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Objective. Astragalus mongholicus Bunge [Fabaceae] (AMB), a traditional Chinese medicine (TCM), has been widely used to treat
liver diseases in the clinic. However, the efficacy and mechanism of AMB in the treatment of nonalcoholic fatty liver disease
(NAFLD) remain unclear. The purpose of this study was to systematically investigate the active components and mechanisms
of AMB against NAFLD based on network pharmacology, molecular docking, and experimental verification. Methods. First,
the bioactive components and relevant targets of AMB were screened from the Traditional Chinese Medicine Systematic
Pharmacology (TCMSP) database, and NAFLD-related targets were obtained from the GeneCards database. Then, the AMB-
NAFLD protein target interaction network was built by the STRING database. GO and KEGG pathway enrichment analyses
were performed using the DAVID database. The component targets were visualized using Cytoscape software. Finally,
molecular docking and experiments were used to verify the results of network pharmacological prediction. Results. Network
pharmacology predicted that quercetin may be the main active component in AMB, and the TNF and MAPK signaling
pathways may be the key targets of AMB against NAFLD. Molecular docking validation results demonstrated that quercetin, as
the main active component of AMB, had the highest binding affinity with TNF. Furthermore, quercetin played a distinct role
in alleviating NAFLD through in vitro experiments. Quercetin upregulated the phosphorylation levels of AMPK and inhibited
the expression of p-MAPK and TNF-α. In addition, we further discovered that quercetin could increase ACC phosphorylation
and CPT1α expression in PA-induced HepG2 cells. Conclusions. Our results indicated that quercetin, as the main active
component in AMB, exerts an anti-NAFLD effect by regulating the AMPK/MAPK/TNF-α and AMPK/ACC/CPT1α signaling
pathways to inhibit inflammation and alleviate lipid accumulation.

1. Introduction

Nonalcoholic fatty liver disease (NAFLD) refers to excessive
lipid deposition in hepatocytes that has become a leading
cause of chronic liver disease worldwide, with a prevalence

of 25% in adults [1, 2]. NAFLD has a wide range of hepatic
pathological features that range from simple hepatic lipid
accumulation to nonalcoholic steatohepatitis (NASH) and
even progress to cirrhosis and hepatocellular carcinoma.
Due to this progressive feature, even NAFLD patients with
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simple steatosis may eventually lead to an increase in all-
cause mortality [3]. Multiple parallel hits have been widely
used to explain the pathogenesis of NAFLD, including
inflammation, insulin resistance, and oxidative stress [4].
NAFLD has become a global public health issue that cannot
be ignored. However, there are currently no approved drugs
to treat NAFLD. Paying attention to a healthy diet and reg-
ular exercise are the primary therapeutic modalities for
NAFLD, but few adherents have been successful [5]. There-
fore, developing natural products with clinical therapeutic
potential is of great significance and has received widespread
attention from society in recent years.

Astragalus mongholicus Bunge [Fabaceae] (ABM) is one
of the most widely used traditional Chinese medicines
(TCMs) in clinics and is widely distributed in Northeast,
North, and Northwest China as well as in Mongolia and
Korea [6]. The root of AMB [Fabaceae] is medicinal and
has been used for many years in traditional Chinese medi-
cine to treat chronic fatigue, weakness, anemia, loss of appe-
tite, uterine bleeding, and uterine prolapses [7]. Modern
pharmacology has confirmed that this herb possesses a vari-
ety of activities, including regulating immunity [8], anti-
inflammatory [9], antioxidant [10], and antihyperglycemic
[9] activities. To date, it has been reported that more than
100 compounds have been isolated and identified in AMB,
such as saponins, flavonoids, polysaccharide amino acids,
and trace elements with various biological activities [11].
Previous studies suggested that AMB possessed hepatopro-
tective effects. For example, Huang-Qi San had a significant
effect on improving glucose, lipid metabolism, and liver ste-
atosis in high-fat rats [12]. Notwithstanding extensive
research efforts, the main active components in AMB and
their anti-NAFLD mechanisms have thus far unclear.

Due to the characteristics of multicomponents and mul-
titargets, traditional experimental methods cannot systema-
tically explain the pharmacological mechanism of TCM.
Thus, we adopted network pharmacology analysis based on
bioinformatics and systems biology to carry out the research
[13]. Network pharmacology systematically reveals the com-
plex relationship between drugs and diseases by constructing
biological networks and visualizing the network to analyze
potential active ingredients, pivotal targets, signaling path-
ways, and diseases [14]. It is a powerful tool to improve drug
efficacy and accelerate drug research and development. The
holistic and systematic features of network pharmacology
are consistent with the holistic view of TCM and the princi-
ples of syndrome differentiation and treatment. Molecular
docking is a computational method used to study the inter-
actions between molecules [15]. The purpose is to predict
the binding model of small molecule drugs and large mole-
cule proteins. It is also commonly used to verify the accuracy
of network pharmacological predictions.

In this study, we first predicted the bioactive compounds
and mechanisms of ABM in ameliorating NAFLD based on
network pharmacology. Then, molecular docking technol-
ogy and experiments were utilized to verify the reliability
and accuracy of the above results. To our knowledge, this
study is the first to reveal the effect and mechanisms of
AMB against NAFLD based on network pharmacology,

molecular docking, and experimental validation. This
research was carried out to provide a theoretical basis for
AMB in the treatment of NAFLD. The workflow is shown
in Figure 1.

2. Materials and Methods

2.1. Screening Active Components and Targets of AMB. The
related chemical components of AMB were obtained from
the Chinese Medicine System Pharmacology Database
(TCMSP, http://lsp.nwu.edu.cn/tcmsp.php). Then, oral
bioavailability ðOBÞ ≥ 30% and drug − like quality ðDLÞ ≥
0:18 were defined as important ADME-related pharmacoki-
netic parameters for identifying active ingredients in AMB
[16]. OB refers to the amount of medicine that reaches the
blood circulation after oral administration [17]. DL repre-
sents the similarity between components and known drugs
that can optimize pharmacokinetics [18]. Subsequently, the
compound-related protein targets screened above were
searched in TCMSP.

2.2. Predicting NAFLD-Related Targets. Information on
NAFLD-related targets were obtained from the GeneCards
database (https://www.genecards.org/), a comprehensive
functional database that contains genomics, proteomics,
and transcriptomics [19]. “nonalcoholic fatty liver disease”
was selected as a keyword to search disease targets for the
subsequent study. A Venn diagram was drawn based on
the intersection targets of AMB and NAFLD.

2.3. Protein-Protein Interaction (PPI) Network Construction.
The PPI network was constructed based on the STRING
database (https://string-db.org/). Its function is to visually
present the direct or indirect interactions between proteins.
First, the common component-disease targets were entered
into the STRING database and selected within the scope of
“Homo sapiens”. PPI information was exported in tab-
separated value (TSV) format with confidence score set to
0.4. Then, the results in TSV format were imported into
Cytoscape (version 3.7.2; https://www.cytoscape.org/) soft-
ware to visualize the protein interactions.

2.4. Network Construction. Cytoscape 3.7.2 software can be
used to generate a visual network that reflects the interaction
between the active compounds, potential targets, and path-
ways [20]. The network was composed of dots and lines.
The nodes represent active ingredients, targets, or pathways,
and the lines represent the interaction between them [14].

2.5. GO and KEGG Enrichment Pathway Analysis. Gene
Ontology (GO) Knowledgebase and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses
of the common AMB-NAFLD targets were performed using
the DAVID database (https://david.ncifcrf.gov/, ver. 6.8).
GO analysis was used for gene functional classification anal-
ysis, including biological process (BP), molecular function
(MF), and cell component (CC). A P value < 0.05 was
employed for further analysis.
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2.6. Molecular Docking Validation. To validate the binding
affinities of ingredient targets, molecular docking was per-
formed using AutoDock Vina 1.5.6. [21]. First, quercetin,
the main component in AMB, was used as a ligand. The
key targets in the PPI network include AKT1, IL6, TNF,
TP53, JUN, PTGS2, CXCL8, MAPK8, MMP9, and CASP3,
which are used as protein receptors. On the one hand, for
small-molecule compound components (compounds of
AMB), their 2D structures (SDF format) were downloaded
from the PubChem Database (https://pubchem.ncbi.nlm
.nih.gov). Then, the SDF format was transformed to PDB
format by minimizing energy using ChemBio3D software.
Finally, they were preprocessed and saved in PDBQT format
as docking ligands in AutoDock Tools software. On the
other hand, for protein receptors, their X-ray crystal struc-
tures were obtained from the Protein Data Bank (PDB)
(https://www1.rcsb.org/), including AKT1 (PDB ID: 1unq),
IL6 (PDB ID: 6 mg1), TNF (PDB ID: 6q00), TP53 (PDB
ID: 4cz5), JUN (PDB ID: 6osn), PTGS2 (PDB ID: 1pxx),
CXCL8 (PDB ID: 4xdx), MAPK8 (PDB ID: 2xrw), MMP9
(PDB ID: 6esm), and CASP3 (PDB ID: 2dko). Afterwards,

solvent and organic protein receptors were removed using
PyMOL software and converted to pdbqt format through
AutoDock Tools [22]. Finally, the location of the grid box
was determined, and molecular docking results were visual-
ized using AutoDock Vina. The binding activity between
ligand and protein was evaluated by Vina score; the lower
the Vina score was, the higher the binding affinity. The
docking results were visualized by PyMOL software.

2.7. Chemicals and Reagents. Quercetin (C15H10O7, CAS
No. 117-39-5, Cat No. A0083) were purchased from
Chengdu Must Biotechnology Co. Ltd. (Chengdu, China).
The purity of quercetin was >98% and kept protected from
light and refrigerated at 4°C. Palmitic acid (PA) was dis-
solved in ethanol and mixed with fatty acid-free bovine
serum albumin (BSA) to prepare stock solutions. The
AMPK inhibitor compound C (P5499) was purchased from
Sigma-Aldrich.

2.8. Cell Culture and Treatment. HepG2 cells were cultured
in DMEM containing 10% fetal bovine serum (FBS) and
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Figure 1: Flow chart of the pharmacological mechanisms of AMB against NAFLD.
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1% 100U/mL penicillin–streptomycin at 37°C in a 5% CO2
atmosphere. To mimic the NAFLD model in vitro, HepG2
cells were grown in medium containing palmitic acid (PA)
at a concentration of 0.4mM. The experiment was divided
into three groups: the control group (BSA+DMSO), PA
group (0.4mM PA+DMSO), and PA+quercetin group
(0.4mM PA+25μM quercetin). The overall experimental
time was 24 hours. Moreover, HepG2 cells were cultured
in the absence or presence of compound C (20μM) to verify
the specificity of quercetin in AMPK activation.

2.9. Cell Lipid Content Assay. Hepatocyte TG content was
quantified using a commercial kit (Applygen Technologies
Inc., Beijing, China). All experimental manipulations were
performed in accordance with the manufacturer’s instruc-
tions. In addition, oil red O staining was also used to assess
lipid accumulation in cells. The cells were immobilized in
10% paraformaldehyde and then stained shielded from light.
All pathological images were observed using a light
microscope.

2.10. Quantitative Real-Time PCR. Total RNA was isolated
from cell cultures using RNAiso plus reagent (TaKaRa)
according to the manufacturer’s instructions. Reverse tran-
scription was performed using the PrimeScript RT reagent
kit (TaKaRa). Real-time PCR was performed on a Roche
LightCycler 480 (Roche, Mannheim, Germany) using SYBR
Green (Bestar qPCR Mastermix, DBI, Germany). Relative
gene expression levels were calculated by the 2-△△CT

method, and the results are expressed as the fold change rel-
ative to the control. The PCR primers used are shown in
Table 1.

2.11. Western Blot Analysis. Total proteins were extracted
from HepG2 cells using protease inhibitors and phospha-
tase inhibitors (Bimake, Houston, USA). Protein concen-
trations were measured using a BCA Protein Quantitative
Assay Kit. The target proteins were blotted with the fol-
lowing antibodies: anti-phospho-p38 (CST, 4511), anti-
p38 (CST, 9212), anti-phospho-ERK (CST, 4376), anti-
ERK (CST, 4695), anti-phospho-JNK (CST, 4668), anti-
JNK (CST, 9252), anti-phospho-AMPK (CST, 2535),
anti-AMPK (CST, Thr172, 2532S), anti-phospho-ACC
(CST, Ser79, 11818), anti-ACC (CST, 3662), anti-CPT1α
(Abcam, ab128568), and anti-GAPDH (Proteintech,
60004-1-Ig). The appropriate secondary antibodies conju-
gated to horseradish peroxidase (HRP) (Amersham, Little
Chalfont Bucks, UK) were used at a 1 : 5000 dilution. An
Alpha Q detection system was used to visualize the bound
primary antibodies.

2.12. Statistical Analysis. The data are presented as the
mean ± standard deviation (SD). Statistical analysis was per-
formed in GraphPad Prism 8.0 software. One-way analysis
of variance (ANOVA) was performed to examine differences
between multiple groups. A P value < 0.05 was considered
statistically significant.

3. Results

3.1. The Active Compounds and Targets in AMB. Eighty-
seven components of AMB were acquired from TCMSP.
According to the screening standards of OB ≥ 30% and DL
≥ 0:18, 20 active components of AMB were finally obtained
for subsequent research and analysis (Table 2). Then, 450
active component-targets of AMB were screened using the
TCMSP database, and 202 component-targets were finally
identified after the deletion of duplicates (Supplementary
Table S1). To elucidate intuitive interactions between the
components of AMB and their targets, we constructed a
compound-target network using Cytoscape 3.7.2
(Figure 2(a)). The network contains 219 nodes and 465
edges, which means that one compound can correspond to
multiple targets. The top three active ingredients were
quercetin, kaempferol, and 7-O-methylisomucronulatol,
which correspond to 142, 61, and 44 targets, respectively.
The network suggested that these components may serve
as the main therapeutic ingredients of AMB anti-NAFLD.

3.2. Potential Targets and Active Components of AMB in
Anti-NAFLD. A total of 1674 NAFLD-related protein targets
were downloaded from the GeneCards database (Supple-
mentary Table S2). Furthermore, the 202 active component
targets of AMB intersected with the NAFLD-related
targets. Finally, 99 common targets were obtained and are
shown in the form of a Venn diagram (Figure 2(b) and
Supplementary Table S3). The 99 common targets
mentioned above may be key potential targets for the
treatment of NAFLD.

To identify the main anti-NAFLD effective component
in AMB, we constructed a component-NAFLD target net-
work (Figure 2(c)). The circular nodes represent potential
active components in AMB, and the square represents the
99 common targets of AMB and NAFLD. The larger the
node area is, the darker the color, indicating the more
important components. As shown in Figure 2(d), quercetin
(MOL000098) had the highest degree, suggesting that quer-
cetin may be the most important active component of AMB
against NAFLD.

3.3. PPI Network Analysis. To assess the protein-protein
interactions, 99 common targets were uploaded to the
STRING database. Then, Cytoscape 3.7.2 was used to build
a visual PPI network (Figure 3). There were 97 nodes and
1476 edges in the PPI network. The larger and darker the
color of nodes, the denser the lines indicating that the pro-
tein is more important. Finally, 10 hub targets were screened
out according to betweenness (BC), and closeness (CC)
values were ≥2 × median. [23] The top ten targets were
AKT1, IL6, TNF, TP53, JUN, PTGS2, CXCL8, MAPK8,
MMP9, and CASP3 (Table 3). These targets are likely to be
the key targets of AMB in the treatment of NAFLD. Notably,
these key targets were predicted mainly from quercetin.

3.4. GO Enrichment Analysis. To elucidate the biological
function of therapeutic targets, 99 common component tar-
gets were uploaded to the DAVID database. A total of 486
GO terms were enriched according to the value of the
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parameter (P ≤ 0:05). Among them, 383 GO terms were bio-
logical processes (BP) (Supplementary Table S4), 40 GO
terms were cellular components (CC) (Supplementary
Table S5), and 63 GO terms were molecular functions
(MF) (Supplementary Table S6). The top 10 GO terms of
BP, MF, and CC are shown in (Figure 4(a)).

3.5. KEGG Pathway Enrichment Analysis and Compound-
Target-Pathway Network Construction. To further explore
the signaling pathway of AMB against NAFLD, we per-
formed KEGG pathway enrichment analysis based on 99
common component targets. After deleting the unrelated
broad-spectrum pathway [24], we identified the top 20 path-
ways based on a P value < 0.05 (Figure 4(b)). Data analysis
showed that targets were significantly enriched in multiple
pathways, such as the TNF signaling pathway, MAPK sig-
naling pathway, nonalcoholic fatty liver disease (NAFLD),
and Toll-like receptor signaling pathway. The most signifi-
cantly enriched pathway was the TNF signaling pathway.

Moreover, to further systematically clarify the molecular
mechanism of AMB against NAFLD, the top 20 significantly
enriched pathways, corresponding targets, and components
were used to complete a component-target-pathway net-

work (Figure 5). The size of the graph area is proportional
to the degree value. Quercetin exhibits the highest number
of genes and is considered the most represented active com-
ponent among AMB. The TNF and MAPK signaling path-
ways were significantly enriched by the corresponding
targets. Collectively, these results indicate that the therapeu-
tic effects of AMB on NAFLD are achieved in a multitarget
and multipathway manner.

3.6. Molecular Docking Verification. To further verify the
potential targets of AMB against ANFLD, ten hub genes in
the PPI were screened for molecular docking analysis with
quercetin. Ten key genes were AKT1, IL6, TNF, TP53,
JUN, PTGS2, CXCL8, MAPK8, MMP9, and CASP3. The
results are shown in Table 4. The affinity value is a vital
parameter for evaluating the binding strength between
receptors and ligands. The lower the affinity value is, the
stronger the binding force. Generally, an affinity value < −5
kcal/mol indicates good binding affinity, and an affinity
score value <−7 kcal/mol indicates stronger adhesion of the
receptor to ligands. The results revealed that quercetin
docked well with all the key targets, which also demonstrates
the accuracy of network pharmacology. In addition,

Table 1: Primer sequences of TNF-α and GAPDH.

Genes Forward primer Reverse primer

TNF-α CACGCTCTTCTGCCTGCTG GGCTTGTCACTCGGGGTTC

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

Table 2: Characteristics of active ingredients in ABM.

No. Molecule ID Molecule name OB (%) DL

1 MOL000098 Quercetin 46.43334812 0.27525

2 MOL000422 Kaempferol 41.88224954 0.24066

3 MOL000378 7-O-methylisomucronulatol 74.68613752 0.29792

4 MOL000392 Formononetin 69.67388061 0.21202

5 MOL000354 Isorhamnetin 49.60437705 0.306

6 MOL000371 3,9-Di-O-methylnissolin 53.74152673 0.47573

7 MOL000296 Hederagenin 36.91390583 0.75072

8 MOL000380 (6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol 64.25545452 0.42486

9 MOL000417 Calycosin 47.75182783 0.24278

10 MOL000239 Jaranol 50.82881677 0.29148

11 MOL000387 Bifendate 31.09782391 0.66553

12 MOL000442 1,7-Dihydroxy-3,9-dimethoxy pterocarpene 39.04541112 0.47943

13 MOL000379 9,10-Dimethoxypterocarpan-3-O-β-D-glucoside 36.73668801 0.9243

14 MOL000433 FA 68.96043622 0.7057

15 MOL000033
(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-yl]-

2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol
36.22847056 0.78288

16 MOL000439 Isomucronulatol-7,2′-di-O-glucosiole 49.28105539 0.62065

17 MOL000211 Mairin 55.37707338 0.7761

18 MOL000374 5′-Hydroxyiso-muronulatol-2′,5′-di-O-glucoside 41.71766574 0.69251

19 MOL000398 Isoflavanone 109.9866565 0.29572

20 MOL000438 (3R)-3-(2-hydroxy-3,4-dimethoxyphenyl)chroman-7-ol 67.6674794 0.26479

OB, oral bioavailability; DL, drug-likeness.
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Figure 2: Compound-target network construction. (a) The component-target network of AMB. The orange triangles represent active
compounds, and the green nodes represent component-related targets. (b) Venn diagram. The orange part represents the number of
AMB targets, and the green part represents the number of NAFLD targets. (c) Compound-NAFLD targets network. The circular nodes
represent potential active components in AMB, and the square represents the 99 common targets of AMB and NAFLD. (d) Degree of
potential active compounds.
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quercetin had the highest binding affinity with TNF
(-8.3 kcal/mol), while it had the second and third highest
binding affinity with IL6 and PTGS2 (-7.6 and -7.5 kcal/
mol). Therefore, the above results indicated that TNF is
expected to be the most critical target of AMB against
NAFLD. Moreover, 3 pairs with the highest docking scores
were selected for 3D visualization (Figure 6). The binding
of quercetin to TNF mainly occurs through hydrogen bond
interactions with SER-65 (Figure 6(a)). Quercetin binds to
IL-6 mainly through hydrogen bonding with ARG-295,

DT-106, and ARG-289 (Figure 6(b)). The combination of
quercetin and PTGS2 occurs mainly through hydrogen
bonding interactions of ARG-1061 and ARG-1044
(Figure 6(c)). In addition, the accuracy of network pharma-
cology was confirmed by molecular docking.

3.7. Quercetin Exhibits the Anti-NAFLD Effect in PA-Induced
HepG2 cells. To investigate the effect of quercetin on
NAFLD, HepG2 cells were treated with quercetin (25μM)
in the presence or absence of PA (0.4mM) for 24 h. PA-

DRD1

AHR

ADRB1

SLC6A3

OPRD1

TGFB1

NR1I2

MMP1

MPO

COL3A1

PTGS2
CXCL8

CASP3

MAPK8

CASP8

IFNG

VCAM1PTEN

INSR

SLC6A4

ACACA

HTR2A

BIRC5

NR1I3

MGAM

PPARD

SOD1

AKT1
MMP9

GABRA2

CXCL10
IL1B

IGFBP3
CHRM3

CASP9

PRSS1

CTSD ADRB2
PPP3CA

CYP1B1

THBD

CAV1

ELK1

SPP1

GSTM1

NOS2

AHSA1

CRP

PLAU

CDKN1A

PON1

XDH

ICAM1

TP53
HSP90AA1 F3

PRKCA

HSPA5

FOS

HSPB1

NQO1

GSK3B

EGFR

IRF1

IL1A

F2

CCL2

NFE2L2
SELE

MYC

SLC2A4

MMP2

LDLR

PPARA

ESR1

IKBKB

CYP3A4

SERPINE1

STAT1

BAX
RXRA

DPP4

BCL2

OPRM1

MAPK14

CXCL11

CYP1A1

CHUK

SIRT1

JUN

RELA

CCND1

PTPN1

TNF

IL6 HMOX1

PPARG

Figure 3: The protein-protein interaction (PPI) network analyze of overlapping targets. The color and depth of the nodes (orange→ yellow
→ green) are in descending order of degree values, and node sizes are proportional to their degree.

Table 3: Ten key targets of ABM in treating NAFLD.

No. Gene symbol Description Degree (DC) Betweenness centrality (BC)

1 AKT1 RAC-alpha serine/threonine-protein kinase 76 0.09007483

2 IL6 Interleukin-6 75 0.06038545

3 TNF Tumor necrosis factor 72 0.04427747

4 TP53 Cellular tumor antigen p53 66 0.02811782

5 JUN Transcription factor AP-1 61 0.01848417

6 PTGS2 Prostaglandin G/H synthase 2 59 0.01631192

7 CXCL8 Interleukin-8 59 0.01898645

8 MAPK8 Mitogen-activated protein kinase 8 58 0.01679413

9 MMP9 Matrix metalloproteinase-9 57 0.02436033

10 CASP3 Caspase-3 57 0.01529514
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Figure 4: Continued.
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induced HepG2 cells were used as the NAFLD model. The
cell TG content results showed that TG levels were markedly
higher in the PA group than in the control group. However,
quercetin treatment significantly reduced cell TG levels
(Figure 7(a)). The effect of quercetin on alleviating lipid
accumulation in HepG2 cells was further confirmed by oil
red O staining (Figure 7(b)). In summary, these studies sug-
gested that quercetin exerts an anti-NAFLD effect in PA-
induced HepG2 cells. Moreover, these results further high-
lighted that quercetin is the main active ingredient in AMB
against NAFLD.

3.8. Quercetin Suppresses Inflammation by Regulating the
AMPK/MAPK/TNF-α Signaling Pathway. To explore the
mechanism of AMB against NAFLD, we first tested the idea
that TNF might be a key therapeutic target for NAFLD pre-
dicted by network pharmacology and molecular docking.
The real-time qPCR results showed that PA significantly
increased TNF-α mRNA expression, while quercetin
remarkably decreased PA-induced TNF-α mRNA levels in
HepG2 cells (Figure 8(a)).

TNF-α is known to be regulated by MAPK signaling
pathways [25, 26]. In addition, the MAPK signaling pathway

was regarded as a significant pathway with the highest num-
ber of enriched genes in KEGG enrichment analysis. Thus,
we investigated whether quercetin influences the expression
of the MAPK signaling pathway. Consistent with previous
reports, PA treatment enhanced the expression of p-p38,
p-ERK, and p-JNK. However, this expression trend was
reversed after quercetin treatment. No significant changes
were observed in total p38, ERK, or JNK levels. Furthermore,
we found that quercetin upregulated the phosphorylation
levels of AMPK. To determine whether AMPK activation
inhibited the expression of MAPK, we applied the AMPK
inhibitor compound C to PA-induced HepG2 cells. The
inhibitory effect of quercetin on the MAPK pathway was
abolished by compound C (Figures 8(b) and 8(c)). Together,
these data suggested that the AMPK/MAPK/TNF-α signal-
ing pathways are involved in the anti-inflammatory effect
of quercetin in PA-induced HepG2 cells.

3.9. Quercetin Alleviates Lipid Accumulation by Regulating
the AMPK/ACC/CPT1α Signaling Pathway. To further eluci-
date themechanism by which quercetin alleviates lipid accumu-
lation, we detected the expression of proteins related to the fatty
acid β-oxidation pathway. Acetyl-CoA carboxylase (ACC) is a
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Figure 4: Overlapped term-based analysis. (a) GO enrichment analysis for the major targets of AMB against NAFLD. The green, orange,
and purple color rectangles represent biological process (BP), cellular component (CC), and molecular function (MF), respectively. (b)
The top 20 KEGG pathway analysis for the major targets of AMB against NAFLD.
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direct substrate of AMPK, and its phosphorylation level was
increased after quercetin treatment. Quercetin also significantly
enhanced the level of CPT1α. However, the upregulation of p-
ACC and CPT1α was abrogated by compound C (Figure 9).
In conclusion, these results indicated that quercetin alleviates
lipid accumulation by activating AMPK/ACC/CPT1α signaling
to increase fatty acid β-oxidation.

4. Discussion

NAFLD is a progressive disease. NAFLD refers to simple
liver steatosis, which often occurs in the initial stage of the
disease. NASH is defined as a more serious process accom-
panied by inflammation and liver cell damage, which can
progress to liver cirrhosis and eventually liver cancer [27].
The complexity of the pathogenesis of NAFLD leads to sig-
nificant challenges in its treatment. There are currently no
relevant therapeutic drugs for NAFLD approved by the
FDA [28]. To date, treatment targets focus on improving
insulin resistance, reducing lipid deposition, and reducing
inflammatory responses. According to relevant reports,
AMB exhibits excellent hepatoprotective efficacy in clinical
treatment by relieving inflammation and antioxidants [6].
However, the bioactive components and pharmacological
mechanism of ABM against NAFLD have not been
completely elucidated due to its multicomponent and multi-
target features. Network pharmacology screens out numer-
ous active components of TCM and comprehensively
predicts multiple targets and pathways by building a system-
atic network [29]. Therefore, in the present study, we aimed
to explore the active components and mechanisms of AMB
in ameliorating NAFLD by integrating network pharmacol-
ogy, molecular docking, and experimental verification.
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Table 4: Molecular docking parameters and results of ten key
targets with quercetin.

Compounds Target PDB ID Affinity (kcal/mol)

Quercetin TNF 6q00 -8.3

Quercetin IL6 6mg1 -7.6

Quercetin PTGS2 1pxx -7.5

Quercetin TP53 4cz5 -7.3

Quercetin CXCL8 4xdx -7.3

Quercetin MAPK8 2xrw -7.2

Quercetin CASP3 2dko -6.8

Quercetin JUN 6osn -6.6

Quercetin AKT1 1unq -6.2

Quercetin MMP9 6esm -5.7
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First, network pharmacology predicted that ABM has
the ability to improve NAFLD, and this effect is closely
related to the regulation of the TNF-α and MAPK signaling
pathways. Specifically, 20 active components of AMB and
202 component targets were screened from the TCMSP
database. According to the topological value in the
component-target network, the top three components in
AMB were quercetin, kaempferol, and 7-O-methylisomu-
cronulatol, suggesting that they are the key components of
AMB anti-NAFLD. Quercetin was recognized as the compo-
nent with the highest degree related to several NAFLD tar-
gets. Therefore, quercetin was selected as the most
representative component of AMB for the follow-up study.
Studies have indicated that quercetin protects the liver by
promoting hepatic VLDL assembly [30]. Besides, quercetin
improved NAFLD induced by T2DM, which was character-
ized by restoring abnormal liver enzymes and reducing
hepatic lipid deposition in db/db mice [31]. Furthermore,
quercetin not only improved liver steatosis but also allevi-
ated liver fibrosis. The expression of proinflammatory fac-
tors and fibrogenic genes is decreased [32]. Despite

numerous studies, the anti-NAFLD mechanisms remain
ambiguous.

For other compounds studied, evidence showed that
CYP2b9, Cyp4a12b, Mup17, Mup7, and Mup16 were dif-
ferentially expressed genes for NASH treated with kaemp-
ferol through integrating transcriptomics and
metabolomics [33]. Similarly, studies have confirmed that
kaempferol can effectively alleviate the formation and
development of liver fibrosis by selectively binding
receptor–like kinase 5 and downregulating the TGF-β1/
Smad pathway [34]. In general, several main active ingre-
dients of AMB have different degrees of therapeutic effects
on NAFLD.

PPI network analysis showed that the key genes of ABM
against NAFLD were mainly related to inflammatory factors.
The correlations of 99 common component-disease targets
were presented in the PPI network, of which 10 hub genes
were AKT1, IL6, TNF, TP53, JUN, PTGS2, CXCL8, MAPK8,
MMP9, and CASP3. These genes play significant roles in
glucose and lipid metabolism, the inflammatory response,
and cell apoptosis. Meanwhile, the PPI network showed that

Quercertin act on TNF
(Affinity=-8.3 kcal/mol)

(a)

Quercertin act on IL6
(Affinity=-7.6 kcal/mol)

(b)

Quercertin act on PTGS2
(Affinity=-7.5 kcal/mol)

(c)

Figure 6: Molecular docking model of the top 3 key target proteins with the highest docking scores docked with quercetin. (a) TNF, (b) IL6,
and (c) PTGS2.
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99 common targets were not independent but interacted,
suggesting that AMB treated NAFLD by regulating multiple
proteins.

KEGG enrichment analysis indicated that ABM may
exert its anti-NAFLD effect by regulating inflammation
and metabolism-related pathways, such as the TNF signaling

pathway, MAPK signaling pathway, Toll-like receptor sig-
naling pathway, PI3K-Akt signaling pathway, insulin resis-
tance, NF-kappa B signaling pathway, AMPK signaling
pathway, and other signaling pathways. Hepatic lipid accu-
mulation is the initial pathological hallmark of NAFLD,
which can lead to inflammation, oxidative stress, and
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Figure 8: Quercetin suppresses inflammation by regulating the AMPK/MAPK/TNF-α signaling pathway in PA-induced HepG2 cells. (a)
qPCR analyses of TNF-α mRNA levels in HepG2 cells stimulated by 0.4mM PA with DMSO or 25μM quercetin for 24 h (n = 7 − 8). (b)
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eventually liver cancer in the absence of effective interven-
tions [35]. Here, we selected pathways with good correlation
to discuss the mechanism of AMB in the treatment of
NAFLD. The TNF signaling pathway was the most signifi-
cantly enriched pathway, and the results were further veri-
fied by molecular docking. In recent years, as a convenient
and effective emerging technology, molecular docking has
been commonly used to predict the binding force between
components and targets. All these results suggested that
the TNF signaling pathway may be a potential effective tar-
get for AMB against NAFLD through network pharmacol-
ogy analysis and molecular docking.

To further validate the results predicted by network
pharmacology, in vitro experiments were performed. First,
HepG2 cells were induced with PA to form a NAFLD model.
NAFLD is characterized by excessive lipid deposition in
hepatocytes, mainly triglycerides [36]. Our in vitro experi-
mental results showed that quercetin significantly reduced
the triglyceride content in HepG2 cells, which was further
supported by oil red O staining. Based on the above evi-
dence, we believe that quercetin has a role in ameliorating
NAFLD.

Next, we examined the mechanism of AMB against
NAFLD. Excessive lipid accumulation in hepatocytes is the
pathological feature of NAFLD in the initial stage. Excessive
fatty acids produce lipotoxic species that lead to inflamma-
some activation, oxidative stress, and ER stress. Inflamma-
tion, which plays a critical role in the pathogenesis of
NASH, can promote the progression of liver fibrosis to cir-
rhosis [4]. In this study, we found that the TNF-α mRNA
level was also significantly decreased by quercetin treatment
compared to the PA group. TNF is an inflammatory cyto-
kine with multiple biological effects, including promoting
cell growth, differentiation, and apoptosis and inducing
inflammation [37]. TNF is composed of TNF-α secreted by
macrophages and TNF-β produced by T lymphocytes, of
which TNF-α accounts for 70% to 95% of the total activity
[38]. TNF-α is the accelerator that promotes the progression
of hepatic steatosis to steatohepatitis and ultimately to liver
fibrosis. A study including 52 obese patients demonstrated
that the liver TNF-α mRNA level was higher in NASH

patients than in the control group. Next, NASH patients
were further classified according to the presence or absence
of fibrosis. It was found that liver TNF-α mRNA expression
in NASH patients with liver fibrosis was stronger than that
in NASH patients without fibrosis. In addition, TNF-α
mRNA expression in the adipose tissue of NASH patients
with inflammation was strikingly elevated [39]. Another
study revealed that TNF-α can activate stellate cells and
accelerate the progression of NASH. Moreover, TNF also
promoted insulin resistance and ultimately led to increased
hepatic steatosis in patients with NAFLD [40]. Therefore,
the development of a TNF-α inhibitor may be an effective
therapeutic strategy for NAFLD. In an experiment, NASH
model mice were given intraperitoneal injection of inflixi-
mab. As a result, anti-TNF-α reduced AST and ALT levels
and ameliorated hepatic inflammation, necrosis, and fibrosis
compared to the control group intraperitoneally injected
with sterile saline solution [41]. Similarly, another study
indicated that HFD-induced mice that received injection of
infliximab had lower liver levels of IL-6, IL-1β, and IL-10
than HFD model mice. Furthermore, infliximab also
improved insulin resistance and inhibited hepatic lipid
deposition and fibrosis [42]. Altogether, the above results
verified that TNF is a key target of AMB in the treatment
of NAFLD, which also confirmed the accuracy of network
pharmacology and molecular docking technology.

Interestingly, we also discovered that quercetin could
downregulate the expression of MAPK signaling pathways,
including ERK, p38, and JNK. The MAPK signaling pathway
is closely related to cell growth, differentiation, apoptosis,
and inflammation and consists of extracellular signal-
regulated kinase (ERK), Jun N-terminal kinase (JNK), and
p38 [43, 44]. The MAPK signaling pathway has attracted
wide attention due to its involvement in regulating the
expression of multiple genes related to NAFLD. Liver lipid
deposition, inflammation, and fibrosis can be improved by
suppressing the MAPK pathway in HFD-induced mice
[45]. AMB extract can effectively inhibit the secretion and
expression of IL-1β and TNF-α in macrophages. The mech-
anism is closely related to the regulation of the p38 MAPK
and NF-κB signaling pathways [46]. In addition, the MAPK
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Figure 9: Quercetin increases fatty acid β-oxidation by regulating AMPK/ACC/CPT1α signaling in PA-induced HepG2 cells. (a) The
protein expression levels of p-ACC, ACC, and CPT1α were examined by Western blot analysis in HepG2 cells (n = 3). (b) The gray
value analysis of p-ACC, ACC, and CPT1α. Data are presented as the mean ± S:E:M. ∗P < 0:05 and ∗∗P < 0:01.
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signaling pathway was another significant pathway with the
highest number of enriched genes in KEGG enrichment
analysis.

Furthermore, in the present study, we found that querce-
tin could increase AMPK phosphorylation levels and that
the inhibitory effect of quercetin on the MAPK signaling
pathway was abolished by the AMPK inhibitor compound
C in PA-induced HepG2 cells. These results indicate that
the AMPK signaling pathway regulates the expression of
MAPK and that MAPK is a downstream protein of AMPK.
In addition, previous studies have illustrated that TNF-α can
be activated by MAPK signaling pathways [47]. In summary,
these data demonstrated that quercetin could ameliorate
NAFLD by regulating the AMPK/MAPK/TNF-α signaling
pathway to inhibit the inflammatory response.

Beyond this, we further explored the mechanism by
which quercetin improves lipid metabolism because querce-
tin alleviates lipid accumulation in HepG2 cells, which was
also consistent with literature reports [31, 48]. Hepatic lipid
deposition is caused by an imbalance between lipogenesis
and lipolysis. Mitochondrial fatty acid β-oxidation acceler-
ates lipolysis, which contributes to reducing lipid deposition
in hepatocytes. AMPK is regarded as a key factor that regu-
lates energy metabolism homeostasis, and AMPK signaling
pathway activation has been confirmed to have a protective
effect on NAFLD [49]. ACC catalyzes the production of mal-
onyl-CoA, which is an allosteric inhibitor of CPT1 [50].
Phosphorylation of ACC by AMPK inactivates ACC, which
enhances the activity of CPT1 and fatty acid β-oxidation. In
our current study, quercetin treatment significantly
increased AMPK and ACC phosphorylation levels, which
inhibited ACC activity, and ultimately, the expression of
CPT1α was upregulated. However, this effect was abolished
by the AMPK inhibitor compound C. Altogether, quercetin
alleviated hepatic lipid accumulation by enhancing fatty acid
β-oxidation through activating the AMPK/ACC/CPT1α sig-
naling pathway in PA-induced HepG2 cells.

However, there were several limitations in the present
study. First, although quercetin was considered to be the
main component of AMB proven to have an anti-NAFLD
effect, it could not fully represent AMB. Therefore, to eluci-
date the mechanism of AMB in the treatment of NAFLD,
further experiments are essential. Second, this study only
confirmed the effect and mechanism of quercetin against
NAFLD in vitro. Thus, further in vivo experiments and clin-
ical trials are needed to verify our conclusions.

5. Conclusion

In conclusion, this study adopted an integrated strategy that
combined network pharmacology, molecular docking, and
experimental verification to illustrate novel mechanisms of
AMB in the treatment of NAFLD. Our findings revealed that
quercetin, as the main active component of AMB, could
inhibit the inflammatory response, enhance fatty acid β-oxi-
dation, and alleviate hepatic lipid accumulation via the
AMPK/MAPK/TNF-α and AMPK/ACC/CPT1α signaling
pathways to exert its anti-NAFLD effect (Figure 10). This
discovery not only provides a scientific basis for revealing

the molecular mechanism of AMB in the treatment of
NAFLD but also suggests a novel promising therapeutic
strategy for anti-NAFLD.
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