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Objective. Abnormal lipid metabolism is known to influence the malignant behavior of gastric cancer. However, the underlying
mechanism remains elusive. In this study, we comprehensively analyzed the biological significance of genes involved in lipid
metabolism in advanced gastric cancer (AGC). Methods. We obtained gene expression profiles from The Cancer Genome Atlas
(TCGA) database for early and advanced gastric cancer samples and performed differential expression analysis to identify
specific lipid metabolism-related genes in AGC. We then used consensus cluster analysis to classify AGC patients into
molecular subtypes based on lipid metabolism and constructed a diagnostic model using least absolute shrinkage and selection
operator- (LASSO-) Cox regression analysis and Gene Set Enrichment Analysis (GSEA). We evaluated the discriminative
ability and clinical significance of the model using the Kaplan-Meier (KM) curve, ROC curve, DCA curve, and nomogram. We
also estimated immune levels based on immune microenvironment expression, immune checkpoints, and immune cell
infiltration and obtained hub genes by weighted gene co-expression network analysis (WGCNA) of differential genes from the
two molecular subtypes. Results. We identified 6 lipid metabolism genes that were associated with the prognosis of AGC and
used consistent clustering to classify AGC patients into two subgroups with significantly different overall survival and immune
microenvironment. Our risk model successfully classified patients in the training and validation sets into high-risk and low-
risk groups. The high-risk score predicted poor prognosis and indicated low degree of immune infiltration. Subgroup analysis
showed that the risk model was an independent predictor of prognosis in AGC. Furthermore, our results indicated that most
chemotherapeutic agents are more effective for AGC patients in the low-risk group than in the high-risk group, and risk scores
for AGC are strongly correlated with drug sensitivity. Finally, we performed qRT-PCR experiments to verify the relevant
results. Conclusion. Our findings suggest that lipid metabolism-related genes play an important role in predicting the prognosis
of AGC and regulating immune invasion. These results have important implications for the development of targeted therapies
for AGC patients.
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1. Introduction

Recently, gastric cancer (GC) has become the fifth most
commonly diagnosed cancer and the fourth leading cause
of cancer-related deaths worldwide [1]. According to the
pathological changes, GC can be classified into early gastric
cancer (EGC) and advanced gastric cancer (AGC). EGC is
characterized by tumor lesions confined to the mucosa or
submucosa, while AGC involves carcinoma infiltration
beyond the submucosa into the muscular layer or beyond
[2]. EGC and AGC have different prognoses, with a five-
year survival rate of over 95% for EGC and only about
30% for AGC [3, 4]. Despite the application of newer treat-
ment modalities, including surgery, chemotherapy, and
immunotherapy to AGC, its prognosis remains unsatisfac-
tory [5]. One of the major reasons for the poor prognosis
of AGC is its high propensity for metastasis [6]. Thus, iden-
tifying a new signature for AGC prognosis is crucial.

Tumor cells require more energy for survival and prolif-
eration than normal cells [7]. Metabolic reprogramming is
one of the important phenotypes of tumor cells and is
increasingly appreciated. Metabolic reprogramming is an
important phenotype of tumor cells that is increasingly rec-
ognized. Recent studies suggest that lipid metabolism is
closely associated with the rapid proliferation, survival,
migration, invasion, and metastasis of malignant tumors
[8]. Numerous investigations have highlighted a significant
elevation in lipid content in both plasma and tissues among
individuals with gastric cancer compared to their normal
counterparts [9, 10]. Furthermore, the association between
mutations or abnormal expression of specific lipid
metabolism-related genes and gastric cancer occurrence
has been established. Notably, signaling molecules such as
sterol regulatory element-binding proteins 1 and 2 (SREBP1
and SREBP2) play crucial roles in lipid metabolism regula-
tion [11, 12]. Sterol O-acyltransferase 1 (SOAT1) has been
identified as a promoter of lymph node metastasis in gastric
cancer through the activation of the SREBP pathway [13].
CD36, known for its involvement in fatty acid uptake, has
been implicated in promoting gastric cancer metastasis
[14]. Moreover, disruptions in lipid metabolism have impli-
cations for the therapeutic landscape and prognosis of gas-
tric cancer. Existing research has demonstrated the
influence of lipid metabolism disorders on chemotherapy
and radiotherapy efficacy, closely intertwining them with
gastric cancer prognosis [15]. Noteworthy examples include
statins, which exhibit the potential to prolong survival post-
surgery and adjuvant chemotherapy in gastric cancer
patients [16]. Additionally, ATP-binding cassette subfamily
G member 2 (ABCG2) has been identified as a contributor
to increased resistance to cisplatin treatment in gastric
cancer patients. Furthermore, serum cholesterol levels
have emerged as a prognostic indicator for gastric cancer
patients [17].

The tumor microenvironment (TME) comprises tumor
cells, immune cells, extracellular matrix, and mesenchymal
tissue [18]. The tumor immune microenvironment (TIME)
is a component of the TME composed of different immune
cells that can play a key role in cancer development, progres-

sion, and control by engaging with the solid part of the
tumor [19]. Immune cells, such as T cells and bone marrow
mesenchymal stem cells, have been shown to further pro-
mote gastric carcinogenesis based on H. pylori infection
[20, 21]. Immune cells in the immune microenvironment
also play an important role in the inflammatory cancer
transformation of the stomach [22]. The impact of lipid
reprogramming on the immune microenvironment of
tumors is complex. Lipid metabolism is integral for the
survival and proliferation of both immune cells and tumor
cells, playing a pivotal role in the regulation of tumor cell
processes such as proliferation, invasion, and metastasis.
Furthermore, it holds significant implications for the activa-
tion, differentiation, and function of immune cells within the
tumor microenvironment [23]. In this intricate milieu, lipid
metabolism emerges as a critical determinant influencing the
activity, proliferation, and differentiation of immune cells,
thereby shaping their ability to target tumor cells effectively
[24]. Additionally, the modulation of oxidative stress and
metabolic substance concentrations within the tumor micro-
environment by lipid metabolism can impact tumor cell
immune evasion and drug resistance [25, 26]. For example,
fatty acid oxidation (FAO) can enhance the efficiency of
PD-1 immunotherapy [27], and excessive intake of fatty
acids may affect NK cells, which are originally powerful anti-
tumor fighters, or even promote immune escape [28]. The
impact of the immune microenvironment on cancer is
unquestionable. Exploring the relationship between TIME
and AGC will help deepen our understanding of this disease.

In this study, we aimed to investigate the impact of lipid
metabolism-related gene (LMRG) expression levels on the
prognosis of AGC patients. Using differential gene expres-
sion analysis, we identified two groups with differential lipid
metabolism expression and constructed a risk model for
LMRG that can serve as an indicator of AGC prognosis. Fur-
thermore, we identified a close association between LMRG
and TIME in AGC. Our study sheds light on the role of
LMAG in AGC and provides information that may help

Table 1: Primer sequences of six LMGRs.

Primer Sequence

AKR1B1-forward TTTTCCCATTGGATGAGTCGG

AKR1B1-reverse CCTGGAGATGGTTGAAGTTGG

OSBPL1A-forward TCCGAAGAAAAAGACTGTGGTG

OSBPL1A-reverse CAGTTAGGCGCTGTAGGAAGC

PRKD1-forward TTCTCCCACCTCAGGTCATC

PRKD1-reverse TGCCAGAGCACATAACGAAG

ABCA1-forward GGTGTTGAAAGTCTCGAACATG

ABCA1-reverse GGGAAAACCCACCATACCTAA

CD36-forward CTTTGGCTTAATGAGACTGGGAC

CD36-reverse GCAACAAACATCACCACACCA

FABP3-forward TTCTGGAAGCTAGTGGACAG

FABP3-reverse TGATGGTAGTAGGCTTGGTCAT

GAPDH-forward GTGAAGGTCGGAGTCAAC

GAPDH-reverse GTTGAGGTCAATGAAGGG

2 Gastroenterology Research and Practice



0.0

2.5

5.0

7.5

10.0

−4 −2 0

Log2 (fold change)

Expression

–L
og

10
 (P

.ad
j)

2 4

−4 −2 0 2 4

Sample
AGC
EGC

(a)

NAP1L1
CTHRC1
SULF1
FNDC1
COL3A1
COL6A3
LUM
CDH11
IGFBP5
SERPING1
C1S
GPC6
ASPN
AC104083.1
GUCY1A1
GREM1
ST6GALNAC5
MFAP5
ISLR
SFRP4
ALR7L
AL133373.2
CATSPERB
LINC02615
MIR429
MIR200A
CYP4X1
AL365205.1
ZBTB7B
PROM2
EPN3
ZNF750
KRT24
CAPN14
MRLN
AC079466.1
SFTPB
SORD2P
DUOX1
RNF183

(b)

DEGs Lipid metabolism

1373 70340

(c)

Figure 1: Continued.
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clinicians improve patient prognosis and develop personal-
ized treatment plans for AGC.

2. Materials and Methods

2.1. Data Source and Preprocessing. We obtained high-
throughput sequencing gene expression data and clinical
information of stomach adenocarcinoma (STAD) patients
from TCGA database, including 374 STAD tissues and 27
normal tissues. The mRNA sequencing data was trans-
formed to transcript per kilobase million (TPM) values
followed by log2 x + 1 transformation, which is considered
the most accurate quantification method with minimal sta-
tistical bias. Samples with missing clinical factors or survival
follow-up information were excluded. The GSE62254 data-
set, containing 300 STAD samples, was downloaded from
the NCBI Gene Expression Omnibus (GEO) database and
used as a validation set to assess the accuracy of the prognos-
tic features. Clinical information of STAD patients was
extracted from TCGA database, and after removing samples
with unclear clinical information, patients were classified
into early stage (T1, 19 cases) and advanced stage (T2-4,
347 cases) according to the pathological TNM criteria.

2.2. Identification of Differentially Expressed Genes (DEGs).
The limma package of R was used to analyze the differential
gene expression between EGC and AGC tissues, using a sig-
nificance threshold of p adj < 0 05 and log2 fold change
log 2FC ≥ 1 5. The differential gene expression results were
visualized using ggplot2, pheatmap, and volcano plots.

2.3. Lipid Metabolism-Related Gene Collection. We extracted
743 genes considered to be related to lipid metabolism from
the “METABOLISM_OF_LIPIDS” gene set in MSigDB

(http://www.broadinstitute.org/gsea/msigdb/, M24779) for
further analysis.

2.3.1. Consensus Cluster Analysis. Consensus clustering is an
unsupervised classification technique implemented through
multiple resampling and clustering. We used six genes
related to lipid metabolism with prognostic value to classify
patients using “ConsensusClusterPlus” with KM clustering
using 1-Pearson correlation distance and 2000 replicate
resamplings of 80% of the samples. The appropriate number
of clusters (k) was determined based on the cumulative dis-
tribution function (CDF) plot. The stability of the clusters
was further validated in the principal component analysis
(PCA).

2.3.2. Construction of the Protein-Protein Interaction (PPI)
Network. The PPI network was constructed using the
STRING database to analyze the interactions between genes
or proteins. The obtained PPI information was visualized
using Cytoscape software.

2.4. Weighted Gene Coexpression Analysis (WGCNA).
WGCNA was used to construct an unsigned coexpression
network to identify coexpression modules. First, we identi-
fied DEGs between the two clusters using the “limma” pack-
age and calculated the median absolute deviation (MAD) of
the DEGs. The top 50% of genes with the smallest MAD
were excluded, and the outlier genes and samples were
removed by the good sample gene method of the R package
WGCNA. The soft threshold power (β) was estimated to
construct the biologically important scale-free network.
The topological overlap matrix (TOM) was calculated based
on the adjacency matrix, and the dynamic tree cutting algo-
rithm was used to detect gene modules. We calculated gene
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Figure 1: Identification of lipid metabolism-related differential genes in STAD and construction of PPI networks. (a) Volcanic maps of AGC
and EGC, with upregulated genes in red and downregulated genes in blue. (b) Heat maps of the 20 upregulated and 20 downregulated genes
with the most significant differences. (c) The intersection of differential genes and lipid metabolism-related genes was used to obtain 40 lipid
metabolism-related differential genes. (d) PPI network was constructed with 40 differential genes related to lipid metabolism.
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Figure 2: Screening of prognostic lipid metabolism differential genes. (a) Univariate COX analysis was performed on 40 lipid metabolism-
related differential genes, and 6 genes were associated with prognosis. (b) Expression levels of six prognostic genes in EGC and AGC. (c)
Correlation analysis of 6 prognostic genes.
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Figure 3: Continued.
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significance (GS), module membership (MM), and related
modules with clinical features, which represent the relation-
ship between gene expression profiles and module signature
genes. Gene salience represents the absolute value of the
association between gene expression and module traits.

2.5. Functional Enrichment Analysis. Kyoto Encyclopedia of
Genes and Genomes (KEGG) functional enrichment analy-
sis was performed using the “clusterProfiler” software pack-
age, with a significance threshold of p < 0 05. Biological
functions of different subtypes of AGC were evaluated based
on cell composition (CC), molecular function (MF), biolog-
ical process (BP), biological pathways, diseases, and drugs.

2.6. Gene Set Enrichment Analysis (GSEA). GSEA was con-
ducted using the “clusterProfiler” package to identify signif-
icant differences in gene sets between different clusters in the
MSigDB set (c2.cp.v7.2.symbols.gmt) enrichment set. The
significance threshold was set to p < 0 05 and FDR < 0 25.

2.7. Tumor Immune Microenvironment Analysis. The ESTI-
MATE and CIBERSORT algorithms were used to calculate
immune infiltration scores for each sample using RNA-seq
data. Differences in immune infiltration between different
tumor subtypes were evaluated using a t-test statistical
method with a significance level of p < 0 05. The expression
of key immune checkpoint genes, including PDCD1, LAG3,
CTLA4, CD274 (PD-L1), and BTLA, was also investigated.

2.8. Development and Validation of Risk Models. A valid pre-
diction model was developed using LASSO-Cox analysis.
The most useful predictive features were derived from the
training cohort using overall survival (OS), and a risk score

was calculated for each patient in both the training and val-
idation cohorts. The X-Tile software was used to calculate
the optimal cut-off value to divide patients into high-risk
and low-risk groups. Kaplan-Meier survival curves were
used to determine the model ability to distinguish different
subtypes of patients, and time-dependent receiver operating
characteristic (ROC) curves and decision curve analysis
(DCA) curves were used to assess the efficiency.

2.9. Evaluation of Drug Sensitivity. The “oncoPredict” pack-
age was used to calculate the IC50 values of AGC after mul-
tidrug treatment, and the person correlation test was used to
compare the differences in IC50 between the commonly used
antitumor drugs in the high-risk and low-risk groups. Box
plots were generated using the R package “ggplot2.”

2.10. Single-Cell Analysis. The Single-Cell Center for Tumor
Immunity (TISCH) was used to visualize the expression level
of lipid metabolism-related genes at the level of individual
cells using the STAD_GSE134520 dataset.

2.11. Patients and Specimens. A total of 25 GC tissues,
which were pathologically confirmed advanced-stage GC,
along with the corresponding adjacent noncancerous fresh
frozen tissues, were collected from patients who under-
went radical gastrectomy at the Nanjing Drum Tower
Hospital. Subsequently, these tissues were utilized for fur-
ther qRT-PCR analysis. All participants granted informed
consent, in accordance with the guidelines and approval
of the Ethics Committee of Nanjing Drum Tower Hospital
(no. 2020-103).
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2.12. Validation of the Expression Levels of Critical Genes by
qRT-PCR. Total RNA was extracted from human and mouse
GC tissues, as well as corresponding noncancerous tissues,
using TRIzol reagent (Invitrogen, Carlsbad, CA, USA) fol-
lowing the manufacturer’s protocol. Subsequent reverse
transcription (RT) was executed with the Reverse Transcrip-
tion Kit (Vazyme, Nanjing, China). RT-PCR reactions were
carried out using the SYBR Green PCR Kit (Vazyme, Nan-
jing, China), conducted in triplicate, and analyzed on an
Applied Biosystems 7900HT sequence detection system
(Applied Biosystems). The thermal cycling parameters were
as follows: initial enzyme activation and denaturation were
conducted for 10 minutes at 95°C, following by 40 amplifica-
tion cycles, each comprising denaturation at 95°C for 30 sec-
onds, annealing at 60°C for 60 seconds, and elongation at
72°C for 60 seconds. Finally, a dissociation curve stage was
implemented with intervals of 60 seconds at 95°C, 30 sec-
onds at 55°C, and 30 seconds at 95°C. GAPDH served as
the internal control for mRNA normalization. Relative
expression levels of AKR1B1, OSBPL1A, PRKD1, ABCA1,
CD36, and FABP3 were determined using the comparative
2−ΔΔCt method. Detailed primer sequences utilized are
provided in Table 1.

2.13. Statistical Analysis. Data normalization and statistical
analysis were performed using R software (version 4.2.1)
and related packages. For p value calculations, a two-
tailed paired t-test was utilized for within-group compari-
sons, and a two-sample t-test was applied for between-
group analyses. For comparisons involving more than two
groups, a one-way ANOVA test followed by Tukey’s mul-

tiple comparisons was conducted. The Cox regression anal-
ysis was used to identify independent prognostic factors,
and ROC curves were used to assess the accuracy of risk
characteristics. KM curves and the logarithmic rank test
were used to analyze differences in overall survival. All sta-
tistical tests were two sided, and p < 0 05 was considered to
be significant.

3. Results

3.1. Identification of Differentially Expressed LipidMetabolism-
Related Genes in STAD and PPI Network Construction. We
obtained 374 gastric cancer samples from TCGA website
and performed differential analysis on AGC (T2-4) and
EGC (T1) using the limma software package after excluding
samples with incomplete clinical information. Volcano and
heat maps were generated to visualize the differential expres-
sion of genes (Figures 1(a) and 1(b)). A total of 1413 DEGs
were identified using the criterion that the absolute log fold
change (logFC) was greater than 0.585 (1.5-fold change)
and the adjusted p value < 0.05, including 1297 upregulated
genes and 116 downregulated genes. The heat map high-
lighted the top 20 upregulated and 20 downregulated genes
(Figure 1(b)). We also retrieved 743 LMRGs from the GSEA
database and identified 40 overlapping genes between DEGs
and LMRGs (Figure 1(c)). To explore the relationships
among these 40 genes, we constructed a PPI network using
the STRING database with a medium correlation degree
threshold (0.4) and visualized it using Cytoscape 3.6.1 soft-
ware (Figure 1(d)).
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Figure 4: Relationship between molecular subtypes and tumor immune microenvironment. (a) Differences in 5 immune checkpoints of
different subtypes. (b) The “estimate” algorithm was used to calculate the purity of different subtypes of tumors. (c) CIBERSORT
algorithm was used to calculate the immune cell infiltration of each sample in AGC. (d) CIBERSORT algorithm was used to calculate the
difference of immune cell infiltration among different subtypes.
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3.2. Prognostic Screening of Lipid Metabolism-Related Genes.
We conducted univariate Cox regression analysis on the 40
identified differential genes related to lipid metabolism and
identified six LMRGs associated with prognosis (Figure 2(a)).
Notably, AKR1B1, OSBPL1A, PRKD1, ABCA1, CD36, and
FABP3, all upregulated in AGCs, were identified as high-
risk prognostic genes (Figure 2(b)). Additionally, a positive
correlation was evident among LMRGs in AGC samples at
the mRNA level, confirmed by the Pearson correlation test
(Figure 2(c)).

3.3. Establishment of Molecular Subtypes through Coherent
Clustering. Consistent clustering is an unsupervised cluster-
ing method commonly employed for the classification of
cancer subtypes. By utilizing the k-means algorithm and
analyzing the cumulative distribution curve and the area
under the distribution curve (Figures 3(a) and 3(b)), we
determined that the optimal clustering was achieved when
k = 2. Subsequently, two clustering schemes were identified,
assigning 228 AGC samples to subtype 1 (cluster 1, C1)
and 119 AGC samples to subtype 2 (cluster 2, C2)
(Figure 3(c)). The heat map showed that lipid metabolism-
related genes had a higher expression in group C2 than in
group C1 (Figure 3(d)). The PCA plots indicated significant

differences between the samples of the two subtypes after
dimensionality reduction (Figure 3(e)). Further investigation
of the relationship between these two cluster subtypes and
various clinical features revealed that patients in group C2
had lower degrees of histological differentiation and higher
stages than those in group C1 (Figure 3(f)). Additionally,
patients in group C2 exhibited shorter OS than those in
group C1 (Figure 3(g)). These findings suggest that LMRGs
may influence the development of AGCs through some
underlying mechanisms.

3.4. Relationship between Molecular Subtypes and Immune
Microenvironment. To investigate the association between
lipid metabolism and the TIME, we analyzed the composi-
tion of the two molecular subtypes in the TME. Our results
indicated that the expression levels of immune checkpoints,
notably CTLA4, PDCD1, and BTLA, were higher in the C2
group, while LAG3 and CD274 showed no significant differ-
ences between C1 and C2 groups (Figure 4(a)). Moreover,
we employed the “Estimate” algorithm to evaluate tumor
purity between the two subtypes. Compared with C1, C2
had higher matrix scores and immune scores, indicating
lower tumor purity (Figure 4(b)). To further explore the rea-
sons for the high immune score in group C2 and the impact
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Figure 5: Establishment of weighted gene coexpression network. (a) Differential genes between C2 and C1 were analyzed in the “limma”
package, with red representing upregulated genes and blue representing downregulated genes. (b) Clustering of samples from different
subtypes of C1 and C2. (c, d) According to scale independence and mean connectivity, the soft threshold is determined to be 6, R2 is
0.73, and scale-free network is constructed. (e) After the elimination of the first 50% of the smallest MAD genes, they were combined
into different modules according to the coexpression relationship of the genes. (f) Except gray, the remaining three modules are
correlated with the subtype, and the blue module has the greatest correlation.
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of immune cell infiltration on AGC patients, we used the
“CIBERSORT” algorithm to estimate the degree of immune
cell infiltration. Our analysis indicated that the infiltration
degree and average content of various immune cells varied
between subtypes. In AGC samples, the “CIBERSORT” algo-
rithm suggested that the average contents of CD4-T cells, M0
macrophages, and CD8-T cells in resting memory were the
highest, whereas the average contents of naive CD4-T cells,
γδ T cells, and eosinophils were the lowest (Figure 4(c)). Fur-
thermore, the types of cells with higher infiltration degree in
the C2 group were different. Juvenile B cells, monocytes, M2
macrophages, resting dendritic cells, and resting mast cells
were more infiltrated in the C2 group. The infiltration degree
of plasma cells, activated memory CD4-T cells, resting natu-
ral killer cells, M0 macrophages, activated dendritic cells, and
activated mast cells was higher in group C1 (Figure 4(d)).
Collectively, these findings suggest the existence of two dis-
tinct immunophenotypes in AGCs, which could contribute
to a better understanding of the pathogenesis of AGCs and
guide the development of treatment regimens.

3.5. Establishment of Weighted Gene Coexpression Network.
To investigate the prognostic differences between the two
molecular subtypes in gastric adenocarcinoma, we employed
the limma software package to analyze the differences
between C1 and C2 subtypes (Figure 5(a)). We set strict
screening conditions, requiring a difference multiple of 1.5
times or more, and P.adj to be less than 0.05, ultimately
identifying 3022 DEGs. Before conducting the WGCNA,

we preprocessed the gene expression data by calculating
the MAD for each gene and excluding the top 50% of genes
with the smallest MAD. We then removed outlier genes and
samples using the “goodSamplesGenes” method of the R
software package WGCNA (Figure 5(b)) to ensure reliable
results. Subsequently, we constructed scale-free networks
using WGCNA. Based on scale independence and mean
connectivity (Figures 5(c) and 5(d)), we selected a soft
threshold of 6, R2 greater than 0.73, and module merging
threshold of 0.25. We identified three modules, excluding
the gray module, for further research. We then analyzed
the modules after clustering tree merger (Figure 5(e)) and
calculated the correlation coefficient between the module
eigenvalue (ME) and clinical phenotypes to study the associ-
ation between modules and molecular subtypes. We found
that the blue module was strongly correlated with lipid
metabolism subtypes (p = 7 2 ∗ 10−55, R = 0 71), indicating
that this module genes are closely related to the prognosis
of the AGC molecular subtype (Figure 5(f)).

3.6. PPI Network and Enrichment Analysis of Lipid
Metabolism-Related Coexpression Modules. Following the
WGCNA analysis, we identified the blue module consisting
of 991 genes that showed high correlation with the molecu-
lar subtypes (Figure 6(a)). Subsequently, employing strin-
gent criteria, we designated 220 genes with significant
connectivity as hub genes and conducted a protein-protein
interaction (PPI) network analysis utilizing the STRING
database. Visualization of this network was facilitated using
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Figure 6: PPI network and enrichment analysis of lipid metabolism-related coexpression modules. (a) Scatter plots of interactions between
module membership and gene significance of genes in the blue module. (b) PPI network interaction map constructed by hub gene in blue
module. (c, d) Hub gene was used for GO/KEGG enrichment analysis.
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Cytoscape 3.6.1 software (Figure 6(b)). To decode the bio-
logical relevance of these hub genes, we further conducted
Gene Ontology (GO) and KEGG enrichment analysis of
these hub genes to elucidate their biological significance.
GO enrichment analysis unveiled significant associations
with biological processes encompassing extracellular matrix
organization, muscle contraction, and muscle tissue devel-
opment. Concurrently, cellular component (CC) analysis
highlighted enrichment in extracellular matrix components,
including collagen and contractile fibers, while molecular
function (MF) analysis underscored roles in extracellular
matrix structural constituents, heparin binding, and glycos-
aminoglycan binding. Complementing these findings,
KEGG pathway analysis delineated enrichment in pivotal
pathways such as cGMP-PKG signaling, vascular smooth
muscle contraction, renin secretion modulation, extracellu-
lar matrix- (ECM-) receptor interactions, and adhesive pla-
ques (Figures 6(c) and 6(d)). Collectively, these insights
shed light on potential mechanistic underpinnings driving
disparate prognostic outcomes observed between the C2
and C1 cohorts.

3.7. AGC risk characteristics were developed and verified,
and a line map was established by GSEA. To elucidate the
risk characteristics of AGC, we developed and validated a
robust model, subsequently generating a schematic through
GSEA. Employing GSEA to discern differential biological
processes and pathways between C1 and C2 samples, nota-

ble activations were observed in pathways such as vascular
smooth muscle contraction, cell adhesion molecules, and
extracellular matrix interactions predominantly in the C2
cohort, along with heightened lipid metabolism in AGCs
(Figure 7(a)). Merging TCGA-STAD training set with the
GSE62254 AGC verification samples after batch effect cor-
rection (Figures 7(b) and 7(c)), we pinpointed extracellular
stromal genes of core enrichment. Utilizing the LASSO-Cox
method, our prognostic AGC model crystallized around six
pivotal genes (Figures 7(d) and 7(e)). RiskScore = 0 122 ×
SCD3 + 0 145 ×MATN3 + 0 120 × SERPINE1 + 0 034 × P3
H2 + 0 061 ×MMP16 + 0 059 × VTN. Through rigorous val-
idation and multivariate Cox analysis, this model emerged as
an autonomous risk determinant for AGC (Table 2). The X-
Tile software calculated an optimal cut-off value of 0.74
(Figure 7(f)). We divided AGC patients in TCGA cohort into
two risk subgroups based on the optimal risk score cut-off
value. The survival heat map demonstrated the patient’s sur-
vival rate based on the risk score and showed the differential
expression of six genes between the two groups (Figure 7(g)).
The mulberry chart illustrated the relationship between
lipid metabolic subtypes, risk scores, and survival status
(Figure 7(h)). OS was lower in the high-risk group than in
the low-risk group (Figure 7(i)). The time-dependent ROC
curve verified the accuracy of the risk curve at 1, 3, and 5
years, with areas under the curve of 0.63, 0.71, and 0.85,
respectively (Figure 7(j)). The DCA curve also demonstrated
the clinical practicability of the model (Figure 7(k)). These
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Figure 7: AGC risk characteristics were developed and verified, and a line graph was established using GSEA. (a) Five pathways activated in
C2 were selected by GSEA based on differential genes between C2 and C1. (b, c) The batch effect was removed by combining the AGC
samples of TCGA-STAD and GSE62254. (d, e) LASSO-Cox regression was used to construct a prognostic model. When λ = 0 05, a
prognostic model containing 6 genes was obtained. (f) X-Tile software was used to calculate the optimal cut-off value of 0.74. (g)
Prognostic heat maps showed the survival status, risk score, and distribution of 6 gene expressions of AGCs in high-risk and low-risk
groups. (i–k) Using TCGA-STAD as the training set, KM curve, ROC curve, and DCA curve were used to determine the prognostic
value of the model. (l–n) GSE62254 was used as external validation to verify the prognostic value of the model by KM curve, ROC
curve, and DCA curve. (o, p) Based on TCGA-STAD, risk score combined with TNM stage, age, gender, differentiation degree, and stage
to draw calibration curve. (q) ROC curve was plotted to predict the prognosis of AGC patients.
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results were validated in the external dataset GSE62254,
where the samples meeting the inclusion criteria were
divided into high- and low-risk groups based on a cut-off
value of 0.74. KM survival analysis showed that overall sur-
vival was significantly lower in the high-risk group than in
the low-risk group. In the validation cohort, the AUC values
predicting 1-, 3-, and 5-year survival were 0.70, 0.61, and
0.60, respectively.

To facilitate clinical use, we constructed a column graph
combining the risk score with TNM stage, age, sex, degree of
differentiation, and stage and plotted a calibration curve
based on TCGA-STAD dataset. ROC curves show that our
columns have good accuracy in predicting 1-, 3-, and 5-
year survival rates (Figures 7(o)–7(q)). In conclusion, these
models accurately distinguish the high- and low-risk groups
of patients with AGC and have a high predictive value in
predicting 1–5-year survival of patients with AGC.

3.8. Drug Sensitivity Analysis. Given the therapeutic signifi-
cance of chemotherapy in AGC management, we harnessed
the “oncoPredict” R package to delineate the interplay
between drug sensitivity and our risk scores. Evaluating
prevalent chemotherapy agents for gastric cancer, our find-
ings spotlighted differential sensitivities across risk groups.

Our results showed that the low-risk group had higher sen-
sitivity to 5-fluorouracil, cisplatin, irinotecan, oxaliplatin,
and camptothecin compared to the high-risk group. More-
over, as risk score increased, the IC50 values mirrored this
trend. Although the sensitivities of paclitaxel, docetaxel,
and epirubicin did not show significant differences between
high-risk and low-risk groups, their sensitivities were nega-
tively correlated with risk scores (Figures 8(a)–8(h)). Collec-
tively, our findings indicate that our risk model can facilitate
clinical decision-making for the treatment of AGC patients.

3.9. The expression and role of lipid metabolism-related
prognostic genes in STAD were examined using single-cell
RNA-seq analysis. To identify the specific cell types express-
ing these genes in the STAD tumor microenvironment, we
analyzed GSE134520 data and identified nine distinct clus-
ters after cell annotation (Figure 9(a)). Among the clusters,
we found that six lipid metabolism-related prognostic
genes were differentially expressed across different cells
(Figures 9(b) and 9(c)). The AKR1B1 gene was predomi-
nantly expressed in fibroblasts, dendritic cells, and CD8-T
cells, while the CD36 gene was mainly expressed in malig-
nant cells, myoblasts, and dendritic cells. The ABCA1 gene
was primarily expressed in dendritic cells, myoblasts, and

Table 2: Univariate and multivariate Cox regression analyses of clinical characteristics and risk scores in AGC.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

Age 291 1.022 (1.004-1.040) 0.018 1.030 (1.011-1.050) 0.002

T 291

T2 61 Reference

T3 148 1.234 (0.756-2.013) 0.400

T4 82 1.356 (0.792-2.320) 0.267

N 291

N0 83 Reference

N1 79 1.262 (0.754-2.112) 0.376 1.021 (0.536-1.946) 0.949

N2 66 1.311 (0.761-2.258) 0.330 1.071 (0.488-2.353) 0.864

N3 63 2.098 (1.265-3.479) 0.004 1.265 (0.572-2.796) 0.561

M 291

M0 271 Reference

M1 20 1.610 (0.841-3.082) 0.150

Sex 291

Female 110 Reference

Male 181 1.376 (0.934-2.027) 0.106

Grade 291

G1 6 Reference

G2 94 2.268 (0.312-16.507) 0.419

G3 191 2.558 (0.356-18.404) 0.351

Stage 291

Stage 1 26 Reference

Stage 2 99 1.264 (0.580-2.755) 0.556 1.509 (0.647-3.518) 0.341

Stage 3 134 1.637 (0.779-3.441) 0.193 1.658 (0.599-4.591) 0.330

Stage 4 32 2.831 (1.245-6.437) 0.013 3.253 (1.114-9.499) 0.031

Risk score 291 5.982 (3.232-11.075) <0.001 5.496 (2.903-0.406) <0.001
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mast cells, whereas the PRKD1 gene was predominantly
expressed in fibroblasts. The OSBPL1A gene showed high
expression in malignant cells, myoblasts, and fibroblasts,
while the FABP3 gene was mainly expressed in dendritic
cells. Our RNA-seq data verified the differential expression
of these genes in different cell types and provided further evi-
dence of their potential involvement in STAD carcinogene-
sis. To further elucidate the expression of AKR1B1, FABP3,
OSBPL1A, CD36, PRKD1, and ABCA1 in gastric cancer,
we first detect their expression in the human GC tissues
and paired normal tissues, and the results showed that the
mRNA levels of these six LMRGs were significantly higher
in tumor tissues compared with those in normal tissues by
qRT-PCR (Figures 10(a)–10(e)).

4. Discussion

GC remains a significant health problem with high incidence
and poor prognosis, especially for advanced GC. Despite
new advances in GC treatment, the 5-year survival rate in
China remains low due to the heterogeneity and complex

etiology of GC [29]. Biomarkers currently used to monitor
the prognosis of advanced GC, such as CEA, CA724,
CA199, CA125, and pepsinogen I/II, have limitations such
as poor sensitivity and specificity. It is also challenging to
predict the efficacy of immunotherapy [30]. Therefore,
there is a pressing need to establish an effective and rela-
tively accurate prognostic parameter and risk classification
method.

Recent studies have shown that metabolic reprogram-
ming plays a crucial role in the occurrence and development
of GC. Lipid metabolism, in addition to the well-known
Warburg effect, has also been shown to be essential [31].
Lipids, including fatty acids, phospholipids, and cholesterol,
can serve as an important energy source for cancer cells, an
essential component of the cell membrane, and also cyto-
kines to transmit signals [32]. Lipid metabolism disorders
occur in the entire process of GC, including precancerous
lesions to advanced GC. A variety of lipid abnormalities
are also vital risk factors for GC [10].

Lipid metabolism comprises lipid uptake, synthesis, and
oxidative decomposition, and changes in lipid biology are
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Figure 8: Analysis of drug sensitivity. Comparison of projected IC50 values and correlation of risk scores with projected IC50 values between
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involved in the invasion, metastasis, and death of malignant
tumors [33, 34]. For instance, CPT1A, a key enzyme of fatty
acid oxidation (FAO), promotes lymph node metastasis of
GC [35], and apolipoprotein C2 (Apo2) plays a significant
role in peritoneal metastasis of GC [36]. Ferroptosis, a
recently discovered form of regulated cell death, is insepara-
ble from lipid peroxidation [37]. Previous studies suggested
that iron death resistance is one of the causes of drug resis-
tance in advanced GC [38–40].

Our investigation unveiled distinct expression patterns
of LMRGs in AGC compared to EGC tissues, and these pat-
terns exhibited a close correlation with immune cell infiltra-
tion. Among the identified LMRGs, six were associated with
prognosis, enabling the construction of two molecular
subtypes based on their expression levels. Subtype C2, char-
acterized by high LMRG expression, exhibited a poorer
prognosis compared to subtype C1, characterized by low
LMRG expression. Aldo-keto reductases (AKRs), a signifi-
cant enzyme class present across various organisms, includ-
ing humans, play diverse biological roles encompassing
metabolism, lipid synthesis, and DNA repair. Within this
family, AKR1B1 has been implicated in gastric cancer pro-
gression, regulated by the binding of ZNF521 and EB1, pro-
moting proliferation, migration, and invasion of gastric
cancer cells [41]. AKR1BA induces cellular senescence in
subcutaneous adipose tissues, modulating cellular aging
through activation of the PI3K/Akt and p38 MAPK path-
ways [42]. OSBPL1A is a molecule that mediates cholesterol

metabolism. Current research on OSBPL1A is limited, but
existing studies suggest that it influences the production of
HDL-C in the liver and intestines in conjunction with
ABCA1 and also acts as a crucial prognostic factor in colo-
rectal cancer [43, 44]. The PRKD1 gene encodes a protein
known as protein kinase D1 (PRKD1), which belongs to a
significant class of signal transduction protein kinases. It
can modulate a multitude of cellular biological processes,
such as proliferation, apoptosis, cell polarity, cell-cell inter-
action, extracellular matrix adhesion, and cell cycle control,
through phosphorylation. PRKD1 profoundly affects the
gene expression in brown adipose tissue (BAT) and its dif-
ferentiation. Knockout of PRKD1 markedly reduced the
expression of Myf5 and MyoD genes in BAT [45]. FABP3
is a member of the fatty acid-binding protein (FABP) family,
also known as the cardiac-type FABP. It is a small molecular
weight protein consisting of a 15 kDa polypeptide chain,
functioning both in the cytoplasm and on the cell membrane
[46]. FABP3 is predominantly expressed in the heart and
skeletal muscles. It regulates lipid metabolism by binding
and transporting free fatty acids (FFA), facilitating the syn-
thesis and β-oxidation of triacylglycerol (TAG) [47, 48].
FABP3’s function is also associated with inflammatory
conditions, insulin sensitivity, and metabolic syndrome.
Overexpression of FABP3 has been linked to obesity, type
2 diabetes, and cardiovascular diseases [49]. Hence, FABP3
presents itself as a significant molecular target for regulating
lipid metabolism and metabolic diseases. CD36 is a
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Figure 9: Validation of the expression and role of lipid metabolism-related prognostic genes in STAD by single-cell RNA-seq. (a) In the
GSE134520 dataset, 23 cell clusters were obtained after dimension reduction, and each cell type was identified by marker genes. (b)
Violin plots of the expression profiles of 6 differential prognostic genes of lipid metabolism in different cells. (c) Distribution of 6
different lipid metabolism differential prognostic genes in different cells.
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transmembrane protein extensively expressed in various cell
types, with its encoding gene located on human chromo-
some 7q11.2. As a multifunctional protein, CD36 partici-
pates in several physiological processes, including lipid
metabolism, immune responses, cell adhesion, and signal
transduction. Its expression levels on the cell membrane
are intimately associated with the onset and progression of
numerous diseases such as cardiovascular diseases, meta-
bolic syndrome, and obesity [50]. In recent years, increasing
research indicates the significant role of CD36 in tumors. It
performs vital functions in tumorous cell lipid metabolism,
metastasis, and immune evasion [51]. Studies have revealed
that overexpression of CD36 is commonly observed in vari-
ous tumors and can regulate lipid uptake, oxidation, and

synthesis, thereby influencing the growth and migration of
cancer cells [8]. The metastasis of tumors is an essential fac-
tor affecting the prognosis of patients and may be a crucial
reason for the shorter overall survival of C2. The expression
levels of these six genes can reflect the prognosis of AGC
patients to some extent, and patients can be divided into
high-risk and low-risk cohorts. Herein, using single-cell
RNA-seq, we analyzed lipid metabolism-related genes in
STAD, identifying differential expressions across cell types.
Notably, AKR1B1, CD36, ABCA1, PRKD1, OSBPL1A, and
FABP3 showed varied expressions in specific cells, suggest-
ing their significant roles in STAD carcinogenesis, further
confirmed by elevated mRNA levels in tumor tissues via
qRT-PCR. Together, this risk feature shows high predictive
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Figure 10: The 6 LMRG expressions in gastric cancer tissue. qRT-PCR results showed that six LMRG genes were differentially expressed
between cancer and paracancerous tissues. (a) AKR1B1, (b) FABP3, (c) OSBPL1A, (d) CD36, (e) PRKD1, and (f) ABCA1 were highly
expressed in cancer tissues. The data are the mean ± SD of three independent experiments. ∗∗p < 0 01; ∗∗∗p < 0 001.
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value in terms of overall survival and may serve as an inde-
pendent prognostic indicator for patients with AGC.

To further clarify the internal association and difference
of the two newly discovered molecular subgroups, WGCNA
was performed according to C1 and C2 differential genes. In
the module most related to lipid metabolism phenotype, we
did enrichment analysis according to hub genes and con-
structed PPI network. Cell adhesion, biological adhesion,
extracellular matrix, structural molecule activity, cGMP
PKG signaling pathway, vascular smooth muscle contrac-
tion, vascular smooth muscle contraction, focal adhesion,
and other functions were enriched. This may suggest an
important reason that affects the prognosis of both [52].
Then, we constructed a GSEA according to the differential
genes of the two groups, in which the extracellular matrix
pathway was activated in C2 relative to C1, so we con-
structed a risk model based on six extracellular matrices,
including SDC3, MATN3, SERPINE1, P3H2, MMP16, and
VTN. This has significant prognostic value. Consistent
results were also obtained using data from the GEO data-
base. We can divide AGC into high-risk and low-risk
groups according to risk score. The DCA curve further
helps us to obtain better clinical static benefits. In addition,
we constructed nomogram by combining risk score with
TNM stage, grade, stage, gender, and age of tumor. In addi-
tion, the calibration chart shows that according to our
nomogram, the predicted 1-, 3-, and 5-year survival rates
are close to the actual situation. Therefore, the prognostic
characteristics of LMRGs can accurately predict the survival
outcome of AGC patients, enabling clinicians to easily esti-
mate the outcome and make individual prognosis and treat-
ment decisions.

Both GO/KEGG and GSEA seem to suggest that our
extracellular matrix plays an important role in the difference
between the two clusters. Tumor extracellular matrix is com-
posed of collagen, elastin, proteoglycans, and glycoproteins
and is used for the complex, interconnected macromolecular
network surrounding and supporting cells in organs and tis-
sues [53]. For example, fibroblasts (CAFs) in the extracellu-
lar matrix can promote the invasion and metastasis of GC
[54]. Extracellular matrix fibrillin 1 (FBN1) can also pro-
mote the development of GC through succinylation [55].
In conclusion, extracellular matrix can be used not only as
a regulator of tumor therapy but also as a target of tumor
therapy and also has important value for diagnosis and
prognosis [53].

As previously mentioned, in addition to the extracellular
matrix, immune cells also belong to an important part of the
tumor microenvironment. The tumor immune microenvi-
ronment is closely related to the clinical characteristics and
prognosis of GC [56]. In this study, we used the estimate
algorithm to score the tumor purity. We found that C2 with
poor prognosis had higher stromal score and immune score
than C1. This proves that its tumor purity is low and also
suggests that AGC with high expression of lipid metabolism
genes is more immunogenic. At the same time, the analysis
results of immune checkpoints also tell us that C2 has higher
expression than C1, which provides a possible basis for
immunotherapy. Studies have suggested that after PD-L1

blockade, FABPs can ingest more fatty acids, thereby
prolonging the life span of tissue resident memory cells
[57]. CIBERSORT also suggested that immune cell infiltra-
tion was significantly different between the two groups. Sug-
gesting a link between our lipid metabolism and immunity.
In fact, the relationship between lipid metabolism and tumor
immunity is complex and contradictory. For example, tissue
resident memory cells absorb fatty acids from the TME
through CD36 and FABPs to produce antitumor cytokines.
Conversely, high-dose fatty acids also cause effector T cell
exhaustion or stimulate PPAR-β in regulatory T cells and
fatty acid oxidation to mediate the immunosuppressive
response [58]. PD-1 inhibitors potentiated the antitumor
effect of CD36 blockade [59]. This proves once again that
lipid metabolism can be used as the target of antitumor.

In this study, we investigated the impact of lipid metab-
olism on AGC and identified two distinct molecular sub-
types through consensus clustering. These subtypes were
able to predict prognosis and immune status based on the
expression of lipid metabolism genes. Furthermore, we
explored the biological mechanisms underlying the differ-
ences between the two subtypes, analyzed the relationship
between time and lipid metabolism, and assessed their
impact on the prognosis of AGC. Finally, we developed a
nomogram that combines clinical information to accurately
predict the prognosis of patients with AGC.

In conclusion, our findings demonstrate that LMRG
subtypes are associated with prognosis and immune micro-
environment in patients with AGC. By utilizing bioinfor-
matic methods, we identified key genes in the network of
lipid metabolism pathways and confirmed the prognostic
significance and immunogenomic importance of LMRGs in
AGC. Our LMRG model may serve as a powerful tool for
predicting survival and guiding treatment in patients with
AGC.
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