriers [32, 56–61]. Therefore, once the
circadian rhythm is disturbed, it will affect the intestinal bar-
rier function and induce IBD (Figure 3). The effects of the cir-
cadian clock on the above-mentioned four intestinal barrier
functions are, respectively, introduced below, to clarify its role
in the pathogenesis of IBD.

5.1. Biological Clock and Intestinal Mechanical Barrier. The
effect of the biological clock on the intestinal mechanical
barrier function is achieved through two aspects. On the
one hand, the core clock gene Bmal1 of the biological clock
can regulate the regeneration of intestinal epithelial cells by
affecting cytokines, cell cycle, and cell proliferation, thereby
causing daily variation in the self-renewal of intestinal epi-
thelial cells [62]. In pathological conditions, the circadian
clock operates in the intestinal epithelium, deletion of the
core circadian clock gene BMAL1 disrupts the circadian
clock and rhythmic proliferation of the intestinal epithelium,
and circadian activity in the gut involves the rhythmic pro-
duction of inflammatory cytokines and subsequent activa-
tion of protein kinase responses. Rhythmic activation of
the stimulus-response pathway is reported in original
research article written by Stokes et al. [62]. In addition,
the circadian clock can also regulate the apoptosis of intesti-
nal epithelial cells. Studies have demonstrated that the anti-

apoptotic genes Birc5 and Survivin are involved in the
circadian regulation of cyclin-dependent kinase inhibitor
toxicity in mouse colon cells [63]. Feeding rhythm is
involved in the regulation of programmed cell death in the
rat small intestine [64]. On the other hand, intestinal perme-
ability is regulated by the biological clock. Among them,
some scholars used real-time PCR to analyze wild-type mice
and Period2 with a key clock gene every 4, 6, or 12 hours and
found that the mRNA and protein expression levels of
Occludin and Claudin-1 were in the colonic epithelium of
wild-type mice, showing daily variation, while they were
constitutively high in mPer2 (m/m) mice. Colonic perme-
ability in wild-type mice showed daily changes that were
inversely correlated with expression levels of Occludin and
Claudin-1 proteins, whereas mPer2 (m/m) mice exhibited
lower colonic permeability and increased sensitivity to glu-
cosamine. Increased susceptibility to glycan sodium sulfate-
induced colitis is reported in article written by Oh-Oka
et al. [65]. It can be seen that maintaining the normal
rhythm of the circadian clock is crucial for maintaining the
integrity of the intestinal mechanical barrier. In the future,
circadian clock therapy can be carried out to target and reg-
ulate the proliferation, repair, and apoptosis of intestinal epi-
thelial cells and increase the expression level of tight
junction proteins. Promoting the regeneration of intestinal
epithelial cells in IBD and increasing the expression level
of tight junction proteins can repair the dysfunctional intes-
tinal mechanical mucosal barrier, which provides a promis-
ing treatment for IBD from the perspective of targeting the
repair of intestinal mechanical barrier function.

5.2. Biological Clock and Intestinal Immune Barrier. A large
number of studies have confirmed that there is a biological
clock rhythm in the intestinal immune system, and the bio-
logical clock rhythm can affect the intestinal immune func-
tion [58, 59, 66, 67]. The effect of the biological clock on
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Figure 2: Molecular rhythm mechanism of the biological clock [22].
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the intestinal immune barrier is achieved in two ways.
First, the circadian clock can influence the function of
the innate immune system in the gut. It is well known
that group 3 innate lymphoid cells (ILC3s) are a cell group
in the intestinal innate immune system, which are abun-
dant in the lamina propria of the intestinal mucosa and
are key regulators of intestinal inflammation. We found
that intestinal ILC3s display circadian expression of clock
genes and ILC3-related transcription factors and that
ILC3-autonomous ablation of the circadian regulator Arntl
leads to disruption of intestinal ILC3 homeostasis,
impaired epithelial reactivity, dysbiosis, and susceptibility
to intestinal infection. Increased sensitivity can easily lead
to IBD [59]. It is well known that macrophages are key
innate immune cell components in the pathogenesis of
IBD, which are also controlled by circadian rhythms. In
vitro experiments have confirmed that macrophages
express typical clock genes such as Bmal1, Cry1-2, per1-
3, and Rev-erbα, and in the case of lipopolysaccharide
injection, macrophages express proinflammatory cytokines
such as TNF-α and IL-6 that are also controlled by circa-
dian rhythms [68]. Therefore, abnormal circadian rhythm
leads to abnormal expression of proinflammatory factors
in macrophages, which can lead to intestinal inflammation
and tissue damage. Additionally, neutrophils, as effector
innate immune cells of acute inflammation, have long
been reported to play a role in maintaining intestinal
homeostasis and IBD pathogenesis [69]. However, neutro-
phils are also affected by circadian rhythms. The study
found that the superoxide-producing capacity of neutro-
phils also depends on the time of day. Consistent with
this, the number of opsonized bacteria engulfed by neutro-
phils also showed time-dependent differences, with clear-
ance of pathogens showing a daily rhythm [70]. Based

on these changes, whether the circadian rhythm changes
of neutrophils are closely related to the diagnosis and
treatment of IBD and clinical prognosis, it will be worth
further basic and clinical research to clarify the internal
relationship between the two; second, the circadian clock
can affect adaptive immune cells leading to IBD. It has
been shown that an imbalance between T helper 17
(Th17) and regulatory T (Treg) cells differentiated from
CD4+ T cells contributes to IBD. Th17 cells promote tis-
sue inflammation, and Treg cells suppress autoimmune
responses in IBD. Therefore, Th17/Treg cell balance is
crucial [71]. However, abnormal circadian rhythms can
lead to IBD by affecting factors that maintain their balance
such as bile acid metabolism [72], intestinal flora homeo-
stasis [57], and expression of cytokines [73]. Of course,
the circadian clock can also influence other adaptive
immune cells to cause IBD. In conclusion, circadian
rhythms contribute to IBD by causing abnormalities in
innate and adaptive immunity. Therefore, it is necessary
to carry out real-world studies using immunosuppressive
therapy combined with circadian clock therapy for some
patients who are clinically ineffective with immunosup-
pressive therapy, which may greatly improve efficacy and
reduce drug toxicity or adverse reactions. Confirmed in
real-world studies, this is expected to be incorporated into
clinical guidelines for the diagnosis and treatment of IBD,
thus opening up a new mode of medication.

5.3. Biological Clock and Intestinal Microecological Barrier. It
has been found that, in mice and humans, the gut micro-
biota exhibits circadian oscillations that are influenced by
feeding rhythms, resulting in compositional and functional
characteristics at specific times of the day [74], and distur-
bances in the circadian rhythm can affect the gut. The
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Figure 3: The effect of the biological clock on the intestinal barrier of healthy subjects and IBD.
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composition and function of the microbiota affect human
health [32, 57, 60, 75–79] and even lead to the occurrence
of IBD [30, 80, 81]. This is mainly due to circadian
rhythm disturbances affecting the composition of the gut
microbiota [82] and circadian disruption of the host, alter-
ing the composition of bacterial populations in the gut
[74]. It was found that a decrease in anti-inflammatory
bacteria and an increase in proinflammatory bacteria were
observed in IBD patients compared with healthy individ-
uals [83], with a decrease in gut microbiota diversity and
a decrease in the abundance of Firmicutes [84, 85]. For
example, the first CD-associated E. coli with proinflamma-
tory properties isolated from adult CD patients was the
adherent-invasive E. coli [84]. Increased numbers of
adherent-invasive E. coli have been reported in approxi-
mately 38% of patients with active CD, compared with
6% in healthy subjects [86]. The increase of pathogenic
bacteria with the ability to adhere to the intestinal epithe-
lium affects intestinal permeability, changes the diversity
and composition of intestinal flora, and induces an inflam-
matory response by regulating the expression of inflamma-
tory genes, thereby inducing intestinal inflammation [87].
In response to the imbalance of anti- and proinflamma-
tory microbiota in IBD, there has been strong interest in
the possible benefits of clinically modulated interventions
with microbial agents (e.g., probiotics, prebiotics, antibi-
otics, and fecal microbiota transplantation) in the treat-
ment of IBD [50], and certain results were achieved.
However, if a better therapeutic effect can be achieved by
adding microbial preparations based on circadian rhythm,
it is worthy of further research to design randomized con-
trolled experiments in the future.

5.4. Biological Clock and Intestinal Chemical Barrier. Studies
have confirmed that circadian rhythms can regulate the
expression levels of various intestinal enzymes [88], bile
acids [72, 89, 90], and mucins [30]. It is well known that
normal human bile acids can be divided into free bile
acids and conjugated bile acids. The former includes cholic
acid, deoxycholic acid, chenodeoxycholic acid, and a small
amount of lithocholic acid, and the latter includes glyco-
cholic acid, glycochenodeoxycholic acid, taurocholic acid,
and taurochenodeoxycholic acid which are essential for
the absorption, transportation, and metabolism of intesti-
nal dietary fat and fat-soluble vitamins. In addition to
the normal physiological functions described above, differ-
ent types of bile acids play an anti-inflammatory role in
IBD. Studies have found that the secondary bile acid urso-
deoxycholic acid attenuates the release of proinflammatory
cytokines (TNF-α, IL-6, IL-1β, and IFN-γ) in colonic epi-
thelial cells in vitro and prevents colonic inflammation
in vivo development [91]. Therefore, the secondary bile
acid ursodeoxycholic acid may be a potential therapeutic
target for IBD. In addition, taurocholate was able to
reduce the active accumulation of MPO and the levels of
IL-1β, IFN-γ, and TNF-α in colon tissue in TNBS-
induced ulcerative colitis in mice, thereby exerting anti-
inflammatory effects [92]. However, key enzymes in bile
acid synthesis and activation by bile acids and nuclear

receptors involved in bile acid regulation showed marked
circadian changes. Once the circadian rhythm is dysregu-
lated (interruption of the circadian rhythm, feeding restric-
tion, and sleep disruption), bile acid homeostasis is
disrupted, thereby releasing inflammatory factors leading
to the development of IBD [89]. Based on the results of
the above-mentioned existing studies, thinking about how
to use the circadian rhythm to maintain the homeostasis
of bile acid metabolism, letting the body’s metabolite bile
acid play an anti-inflammatory effect, and then managing
IBD is the most economical and safest treatment strategy,
which is worth designing In-depth research on basic and
clinical experiments is carried out to develop a new regi-
men of maintaining bile acid metabolism homeostasis
combined with circadian clock therapy for the treatment
of IBD.

6. Clinical Significance and Potential
Therapeutic Approaches of Clock Genes

In a prospective study of 32 IBD patients (8-21 years old)
and 18 healthy individuals, the expression levels of clock
genes (CLOCK, BMAL1, CRY1, CRY2, PER1, and PER2)
were analyzed in the peripheral blood and intestinal
mucosa samples, and the expression levels of clock genes
(CLOCK, CRY1, CRY2, PER1, and PER2) in the inflamed
intestinal mucosa of the patients were significantly lower
than those of the control intestinal mucosa (P < 0:05).
Compared with the control group, the expression levels
of all clock genes except PER2 were also significantly
decreased in the noninflammatory intestinal mucosa of
the patients (P < 0:05). The expression levels of clock
genes (CLOCK, BMAL1, CRY1, CRY2, PER1, and PER2)
were lower in leukocytes of IBD patients compared with
controls, suggesting that clock gene disruption is an initial
manifestation of IBD [93]. Therefore, we can clinically
detect changes in clock gene expression in patients with
inflamed intestinal mucosa samples and leukocytes and
then intervene in the disease early. In addition, studies
have found that Rev-erbα can inactivate the Nlrp3 inflam-
masome, and activation of Rev-erbα can effectively relieve
colitis. Therefore, Rev-erbα is expected to be a new drug
target for the prevention and control of colitis [94]. In
addition, in clinical samples from colitis-associated colo-
rectal cancer patients, low expression of the Bmal1 gene
in paracancerous tissues and tumor central regions was
closely associated with a poorer prognosis in colitis-
associated colorectal cancer patients [95]. This study sug-
gests that in the management of colitis-related colorectal
cancer in the future, by detecting the Bmal1 gene in the
adjacent tissue and the central tumor tissue, the clinical
prognosis of patients can be assessed, and a theoretical
basis for further clinical diagnosis and treatment can be
provided. According to the above studies, clock genes have
some functions as shown in Table 1 in the management of
IBD. However, the value of the role of clock genes in IBD
will be more discovered in future research, so as to better
manage IBD patients.
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7. Summary and Outlook

This review systematically summarizes the composition and
function of the intestinal barrier, the molecular mechanism
of the biological clock, and how the biological clock partici-
pates in the pathogenesis of IBD by affecting the function of
the intestinal barrier. It is hoped that the potential value of
the biological clock in the management of IBD will be paid
attention to, to better serve the patients. Finally, we always
have reason to believe that after three American scientists
were awarded the Nobel Prize in Physiology or Medicine
in 2017 for discovering the molecular mechanism of the bio-
logical clock [96], coupled with single-cell sequencing [97],
various omics (genomics [98], proteomics [99], transcripto-
mics [100], metabolomics [101], etc.), big data [102], 5G
technology [103], and artificial intelligence [104] which are
widely used in the medical field and development, the appli-
cation value of biological clock in medicine will be deeply
excavated, especially the research on using the biological
clock to manage IBD will open a new era, and there will be
more research to reveal the role of the biological clock in
IBD from the whole, tissue, organ, cell, gene, and molecular
level. The mysterious veil of pathogenesis has resulted in
many new means to accurately prevent the occurrence of
IBD based on the principle of the biological clock and is
expected to greatly improve the treatment effect of IBD
patients, thereby benefiting the majority of patients.
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