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Air-writing is a growing research topic in the field of gesture-based writing systems. This research proposes a unified, lightweight,
and general-purpose deep learning algorithm for a trajectory-based air-writing recognition network (TARNet). We combine a
convolutional neural network (CNN) with a long short-term memory (LSTM) network. The architecture and applications of
CNN and LSTM networks differ. LSTM is good for time series prediction yet time-consuming; on the other hand, CNN is
superior in feature generation but comparatively faster. In this network, the CNN and LSTM serve as a feature generator and a
recognizer, optimizing the time and accuracy, respectively. The TARNet utilizes 1-dimensional separable convolution in the
first part to obtain local contextual features from low-level data (trajectories). The second part employs the recurrent algorithm
to acquire the dependency of high-level output. Four publicly available air-writing digit (RealSense trajectory digit), character
(RealSense trajectory character), smart-band, and Abas datasets were employed to verify the accuracy. Both the normalized
and nonnormalized conditions were considered. The use of normalized data required longer training times but provided better
accuracy. The test time was the same as those for nonnormalized data. The accuracy for RTD, RTC, smart-band, and Abas
datasets were 99.63%, 98.74%, 95.62%, and 99.92%, respectively.

1. Introduction

Touchless writing systems are becoming popular with the
advent of augmented reality (AR)/virtual reality (VR), espe-
cially when conventional writing is not possible or extremely
inconvenient. The emerging technique of AR/VR appears to
lead the next generation of interaction. However, the input
method of these technologies has not yet developed at its
mature level. Speech recognition can be the possible solu-
tion; nevertheless, it does not fit in a noisy environment or
location where privacy is important [1]. Conventional input
method varies across techniques such as mouse or keyboard.
However, gesture-based writing can be performed well. It
allows users to cooperate with an electronic device without
physical interaction; this is especially helpful during the
COVID-19 pandemic. In terms of gesture numbers, existing

gesture-based writing systems are limited [2–7]. Conven-
tionally, a specific combination of a gesture and a posture
symbolizes a number or character, but not all characters
are often represented. To overcome this issue, we introduce
a novel air-writing technique. It can be counted as complex
motion gestures. However, it can significantly express arbi-
trary character/text input for intelligent control systems.

Air-writing employs a finger or a specific device to write
a character or word in a virtual environment. Characters or
words are written in an imaginary box (a virtual window) by
moving the finger or device [8–14] creating a trajectory rep-
resenting a specific letter or number in the air. In contrast to
gesture recognition, air-writing enables a wide range of
interaction options; additionally, the user does not require
to memorize them. Alternatively, it can work as a natural
solution. It can also be used for wearable devices and
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egocentric cameras such as Microsoft HoloLens and Google
Glass. As writing is based only on the trajectory, it suffers
fewer spatial constraints and lacks haptic feedback, provid-
ing an unconstrained writing experience. Air-writing is sim-
ilar to pen-and-paper-based writing; the only difference is
the writing medium (air or paper). However, the bounding
box varies among users. Moreover, it is not easy to maintain
the same virtual window even for the same user. Users may
lose orientation in space due to the absence of visual and
haptic feedback. These issues can be resolved by applying
specific normalization/transformation techniques to the
temporal and trajectory data.

Various three-dimensional (3D) devices track trajecto-
ries effortlessly, particularly the Microsoft Kinect, Intel Real-
Sense, and Leap Motion. All have an elaborate application
programming interfaces (APIs); the user requires only min-
imal knowledge of tracking algorithms. Recently, some
researchers have been focusing on Wi-Fi [15, 16] and radar
[17–19] technology. The Kinect and RealSense are mid-to-
long-range devices; the Leap Motion is a short-range device
but affords millimetre-level accuracy. Thus, the Kinect and
RealSense find most applications on desktops; Leap Motion
is preferred for AR/VR [20, 21]. All these devices are excel-
lent in their specific purpose and platforms. Here, we focus
on PC-based midrange interaction; hence, Intel RealSense
camera is utilized.

Recognition is currently the most challenging task in the
field. However, deep learning-based recognition systems
afford excellent results without requiring feature generation.
Such networks include convolutional neural networks
(CNNs) and long short-term memory (LSTM). A CNN is
optimal for feature generation, whereas an LSTM is a gold
standard for sequential data processing. In this research,
we propose a versatile deep learning model that fuses both
CNN and LSTM features and achieves outstanding results.
The model was trained and tested using the publicly avail-
able RealSense trajectory digit (RTD) [22], RealSense trajec-
tory character (RTC) [23], smart-band [24], and Abas
datasets [25]. The variety of datasets proves that the pro-
posed model is invariant to a different dataset. The bench-
mark results verify that the model performs better than a
standalone CNN or LSTM network.

The rest of the paper is organized as follows. In Section
2, the background and related works are described. The
details of the RTD, RTC, smart-band, and Abas datasets
are discussed in Section 3. The proposed TARNet is
explained in Section 4. The experimental setup and results
are discussed in Section 5. Finally, Section 6 contains the
conclusion, summary, and future work.

2. Related Work and the Dataset of Air-Writing

Air-writing is a new form of writing; several novel somato-
sensory sensors and devices have recently emerged. Some
are simple and very cheap ($1) [26]; some are expensive
[14, 22, 27–29]. There are some special sensors based on
accelerometer [30–32], gyroscope [33], wearable gloves [34,
35], and wrist-worn devices [36–39]. Wobbrock et al. devel-
oped a $1 device that can easily handle under 100 lines of

code [26]. Most of the accelerometer-based research is con-
ducted with cheap accelerometer sensors equipped with
wireless communication [30, 31]. However, the easiest way
to access such a sensor is via a mobile phone [32]. Accuracy
improves when gyroscopic, motion, and acceleration sensors
are combined [33]. The support vector machine (SVM) was
first introduced to identify the gestures; later, the HMM was
applied to recognize sentences. However, the dataset con-
tains only 720 sentences from 9 participants. More sensors
increase the accuracy of trajectory information. However,
excessive sensors are burdensome for the user to employ in
real-life situations. Also, such devices are bulky and difficult
to design. Thus, some off-the-shelf ready-to-go devices have
been developed. An earlier version of these devices is H.P.
slate [40] and Wiimote [14]. These wearable devices were
difficult (and sometimes impossible) to handle. The recent
Kinect [27, 29, 41], RealSense [22, 23], and Leap Motion
[12, 21, 25, 28, 42, 43] devices are vision-based and very
user-friendly and do not require additional devices. The
RealSense camera is straightforward to ease.

Earlier air-writing recognition methods relied on hand-
crafted feature matching or classical machine learning-
based algorithms. The SVM [21, 29, 44] and hidden Markov
model (HMM) [8, 12, 14, 27, 28, 44] were the most widely
used machine learning algorithms requiring predefined fea-
ture generation techniques. Kumar et al. proposed SVM
for sign language recognition and achieved 63.57%; the
accuracy was improved then by applying the BLSTM algo-
rithm [21]. They collected 2240 sign language and 28 finger
writing sentences from 10 users. Similarly, Qu et al. pro-
posed a digit recognition system using SVM but added
dynamic time warping (DTW) for better accuracy [29].
The collected digit vocabulary was 6104 collected by 10 par-
ticipants. Amma et al. resolved the dataset issue by collecting
60,000 words from speech data [44]. The highest accuracy
was 83%. Fu et al. applied HMM algorithm and achieved
more than 86% accuracy [8]. A motion gesture concept
was introduced for uninterrupted data processing using
Leap Motion and HMM algorithm, which achieved more
than 98% recognition accuracy [12, 14]. In most cases, the
HMM was more accurate than the SVM. However, neither
was completely perfect.

The classical machine learning algorithm suffers from
recognition accuracy and is solved by recent state-of-the-
art deep learning-based algorithms. CNN [15, 16, 24, 42,
43, 45], LSTM [19, 42, 43, 46–49], and BLSTM [19, 21, 28,
50, 51] algorithms have pioneered air-writing and gesture
identification. Yanay and Shmueli employed a CNN algo-
rithm and achieved more than 83% accuracy from 21450
sample data [24]. Some researchers focused on technique
rather than the data or participants; hence, accuracy suffers
in some cases for the CNN algorithm [15, 16]. In contrast
to the accuracy, LSTM performs better for the low volume
of the dataset [19, 46]. Since the algorithms are designed
and developed for specific purposes and reasons, the standa-
lone module cannot get the full essence of the deep learning
features. To overcome this situation, we combined the CNN
and LSTM algorithms and TARNet, for better feature gener-
ation and detection. Recognition accuracy thus improved.
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Figure 1: Raw dataset samples. (a) An RTD dataset sample (digit “5”). (b) An RTC dataset sample (“A”). (c) A smart-band dataset sample
(“A”). (d) An Abas dataset sample (“A”).
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3. The Datasets

We used four air-writing datasets: the RTD [22], RTC [23],
smart-band [24], and Abas datasets [25]. The RTD and
RTC vision-based datasets were collected using an Intel
RealSense sr300 camera. The smart-band is a sensor-based
dataset collected using a smartphone and a wrist-worn smart
band. On the other hand, the Abas dataset is collected using
a Leap Motion device. Although visualization of air-writing
characters differs somewhat by how the data are collected,
the writing process is the same as the traditional handwriting
method.

3.1. The RTD. The RTD dataset is an air-writing digit data-
set collected by an Intel RealSense sr300 camera [22].
Graduate students aged between 23 and 30 were employed
to collect the dataset. There were 10 participants, and each
collected 2100-digit data. They were primarily male
(eight). The instructions were similar to those for box-
writing [12, 14]. Digits were stored as a sequence of coor-
dinates. The average trajectory length was between 13 and
265. Digits 4 and 1 exhibited the maximum and minimum
average lengths, respectively. However, the standard devia-
tion ranged from 15 to 27, indicating that the dataset was
consistent. The total RTD dataset size is 21,000, including
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Figure 2: Normalized dataset samples. (a) The RTD dataset for sample digit “5.” (b) The RTC dataset for sample character “A.” (c) The
smart-band dataset for sample character “A.” Normalization is not required in case of Abas dataset.
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train and test data. RTD raw data sample is shown in
Figure 1(a) (sample digit “5”).

3.2. RTC. The RTC is an extension of the RTD dataset con-
taining 26 English uppercase letters [23]. Ten graduate stu-
dents participated; 3,000 trajectory data were collected
from each. The sample total is 30,000, including test and
training samples. The average trajectory length ranged from
21 to 173. Characters M and C exhibited the maximum and
minimum average lengths, respectively. An RTC raw data
sample is shown in Figure 1(b) (sample character “A”).

3.3. Smart-Band. The smart-band dataset was collected by a
“Microsoft band 2” using the Samsung Galaxy S8 smart-
phone [24]. Accelerometer and gyroscope signals were
recorded during air-writing using a dedicated Android app
running on a smartphone. Motions were recorded by
smart-band sensors. Each sample provided a total of six dif-
ferent dimensions. There were 55 subjects (28 females and
17 males; 46 right-handed) and total 21450 samples. A raw
data sample is shown in Figure 1(c) (sample character “A”).

3.4. Abas Dataset. Abas dataset contains 22,000 and 8,000
samples for training and testing, respectively [25]. A Leap
Motion device was employed to collect the dataset contain-
ing a sequence of hand trajectory information. The 3D data

are then converted to the tile-based image matrix dimension
of 28 × 28. Hence, each sample data is a 784-size vector data.
There were 10 participants aged between 20 and 21 years
who participated in this project; each produced around
3,000 handwriting characters throughout a month. The sam-
ple data is shown in Figure 1(d). It is already normalized.

4. Proposed Air-Writing Recognition Method

This article proposes a unified general-purpose deep learn-
ing algorithm for air-writing recognition. The datasets used
are publicly available and were processed to feed the deep
learning model. Each dataset was divided into training and
test portions. Then, the network was designed using a fusion
CNN-LSTM algorithm, trained using the training datasets,
and a model generated to test unknown data. Finally, the
model was verified by examining the test datasets.

4.1. Dataset Normalization. The raw data collected for air-
writing from the sensor or camera is uneven due to its vir-
tual environment (shown in Figure 1); there is no pen-up
pen-down system. Hence, normalization is required (except
for the Abas dataset). To normalize the dataset, two predom-
inant techniques are used—nearest neighbour and root
point normalization. Root point normalization is simple
and easy to calculate. Equations (1) to (3) are employed.
As there is no virtual window, the trajectories are scattered.
Root point normalization transforms all trajectories to the
origin:

xi = x0 − xi, ð1Þ

yi = y0 − yi, ð2Þ
zi = z0 − zi: ð3Þ

Here, ½x0, y0, z0� and ½xi, yi, zi� are the initial and instan-
taneous points, respectively.

Nearest neighbour point normalization averages the
adjacent value from the trajectories. The purpose of the
nearest neighbour normalization is to transform the trajec-
tories to a human-understandable format. Equations (4) to
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Table 1: Technical specification of the hardware and the
development environment.

Context Specification

CPU Intel Core i5-7500 3.40GHz

Operating system Windows 10 professional, 64-bit

Memory 16GB

Environment Anaconda 64 bit

IDE Spyder

Programming language Python

Deep learning library TensorFlow, Keras
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(6) are applied for the nearest neighbour normalization.

xi =
1
n
〠
n

i=0
xi, ð4Þ

yi =
1
n
〠
n

i=0
yi, ð5Þ

zi =
1
n
〠
n

i=0
zi: ð6Þ

Here i and n refer to any individual point and the num-
ber of points considered over a trajectory, respectively. Con-
sider more points shrink the original shape; hence, it is
found that five or six numbers were optimal. In this experi-
ment, six points are considered.

The normalized datasets are shown in Figure 2, which is
visually far clear than Figure 1. Especially, dramatic changes
were found for the smart-band dataset. In Figure 2, all tra-
jectories are started from the origin that comes from the root
point normalization. Besides, the smoothness comes from
the nearest neighbour point normalization.

4.2. Separable Convolution Layer. In this work, a fusion of
CNN and the LSTM network is utilized. Due to the wide
use of CNN, different variants of CNNs are proposed. It is
mainly used for image processing and feature detection
[52]. A conventional CNN network is very expensive in
terms of resources and time, requiring massive calculations.
However, the recent depthwise separable convolution pro-
cesses allow efficient calculation and processing of one-
dimensional information and sequential data [53]. Separable
convolution features two steps; the first is depthwise convo-
lution and the second 1 × 1 pointwise convolution to con-
volve the channels.

Figure 3 shows a schematic diagram of the depthwise
separable convolution. A depthwise separable convolution
follows the same feature as spatially separable convolutions;
splitting the kernels into two smaller ones produces the same

result with lesser multiplications. The total multiplications
in the depthwise and pointwise convolution are H ×W × n
× f × f and H ×W × n, respectively. The principal advan-
tage of pointwise convolution is that the filter is the only
multiplicand lacking an extra dimension; hence, the calcula-
tion burden falls dramatically.

4.3. The LSTM Network. A recurrent neural network (RNN)
is widely used for time series predictions (activities, audio,
and text) [53]. An RNN is a generalization of a feedforward
neural network that uses memory to store local information.
Unlike feedforward networks, RNN uses internal memory
(known as the state) to process sequences of inputs. An
LSTM is a modified version of RNN that resolves the vanish-
ing gradient problem. It features input, forget, and output
gates, of which the most important are the forget and output
gates that define the data that should be removed and passed
to the output, respectively.

4.4. The TARNet Architecture. The proposed TARNet
exploits the advantages of both the CNN and LSTM net-
works. A CNN and an LSTM are used for feature extraction
and sequence recognition, respectively. The complete net-
work diagram is shown in Figure 4. The network features
an input, convolution, pooling, an LSTM unit, and dense
layers. The inputs are one-dimensional sequential data.
The input layer dimensions are set to the maximum lengths
of the trajectory sequences, which are 300, 800, 850, and 785
for the RTD, RTC, smart-band, and Abas data, respectively.
The first convolution layer features a filter of size 256,
followed by a max-pooling layer that downsamples the
CNN network. This reduces computational complexity and
cost. A filter of size 512 is used for the following convolution
layer (which again includes a max-pooling layer). The prin-
cipal purpose of CNN is feature generation.

The LSTM features two layers, and sizes are 256 and 512
for the first and second layers, respectively. Similar to the
previous convolution layers, max-pooling is used in the first
LSTM layer. An LSTM layer consisted of sigmoid, tanh,
pointwise addition, and multiplications. Flattening is
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performed before feeding the dense layer. The first and sec-
ond dense layer features 128 and 256 neurons, respectively.
The dense layer is fully connected and associated with the

ReLU activation function (7). It helps the network by remov-
ing the negative part and keeping only the positive value
from the neuron. A dropout rate of 0.4 is used in both dense
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Table 2: Character-wise performance comparison between different datasets and algorithms. The accuracies are in %.

Character RTC [23] Smart-band [24] Abas [25]
CNN [22] LSTM [22] TARNet TARNet MLP-Bp MLP-Rprop DBN-Bp DBN-Rprop TARNet

A 99.87 100 99.10 97.53 99.35 100 100 100 99.88

B 99.61 99.35 99.87 98.27 9286 99.68 99.03 100 100

C 99.74 99.87 99.87 98.27 94.81 100 99.35 100 99.88

D 100 100 99.86 77.77 92.88 100 98.71 100 99.88

E 99.74 99.74 99.61 98.02 92.51 100 99.35 100 99.76

F 98.71 99.22 97.94 97.53 97.73 99.68 99.03 99.35 99.76

G 99.48 99.74 99.87 97.77 77.67 100 98.38 99.68 99.88

H 99.87 99.87 99.87 97.16 90.29 99.68 99.68 99.68 99.88

I 99.60 99.73 100 98.14 90.58 97.40 95.45 98.38 100

J 100 100 99.91 96.04 96.74 100 100 100 99.76

K 99.87 99.87 99.87 95.67 94.48 99.03 98.70 100 99.64

L 100 100 100 97.40 99.68 100 100 100 99.88

M 99.73 99.47 98.86 98.51 91.53 99.67 99.02 99.67 100

N 99.48 99.48 99.74 98.02 98.38 99.35 99.35 99.35 99.40

O 99.74 99.87 99.87 97.16 95.45 99.03 98.38 99.35 99.52

P 99.35 99.35 99.48 94.07 95.44 99.67 99.67 100 99.64

Q 99.87 99.74 99.87 98.02 91.53 99.67 99.35 99.67 99.88

R 99.48 99.74 99.74 79.90 91.86 99.67 95.44 99.67 100

S 99.74 99.87 99.74 97.16 93.16 99.35 99.35 100 99.76

T 99.61 99.87 100 97.77 93.18 100 99.03 100 99.88

U 99.22 99.87 99.61 98.27 94.16 100 100 100 99.88

V 99.34 99.21 99.73 97.90 99.03 100 100 100 100

W 99.87 98.06 99.87 98.27 95.44 99.35 100 100 99.88

X 99.87 99.87 99.87 98.02 95.11 99.35 100 100 99.76

Y 100 100 100 95.06 98.05 99.35 99.67 99.67 100

Z 100 100 99.92 98.76 77.20 99.35 98.37 98.05 100
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Figure 7: Confusion matrix for the RTC dataset for the proposed CNN-LSTM network.
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Figure 8: Confusion matrix for the smart-band dataset for the proposed CNN-LSTM network.
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layers to prevent overfitting. Adam optimizer is used in this
network with a learning rate of 0.0005. The output layer is
variable here; the output size is 10, 26, 26, and 26 for RTD,
RTC, smart-band, and Abas datasets, respectively. To gener-
alize the results, the softmax activation function is employed
in the output layer (8). Softmax is a probabilistic method to
regularize an output.

f xð Þ =max 0, xð Þ, ð7Þ

σ Zið Þ = eZi

∑K
k=1e

Zk

: ð8Þ

Here, σ represents the softmax function. An input vector
Z is assigned to all classes by the multiclass classifier k.

5. Experimental Setup and
Performance Analysis

The experimental setup is straightforward and does not
require any high-end devices. The specifications are listed
in Table 1. An Intel Core i5 processor (clock speed
3.40GHz), Windows 10, and a 64-bit operating system were
employed to train the network. The main memory was
16GB. The popular deep learning-based library Keras ran
on top of TensorFlow. We employed the Spyder integrated
development environment (IDE) of the Anaconda system
to run the network. All code was written in Python. The
code is available on GitHub: https://github.com/shahinur-
alam/TARNet

The model was trained using RTD, RTC, smart-band, and
Abas datasets containing data on 20,000, 30,000, 21,450, and
30,000 trajectories, respectively. During training, we employed
10-fold cross-validation. Different batch sizes and iterations
are performed. However, a batch size of 256 is optimal for
the RTD, RTC, smart-band, and Abas datasets. The training
accuracies and losses are shown in Figure 5 (number of itera-
tions: 50). However, optimal accuracy was achieved within 15
iterations for all datasets. Figure 5(a) shows the training and
validation accuracies by iteration number. The validation
accuracy after the first step was almost 0.9. Figure 5(b) shows
the losses over the iterations. As for accuracy, the expected
outcome was found within 15 iterations. Note that the training
and validation accuracies follow the same curve; this indicates
network stability, fidelity, and minimal overfitting. Both accu-
racy and loss verify that the model is a good fit for both RTD,
RTC, smart-band, and Abas datasets.

The confusion matrices for the RTD dataset are shown
in Figure 6. For the RTD dataset, 0 and 9 were detected with
the maximum accuracy and 5 and 2 with the poorest accu-
racy because they are challenging to write, ambiguous, and
similar in shape.

Table 2 and Figure 7 show that the RTC dataset exhib-
ited uniformly good performance. The best results were
found for the character I, J, L, T, Y, and Z. All are distin-
guishable and unique characters. The worst result was that
for F. There were 14 false positives for R. This is because
of the similar writing patterns. During air-writing, the start
and endpoints are the same for F and R. Similarly, there
were three false-positive results for O. However, these results
are reasonable. All other characters were reliably detected.
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Figure 9: Confusion matrix for the Abas dataset for the proposed CNN-LSTM network.
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The false-positive rate was higher for the smart-band
dataset shown in Table 2 and Figure 8. However, usually,
accuracy was satisfactory. The highest false positives were
P (163), D (35), and T (12) for D, J, and K, respectively.
Except for character D, other results are satisfactory. A more
complex algorithm and a better normalization technique
might solve the problem.

In the case of the Abas dataset, the best result was
found for the character B, M, V, Y, and Z; the details
are shown in Table 2 and Figure 9. Some character shows
better result for DBN-Rprop than the proposed method.
However, the overall result is better than theirs (shown
in Table 3).

The character-wise performance of the TARNet is
shown in Table 2. We compared the method with previously
implemented CNN and LSTM networks [22]. Different algo-
rithms and normalization conditions were considered; the
TARNet afforded superior accuracy for all normalized
RTD, RTC, smart-band, and Abas data.

The overall accuracy of the RTD dataset for normalized
and nonnormalized for CNN [22], LSTM [22], CNN [43],
and proposed TARNet is 99.06, 99.17, 98.5, and 99.63 and
98.26, 96.68, 98.2, and 99.4, respectively. Similarly, the accu-
racy for the RTC normalized and nonnormalized is 97.73,
97.12, 97.3, and 98.4 and 97.71, 96.98, 97.64, and 98.74,
respectively. The accuracy is almost similar for CNN and
TARNet algorithms for RTC normalized data. However,
the accuracy significantly varies for nonnormalized data.
The CNN [22], LSTM [22], and CNN [43] accuracies for
the smart-band dataset were much lower, perhaps because
the data were noisy (Figure 1). The actual result is better
than CNN [22], LSTM [22], and CNN [43] networks,
because the dataset was modelled with the KNN-DTW algo-
rithm [24]. However, the TARNet algorithm still performed
well (95.62%). The normalized and nonnormalized data
accuracies were 95.62 and 80.72%, respectively. We found
that Abas Leap Motion dataset is very organized. Hence,
an excellent result is found. The accuracy of DBN-Rprop

Table 3: Performance comparisons.

Dataset Normalized Algorithm Accuracy

RTD [22]

Yes

CNN [22] 99.06

LSTM [22] 99.17

CNN [43] 98.5

TARNet 99.63

No

CNN [22] 98.26

LSTM [22] 98.68

CNN [43] 98.2

TARNet 99.4

RTC [23]

Yes

CNN [22] 97.73

LSTM [22] 97.12

CNN [43] 97.3

TARNet 98.74

No

CNN [22] 97.71

LSTM [22] 96.98

CNN [43] 97.64

TARNet 98.4

Smart-band [24]

Yes

CNN [22] 75.97

LSTM [22] 67.11

CNN [43] 73.17

CNN (KNN-DTW) 83.2

TARNet 95.62

No

CNN [22] 75.83

LSTM [22] 67.11

CNN [43] 75.45

TARNet 80.72

Abas [25] Normalization is not necessary

MLP-Bp 93.43

MLP-Rprop 99.59

DBN-Bp 99.05

DBN-Rprop 99.71

CNN [43] 79.15

TARNet 99.92
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was 99.71%; on the other hand, the proposed algorithm
achieved 99.92%. Abas dataset is a little different than the
trajectory dataset. Abas et al. used a special algorithm during
preprocessing to convert 3D trajectory data into a 2D binary
image so that it can be compared with the MNIST dataset
(Figure 1(d)). That is why normalization is not necessary
and has no impact on it.

6. Conclusion

In this work, a combination of CNN and LSTM named TAR-
Net is developed where the CNN and the LSTM are simulta-
neously used for feature generation and recognition,
respectively. As a result, the network is time-efficient and
exhibits high performance. Accuracy was verified using the
publicly available RTD, RTC, smart-band, and Abas datasets.
The benchmark result outperforms those of existing standalone
CNN and LSTM models. The accuracies were 99.63, 98.74,
95.62%, and 99.92% for the RTD, RTC, smart-band, and Abas
datasets. The overall accuracy is remarkable; however, some
digits and characters exhibited higher error rates because of dif-
ferences in writing styles. In the future, we will resolve these
issues. Also, more datasets will be collected and tested.
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