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Mobile devices (e.g., tablets and smartphones) have been rapidly integrated into the lives of children and have impacted how
children engage with digital media. The portability of these devices allows for sporadic, on-demand interaction, reducing the
accuracy of self-report estimates of mobile device use. Passive sensing applications objectively monitor time spent on a given
device but are unable to identify who is using the device, a significant limitation in child screen time research. Behavioral
biometric authentication, using embedded mobile device sensors to continuously authenticate users, could be applied to
address this limitation. This study examined the preliminary accuracy of machine learning models trained on iPad sensor data
to identify the unique user of the device in a sample of children ages 6 to 11. Data was collected opportunistically from nine
participants (8.2 ± 1.75 years, 5 female) in the sedentary portion of two semistructured physical activity protocols. SensorLog
was downloaded onto study iPads and collected data from the accelerometer, gyroscope, and magnetometer sensors while the
participant interacted with the iPad. Five machine learning models, logistic regression (LR), support vector machine, neural net
(NN), k-nearest neighbors (k-NN), and random forest (RF), were trained using 57 features generated from the sensor output
to perform multiclass classification. A train-test split of 80%–20% was used for model fitting. Model performance was
evaluated using F1 score, accuracy, precision, and recall. Model performance was high, with F1 scores ranging from 0.75 to
0.94. RF and k-NN had the highest performance across metrics, with F1 scores of 0.94 for both models. This study highlights
the potential of using existing mobile device sensors to continuously identify the user of a device in the context of screen time
measurement. Future research should explore the performance of this technology in larger samples of children and in free-
living environments.
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1. Introduction

Mobile devices (e.g., tablets and smartphones) have become
ubiquitous in the lives of children, with 78% of children
under the age of 8 having access to a tablet in their home

[1]. Tablets are favored by children, primarily because of
their interactive features, visual appeal, and access to a wide
range of media [2]. As children are spending increasingly
more time engaging with mobile devices, concerns have
been raised about the long-term implications of mobile
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device use for health and developmental outcomes [3–6].
These concerns have initiated research efforts to improve
current measures of mobile device use for the goal of better
understanding these links with health outcomes [7].

The introduction of mobile devices has substantially
impacted the ways in which children consume media, such
that children are more apt to use these devices sporadically
due to the portable nature of these devices [8–10]. Histori-
cally, screen time has most commonly been measured
through retrospective self-report or proxy-report [9, 10];
however, the introduction of on-demand and portable
devices warrants updated measures of screen time. Given
that high-frequency behaviors, such as checking a mobile
device, are challenging to report retrospectively [11], there
is a demand for objective measures that more proximally
capture mobile device use.

Passive sensing applications have been introduced as a
method to objectively monitor time spent on a specific
device [10]. Chronicle, an Android passive sensing applica-
tion, tracks a variety of metrics, including the duration, fre-
quency, timing, general application type, and application
status, by interfacing with Google API every 15 seconds.
While self-report methods are not sensitive enough to fully
capture all mobile device use, passive sensing applications
can address this limitation by producing highly reliable data
[8]. However, the critical limitation inherent to using passive
sensing applications is that they do not provide an indication
of who is interacting with the device at specific time points.
While this is of less concern in adult screen time research, this
limitation is critical in child screen time research where mobile
devices are often shared across individuals within a family [8].
In order to enhance the validity of passive sensing applications
for children, it is necessary to continuously track who is using
the device, in conjunction with themetrics provided by passive
sensing applications (e.g., duration, frequency, and timing).

A potential solution to address this limitation is leverag-
ing behavioral biometric authentication, an established field
of research within the field of cybersecurity. Behavioral
biometric authentication refers to using built-in mobile
device sensors (e.g., accelerometer and gyroscope) to con-
tinuously authenticate users through machine learning
models [12]. This technology exists on the premise that
different individuals have distinct movement patterns in
the ways that they interact with mobile devices [13]. Fea-
tures derived from the sensor output are fed into machine
learning models and then authenticate users of a device
over a selected window of time [14]. This field in cyberse-
curity has grown in recent years in an effort to improve
security on devices [15]; however, this technology has not
yet been applied to measurement of children’s mobile
device use, which has the potential to improve the accu-
racy of passive sensing and thereby fill a critical public
health need.

A necessary first step toward using biometric authentica-
tion technology to measure device use in pediatric popula-
tions is to train models using mobile device sensor data
collected in a sample of children. Therefore, the objective
of this study was to estimate the preliminary predictive accu-
racy of machine learning approaches trained on iPad sensor

data (accelerometer, gyroscope) to identify a unique user in
a sample of children ages 6 to 11.

2. Methods

2.1. Sample. Data for the current study was collected oppor-
tunistically from two existing semistructured physical activ-
ity study protocols, PATCH and Wearables for Kids (W4K).
The exclusion criteria of the first study, PATCH, included
the diagnosis of autism, pervasive development disorder, or
contraindications to exercise (e.g., orthopedic injuries and
heart conditions). Children were recruited through Face-
book ads, the University of South Carolina newsletter, and
referrals. The inclusion criteria of the second study, W4K,
were the ability to be physically active without an assistive
device, such as a wheelchair, while exclusion criteria included
the diagnosis of a condition known to affect heart rate (HR), a
neuromuscular disease, and/or the prescription ofmedications
known to affect HR. Children were recruited through after-
school programs and summer day camps of the greater
Columbia, South Carolina area, as well as through newslet-
ters, social media, and referrals.

For both PATCH and W4K, interested parents were
directed to complete an online survey to determine eligibility
and complete an online consent form. Consent was then
confirmed with the parent over the phone, and child assent
was provided directly before the protocol once the child
arrived. Families received a $50 gift card for participation
in PATCH and a $40 gift card for participation in W4K
upon completion of the study.

Nine participants, with 5 from the W4K study and 4
from the PATCH study, were included in this study. The
sample size of nine participants is justified for several rea-
sons: (1) As this is a preliminary proof-of-concept study,
this sample size was selected to demonstrate the initial
potential of applying this technology to the screen time
domain. (2) This sample size is consistent with the litera-
ture in the field of biometric authentication. Within the
field of biometric authentication, smaller sample sizes have
been used for the preliminary testing of model performance
in authenticating device users (e.g., 5–10 participants)
[16–20]. (3) The machine learning models used in this
study are trained to predict the child user at the 1-s level
(i.e., with a high degree of granularity); therefore, the
amount of data points per subject is large (see Table S4).
(4) The principle of cross-validation was applied in the
machine learning model development, such that models
were trained on 80% of an individual’s data and tested on
a different 20% of an individual’s data, thereby increasing
the robustness of the models to detect users even with a
relatively small sample size.

2.2. Protocol Description. The PATCH study physical activity
protocol, described in full detail elsewhere [21], took place at
the University of South Carolina, with the opportunistic data
of this study being collected between October 2022 and
December 2022. This 45-min lab-based physical activity
protocol was designed to have children engage in activities
ranging from sedentary to vigorous physical activity to

2 Human Behavior and Emerging Technologies



simulate free-living movement. The current study leveraged
the sedentary portion of the PATCH protocol, in which chil-
dren were interacting with iPads. As part of the protocol
(Table S2), there were six separate sedentary periods (for a
total of 35 min), in which children self-selected games
(e.g., Candy Crush Saga, Subway Surfers, and Pet Doctor)
or videos (e.g., PBS KIDS Video and YouTube Kids) on
iPads.

The W4K study physical activity protocol, described in
full detail elsewhere [22], took place at after-school pro-
grams, summer day camps, and the Public Health Research
Center at the University of South Carolina. The opportunis-
tic data of this study was collected between February and
March 2023. Children were equipped with a Cosmed K5
portable calorimeter, an ActiHeart monitor, a research-
grade accelerometer (ActiGraph GT9X), and two consumer
wearables (Garmin vivoactive, Apple Watch Series 7, and
Fitbit Sense). Similar to PATCH, the semistructured proto-
col was designed to engage children in activities across all
intensity levels (sedentary to vigorous, see Table S1). The
rest period (10 min) and sedentary activity (5 min) of the
W4K protocol were leveraged for the current project and
totaled 15 min. For the first sedentary activity, children
laid down and were instructed to either self-select a video
to watch or a game to play on the iPad for the 10-min rest
period. In the second sedentary activity, children self-
selected a video to watch or a game to play while seated
for 5 min.

For both the PATCH and W4K protocols, research assis-
tants recorded the start and end time of each activity of the
protocol to the 1-s level. Research assistants directly
observed participant use of the iPad and logged time on
the iPad to the second level.

2.3. Sensor Tracking Technology and Sensors Selected. Figure 1
presents a graphic abstract of the study methodology. Prior to
the start of each W4K and PATCH protocol, trained research
assistants activated the iOS application SensorLog (https://
apps.apple.com/us/app/sensorlog/id388014573). SensorLog is
an open-source application that leverages device APIs to con-
tinuously log sensor data from iOS devices at up to 100Hz.
This application can access a variety of built-in sensors and
data streams onmobile devices, including coordinates, speed,
altitude, accelerometer, gyroscope, magnetometer, gravity,
rotation, steps, distance, pace, cadence, and battery. The Sen-
sorLog application interface for the accelerometer sensor is
presented in Figure S2. The current study only gathered
data from the accelerometer, gyroscope, and magnetometer
sensors built into the iPad devices. The accelerometer
measures acceleration, which is the rate of change of the
velocity of the device, along three axes. The gyroscope
measures angular velocity, which is the rate of rotation
around the three axes. The magnetometer measures the
strength of the Earth’s magnetic field in reference to the
three axes of the mobile device. Both the accelerometer and
gyroscope have been widely used in research on user
authentication and identification [23–25].

For all PATCH participants, the sampling frequency was
set to 20Hz. For 3 of the W4K participants, the sampling

frequency was set to 100Hz, while for the other two W4K
participants, the frequency was set to 20Hz. Within the field
of biometric authentication, researchers have used sampling
frequencies from 1 to 100Hz; therefore, the sampling fre-
quencies of 20 and 100Hz are sufficient to capture move-
ment related to device usage [26–31]. The application was
set to record raw accelerometer data (X, Y , and Z axes) in
gravity, raw gyroscope data (X, Y , and Z axes) in radians/
second, and raw magnetometer data (X, Y , and Z axes) in
ẬμT units. On the SensorLog settings, the current study
selected to record unbiased user acceleration, altitude, grav-
ity, heading, magnetic field, and rotation, which provided
motion yaw, pitch, roll in radians, and motion quaternions
in the X, Y , and Z axes in R units.

2.4. Characteristics of Devices Evaluated. iPads (ninth gen-
eration with iOS 16.5.1) were selected for the following
reasons: (1) They have built-in sensors that capture accel-
eration, motion, and orientation. (2) Tablets like the iPad
are more likely to be shared across siblings or within the fam-
ily. (3) This same technology could be applied in mobile
devices such as iPhones, as the SensorLog iOS application is
available across iOS devices.

2.5. Data Preprocessing and Processing. Following the proto-
col, data were exported as a CSV which was then input to a
Python script for feature extraction and analysis. After data
were exported, the number of samples per time window
(1 s) was assessed to ensure full data coverage. A time win-
dow was removed if data samples within one second were
less than a quarter of the sampling rate (< 25 samples per
second (100Hz), < 5 samples per second (20Hz)). Eleven
time windows were removed due to insufficient data cover-
age. This represents 0.00096% of the data. Consistent with
previous studies of user authentication [25, 32–34], data
were mean aggregated to the 1-s level, and feature vectors
were calculated from each time window.

After data cleaning and preprocessing, a min–max nor-
malization technique was applied, which maps the feature
values into the range in [0,1] based on the min and max of
features. This technique is commonly done with analyses
in biometric authentication [35, 36] and particularly in anal-
yses using k-nearest neighbors (k-NN) machine learning
model [37, 38], as it has better performance than other nor-
malization techniques, such as z-score normalization [39]. A
scikit-learn package was used to perform this normalization
technique (https://scikit-learn.org/stable/modules/generated/
sklearn.preprocessing.MinMaxScaler.html) (Python v. 3.8,
Delaware, United States).

2.6. Feature Extraction and Selection. The goal of feature
selection in this study was to identify features that were dis-
criminating with respect to the way that the user interacts
with the device [14]. The limited biometric authentication
research in children has used features including the mean,
standard deviation, variance, minimum, maximum, root-
mean-square-deviation, skewness, and kurtosis of each data
stream (i.e., acceleration in X, Y , and Z axes), with high per-
formance in classifying the user [33]. Additionally, previous
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biometric authentication research in child populations has
used yaw, pitch, and roll (average, standard deviation, aver-
age deviation, root mean square, and minimum and maxi-
mum), with high authentication performance particularly
in maximum yaw, average yaw, and minimum yaw [40].
Pitch, yaw, and roll are the three dimensions of movements,
or rotational forces, about the X, Y , and Z axes, generated by
the accelerometer and gyroscope. Pitch is the rotation about
the X axis, yaw is the rotation about the Y axis, and roll is
the rotation about the Z axis. To calculate pitch, yaw, and
roll, quarternions first had to be calculated. Although the
SensorLog application output provides estimates for pitch,
yaw, and roll, Apple does not provide documentation for
how they are calculated. Therefore, to maximize reproduc-
ibility and transparency, these metrics were calculated using
freely available software (https://gist.github.com/phausa
mann/721fa3df0f8ef6f4f6f24b86fdde53c0). The calculated
pitch, yaw, and roll (mean, standard deviation, variance,
minimum, maximum, root-mean-square deviation, skew-
ness, and kurtosis) from the current study were used for
the full analyses. In line with previous biometric authentica-
tion research, the full feature set of this study additionally
included the mean, standard deviation, variance, minimum,
maximum, root-mean-square deviation, skewness, and kur-
tosis of each data stream. In total, 57 features were used to
train the models (see Table S3).

2.7. Model Training and Validation. The data was divided
into two parts: 80% for model training and 20% for model
testing, consistent with previous research [41]. The number
of data samples used for training and testing for each par-
ticipant is displayed in Table S4. Multiclass classification
was performed, which classifies each test sample into
more than two classes, in this case nine classes. In this
analysis, the multiclass model classifies at each second
whether the user was child A or child B or child C (of all
nine participants).

2.8. Machine Learning Models. Machine learning is a branch
of artificial intelligence that focuses on developing algo-
rithms capable of automatically improving their perfor-
mance through experience. By analyzing large amounts of
data, these algorithms identify patterns and relationships,
allowing them to make predictions or decisions without
explicit programming. Five popular machine learning
models, logistic regression (LR), support vector machine
(SVM), neural net (NN), k-NN, and random forest (RF),
were used in the current study. LR functions by predicting
the odds of an outcome [42]. LR has been used as a classi-
fier with sensor-based methods and works effectively in pre-
dicting the probability of different classes, making it a
reasonable selection for the current analysis [33, 43]. k-
NN is a supervised machine learning algorithm that uses
nearby data points to make predictions [44], and SVM is
a supervised machine learning algorithm that maps a line
(hyperplane) to optimize the distance between different
classes [45]. k-NN offers simplicity and speed without
assumptions about data (e.g., distribution of the data)
[44], while SVM excels in classification by finding an opti-
mal separating hyperplane, even by using kernels like the
radial basis function (RBF). SVM functions by mapping
data to a high-dimensional feature space and has been
applied to classification within the field of biometric
authentication [33, 46–48]. k-NN has also been largely
applied to biometric authentication [31, 49–53], given its
strength in the classification of data where the distribution
is not normally distributed [44]. RF is a popular supervised
machine learning algorithm that uses branched decision-
making through trees. More specifically, RF functions by fit-
ting several decision tree classifiers on subsamples of the
dataset and then averaging to optimize predictive accuracy
and reduce overfitting [54]. NN is a feed-forward neural
network that is made up of interconnected nodes that are
arranged in layers and is largely used for multiclass classifi-
cation problems [55]. RF and NN have both been used

Feature extraction

Logistic regression
Support vector machine
Neural net
k-nearest neighbors
Random forest

SensorLog application
collecting accelerometer and

gyroscope data from iPad

5 machine learning models
trained using selected

features for multi-class
classification of 9 participants

57 relevant features calculated
and extracted from sensor data

Figure 1: Graphic abstract of study methodology.
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widely in adult biometric authentication research using
mobile device sensors [49, 52, 56–60].

Hyperparameters are commonly used in machine learn-
ing as external configuration variables (e.g., nodes and
layers) to help in controlling the machine learning model
training [61]. For the selection of hyperparameters, grid
search was applied with 3-fold cross-validation using the
training dataset to choose the best parameters. The following
parameter ranges were set: parameter k = 5,10,100,200 for
k-NN, the complexity parameters c = 2−5, 2−4, , 24, 25 for
SVM and LR, the maximum depth of the tree d =
10,50,100 for RF, and the strength of the L2 regularization
term α = 10−1, 10−2,⋯, 10−5 for NN. The final best param-
eters determined by grid search are k = 10, c = 24, d = 100,
and α = 10−4.

2.9. Model Evaluation Metrics. The performance of the
models was evaluated using popular metrics: F1 score, accu-
racy, precision, and recall, for each participant following a
multiclass strategy. For all metrics, possible scores range
from 0 to 1, and values closer to 1 are better. The F1 score
combines the precision and recall scores of a model into a
weighted score. Accuracy is a common and straightforward
metric that measures the overall correctness of predictions
made by a classification model ((true positives + true nega-
tives)/all observations). Precision measures the positive pre-
dictive ability of a model (true positives/(true positives +
false positives)). Recall measures the ability of the model to
correctly identify all positive instances (true positives/(true
positives + false negatives)). The overall model performance
was evaluated as the average of the nine participants. The
goal in selecting the optimal model was to maximize F1
score, accuracy, precision, and recall. Lastly, confusion
matrices were also visually inspected to evaluate the perfor-
mance of the multiclass classifier, as these matrices compare
predicted observations to the ground truth. These confusion
matrices were additionally used to understand trends of mis-
classification in the models [62].

2.10. Feature Importance. Feature importance was evaluated
of all included features in the RF model using the Gini
importance. This impurity-based method for feature ranking
computes the importance of features by calculating the nor-
malized total reduction of the criterion introduced by that
feature [63]. Higher values on the Gini importance scale
indicate better performance, and the total importance of all
features sums to one.

3. Results

Demographic characteristics of the sample are presented in
Table 1. Given the similarity between the two semistructured
protocols and since this study leveraged data only from
the sedentary portion of those protocols, participants from
the PATCH protocol and the W4K protocol were ana-
lyzed together. As a sensitivity analysis, the difference in
performance when analyzed separately was assessed (see
Figure S1). The estimates produced when modeled with
the participants collapsed into one dataset versus analyzed

separately were similar, justifying the decision to analyze all
nine participants together.

3.1. Model Performance. The evaluation metric performance
for all machine learning algorithms is presented in Table 2,
showing the overall multiclass performance across all nine
participants. The best performing models were the RF and
k-NN classifiers, yielding overall classification accuracies of
0.94 (precision = 0 94, recall = 0 94). NN also was high per-
forming across all evaluation metrics, producing an F1 score
of 0.92. The lowest performing algorithms were SVM and
LR, with F1 scores of 0.85 and 0.75, respectively.

Classifier performance by participant is displayed in
Figures 2(a)–2(d).F1 score results are shown in Figure 2(a),
where the highest F1 score was achieved with both the k-
NN model and the NN algorithm on Participant 8 with a
score of 0.99. Accuracy results are displayed in Figure 2(b).
The best performing model when assessing accuracy was
achieved by k-NN in Participant 8 with a score of 0.99.
The worst performing model in terms of accuracy was LR
in Participant 2 with a score of 0.85. Figure 2(c) displays
precision results, with the best performing models achieved
with k-NN in Participant 8 and NN in Participant 8 with a
precision of one. A precision of one indicates that the model
has no false positives, meaning that it is never incorrectly
identifying Participant 8 when it is not Participant 8. The
lowest precision was found in the LR model for Participant
4, with a precision of 0.33. Recall results are presented in
Figure 2(d). The best performing models in terms of recall
were k-NN for Participant 8 with a recall of 0.99 and NN
for Participant 8 with a recall of 0.99. The worst performing
models in terms of recall were LR in Participant 2 with a
recall of 0.59 and LR in Participant 1 with a recall of 0.73.

A heat map confusion matrix representing the multiclass
classification results for RF is displayed in Figure 3. This
confusion matrix displays the predicted user compared to
the ground truth (the actual user of the iPad). In assessing
this confusion matrix, classification agreement was very high
across all participants (> 0.90), indicating excellent perfor-
mance. For Participant 8, the model correctly identified the
user against all participants, producing an accuracy of one.

Table 1: Demographics of the participating children (n = 9).

W4K PATCH

Sex n n

Female 4 1

Male 1 3

Race

Black 2 0

White 3 4

Ethnicity

Not Hispanic or Latinx 5 4

Hispanic or Latinx 0 0

Mean (SD) Mean (SD)

Age 9.2 (1.72) 7 (0.71)

Abbreviations: SD, standard deviation; W4K, Wearables for Kids.
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3.2. Feature Importance. The ranking of feature importance
using the Gini importance based on the RF model is dis-
played in Figure 4. The highest performing features were
maximum yaw, maximum roll, mean yaw, mean roll, and
minimum roll, with all five of these features each contribut-
ing over 0.05 in feature importance. The maximum yaw fea-
ture was the best performing at 0.24. Maximum roll had a
feature importance of 0.17, mean yaw had a feature impor-
tance of 0.12, and mean roll had a feature importance of
0.10. The features that performed most poorly were mini-
mum acceleration on the X and Z axes, root-mean-square
of pitch, and maximum pitch.

4. Discussion

The purpose of this proof-of-concept study was to test if
machine learning models trained on mobile device sensor
data could identify a unique user in a sample of children ages
6 to 11. This study demonstrated the initial potential of
applying biometric authentication to overcome the limita-
tions of objective mobile device use measurement. This
was done through data collected opportunistically during
two semistructured physical activity protocols. Using bio-
metric authentication in conjunction with passive sensing
applications (e.g., Chronicle) has the potential to improve

Table 2: Performance evaluation metrics averaged across all participants (n = 9).

F1 score Accuracy Precision Recall

Logistic regression (LR) 0.75 (0.13) 0.74 (0.04) 0.77 (0.18) 0.74 (0.08)

Support vector machine (SVM) 0.85 (0.07) 0.85 (0.02) 0.86 (0.08) 0.85 (0.09)

Neural net (NN) 0.92 (0.04) 0.92 (0.01) 0.92 (0.06) 0.92 (0.06)

k-nearest neighbors (k-NN) 0.94 (0.03) 0.94 (0.01) 0.94 (0.02) 0.94 (0.04)

Random forest (RF) 0.94 (0.02) 0.94 (0.01) 0.94 (0.03) 0.94 (0.03)

Note: Presented as evaluation metric (standard deviation).
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Figure 2: (a–d) Performance evaluation metrics by participant.
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the accuracy of current estimates of mobile device use in
children to better understand the interdependent relation-
ship between mobile device use and health outcomes.

The findings of this study highlight the strength of these
models trained on iPad accelerometer and gyroscope sensor
data in multiclass classification to identify a unique user
among nine participants. All evaluation metrics showed that
RF, k-NN, and NN models were good at classifying what
user was on the device. SVM and LR model performance
was lower, although it still performed moderately well across
all evaluation metrics.

While model performance was generally strong in this
preliminary study, there was variability in performance
among models. Both k-NN and RF performed comparably,
with the same estimates across all evaluation metrics when
averaged across all nine participants. The strength of the
RF model is consistent with the literature in adult user iden-
tification [50–52, 64, 65]. Indeed, RF consistently outper-
forms other models [31, 50–52, 64–66], achieving an F1
score as high as 99.7% [64] in one study that used acceler-
ometer, gyroscope, and magnetometer sensors for user iden-
tification in adults. Within the biometric authentication
literature, while k-NN also produces high evaluation met-
rics, it does not consistently outperform other models [31,
49, 52]. One study using the accelerometer and gyroscope
sensors from Android smartphones found that SVM and
NN actually perform better than in k-NN [49]. However,
SVM and NN models only performed marginally better,
achieving accuracies of 96.3% and 91.4%, respectively, com-
pared to the k-NN accuracy of 86.3%. These findings and

other literature support the idea that future work using this
technology in a similar context should opt to use the RF or
k-NN models. Future work is also necessary to identify fea-
tures and fine-tune models in a way that is optimal for dis-
tinguishing between users with similar behavior patterns. A
potential avenue for this line of work is to use long short-
term memory (LSTM), a machine learning approach that
can handle sequential data, as it learns long-term dependen-
cies across data [67]. This would be useful for user authenti-
cation because it is likely that the same child would be using
a mobile device over a given bout of time and training the
model with behavior from earlier in the bout would enhance
model performance. However, LSTM models are computa-
tionally intensive [68], which is why more parsimonious
techniques were used in this preliminary study.

The best performing features of the RF model in the cur-
rent study were maximum yaw, maximum roll, and mean
yaw. All of these features are derived from quaternions.
Yaw and roll are the rotation about the Y axis and Z axis,
respectively, which is measured through the accelerometer
and gyroscope sensors. These same features have been used
to identify child users through touchscreen gestures and
hand stability measured through accelerometer and gyro-
scope sensors [40]. Interestingly, our findings along with
previous research seem to highlight the importance of fea-
tures derived from movement about the Y axis. A key dis-
tinction between both previous studies that used features
derived from Y axis movement is that they aimed to identify
demographic characteristics (i.e., detect whether the user is a
child or an adult) [33, 40] whereas the current study is aimed
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Figure 3: Confusion matrix of highest performing model (random forest).
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at identifying the unique user in a sample of children. Of the
hand stability features included in a similar study, maximum
yaw, average yaw, and minimum yaw were the three most
important features. Similarly, another study that sought to
identify child users of a mobile device using accelerometer,
gyroscope, linear acceleration, and rotation sensors found
that maximum rotation around the Y axis, minimum rota-
tion around the Y axis, and mean rotation around the Y axis
were the three highest performing features [33].Although
those studies aimed to identify demographic characteristics
(i.e., age group), vertical axis movement appears to be a
key discriminating feature that defines how a child interacts
with a device.

Identifying the user of a given device is a critical need in
the field of public health research. The current literature
evaluating the impact of mobile devices on children’s health
is limited by its reliance on parent-report measures [69].
While passive sensing applications like Chronicle present a
viable way to objectively monitor the content and timing of
mobile device use, critically, this method cannot distinguish
who is actually using the device. This is a problem because
estimates show roughly 66% of families share devices [8].

The current study represents a necessary first step in
remedying this limitation, by applying existing biometric
authentication technology to a new context, namely, chil-
dren’s screen time measurement. This preliminary study
has demonstrated the potential of using this technology (in
conjunction with passive sensing applications) to gather
more accurate estimates of screen time. Specifically, we
found that motion sensors built into mobile devices can be
harnessed to distinguish between users, which indicates that
these methods are a promising avenue to further investigate
in a larger and more diverse sample.

The limitations of this study should also be considered
when interpreting these findings. While integrating data col-
lection into existing semistructured physical activity proto-
cols allowed for opportunistic data to be captured, there
are inherent limitations in this study design. First, there
may be differences between the W4K and PATCH protocol
that would impact the way in which the child interacted with
the device. However, these semistructured physical activity
protocols were run simultaneously within the same univer-
sity laboratory under very similar conditions. Also, as a
sensitivity analysis, the W4K participants and PATCH

0 0.05 0.1 0.15 0.2 0.25 0.3

Yaw_max

Roll_max

Yaw_mean

Roll_mean

Roll_min

Yaw_min

Y_mean

Pitch_min

Y_max

X_mean

Z_mean

Z_max

MAG_mean

Y_min

Pitch_mean

X_max

Pitch_max

X_min

Pitch_rms

Z_min

Gini importance

Figure 4: Ranking of top 20 features in highest performing model (random forest). Higher values on the Gini importance scale indicate
stronger contribution of that feature to the model performance. Abbreviations: MAG_mean: mean vector magnitude, Pitch_max:
maximum pitch, Pitch_mean: mean pitch, Pitch_min: minimum pitch, Pitch_rms: root mean square of pitch, Roll_max: maximum roll,
Roll_mean: mean roll, Roll_min: minimum roll, X max: maximum acceleration along the X axis, X mean: mean acceleration along the X
axis, X min: minimum acceleration along the X axis, Y max: maximum acceleration along the Y axis, Y mean: mean acceleration along
Y axis, Y min: minimum acceleration along the Y axis, Yaw_max: maximum yaw, Yaw_mean: mean yaw, Yaw_min: minimum yaw,
Z max: maximum acceleration along the Z axis, Z mean: mean acceleration along the Z axis, Z min: minimum acceleration along the Z axis.

8 Human Behavior and Emerging Technologies



participants were analyzed separately and the difference
between the full analysis for the nine participants and the
by-protocol analysis was negligible (see Figure S1).
Therefore, it is unlikely that differences in protocols
significantly impacted the results. Second, the game or
video being played/watched during the semistructured
physical activity protocols was not standardized. It is
possible that the models are only identifying movements
consistent with playing/watching a specific game/video and
not the distinct movement differences between each
participant. The specific game the child was watching or
whether they were watching a video was not recorded;
therefore, model performance cannot be compared across
the types of activity. However, children chose from a
specific selection of games (Candy Crush, Subway Surfers,
etc.), and it is likely that more than one child played the
same game. The variability in what children were doing
(playing a game, watching a video) is more representative
of how children would interact with the devices in a real-
world setting. Nevertheless, future research should examine
the strength of models in user identification when the
game or video is standardized. Third, two different
sampling frequencies were used to collect sensor data from
the iPads, with six participants using an iPad sampling at
20Hz and three participants using an iPad sampling at
100Hz. However, data were aggregated to the 1-s level;
therefore, this discrepancy in sampling frequency is
unlikely to impact model performance. Fourth, it is
possible that the models distinguished users based solely
on the orientation of the iPad when the participant was
holding it. Future studies can address this concern through
simulated free-living protocols in which participants
interact with the device for longer durations over multiple
time periods. Lastly, given the preliminary nature of this
study, data was only collected from nine participants. This
small sample is in line with similar preliminary studies and
sets the stage for future research with a larger sample to
provide a more generalizable and realistic representation of
how this can be deployed on a larger scale. Children may
interact with mobile devices differently in free-living
contexts; therefore, subsequent studies should also examine
the performance of this technology in a free-living application.

5. Conclusions

In sum, these findings highlight the potential of leveraging
built-in iPad sensors for user identification in children, with
promising preliminary results in a sample of nine children
ages 6 to 11. User identification through built-in mobile
device sensors, when combined with passive sensing applica-
tions, has the potential to improve the objective assessment
of children’s mobile device use. Mobile devices have quickly
changed the ways in which children interact with and engage
with digital media, and it is necessary to accurately measure
screen time in order to inform public health recommenda-
tions. Future research should aim to replicate these results
in a larger sample of children in both standardized lab-
based and free-living conditions.
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