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Fatty acid oxidation disorders (FAODs) are a group of rare, autosomal recessive, metabolic disorders with clinical symptoms from
mild types of fatigue, muscle weakness to severe types of hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and
rhabdomyolysis, especially during prolonged fasting, exercise, and illness. There are eleven diseases caused by thirteen FAOD
genes (SLC22A5, ETFDH, ETFA, ETFB, SLC25A20, ACADS, ACADM, ACADVL, ACAT1, CPT1A, CPT2, HADHA, and
HADHB) which are specific enzymes or transport proteins involved in the mitochondrial catabolism of fatty acids. We built
the LOVD database for FAODs focused on the Chinese population, in which we recorded all the reported variants by literature
peer review. In addition, the unpublished variant data of patients from Zhejiang province were also incorporated into the
database. Currently, a total of 538 unique variants have been recorded. We also compared the incidence of high-frequency
variants of certain FAOD genes among different populations. The database would provide the guidance for genetic screening
of Chinese patients.

1. Introduction

The mitochondrial fatty acid oxidation (FAO) is critical to the
supply of ATP in tissues with high energy consumption,
including the heart, skeletal muscle, and liver. Fatty acid oxi-
dation disorders (FAODs) are a group of rare, autosomal
recessive, metabolic disorders caused by defects of mitochon-
drial catabolism of fatty acids, resulting in accumulation of
characteristic fatty acids and carnitine derivatives. Diagnosis
is made through tandem mass spectrometry based on the
acylcarnitine profiling of dried blood spots in the newborn
screening. The combined incidence of FAODs from Australia,
Germany, and the USA is approximately 1 : 9,300 [1], while

the incidence is much lower in Asia such as Japan
(1 : 30,000), South Korea (1 : 111,000) [2], and China
(1 : 15,382) [3]. Most FAOD patients diagnosed by newborn
screening have no clinical symptoms but with elevation of
acylcarnitines. Some patients developed clinical symptoms
from mild types with fatigue, muscle weakness to severe types
with acute metabolic decompensation, hypoketotic hypoglyce-
mia, cardiomyopathy, hepatopathy, recurrent rhabdomyoly-
sis, and encephalopathy, especially during prolonged fasting,
exercise, and illness. Early diagnosis and timely treatment
can significantly improve their prognosis.

There are eleven diseases caused by the lack of specific
enzymes or transport proteins involved in the mitochondrial
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catabolism of fatty acids. In the cytosol, fatty acids are
activated to acyl-coenzyme A (CoA) esters before they can
be directed into different metabolic pathways. The mito-
chondrial import of acyl-CoAs requires the carnitine cycle
which is composed of L-carnitine and two acyltransferases,
carnitine palmitoyltransferases 1 and 2 (CPT1 and CPT2),
and carnitine acyl-carnitine translocase (CACT) (Figure 1).
Deficiency of this system leads to primary carnitine defi-
ciency (PCD), carnitine-acylcarnitine translocase deficiency
(CACTD), carnitine palmitoyltransferase 1 deficiency
(CPT1D), and carnitine palmitoyltransferase 2 deficiency
(CPT2D) [4]. Inside the mitochondrion, acyl-CoAs are
degraded by β-oxidation cycle consisting of four enzymatic
steps (Figure 1). Each cycle shortens acyl-CoA by the
successive removal of two carbon fragments [5]. Deficiency
of this cycle leads to short-chain acyl-CoA dehydrogenase
deficiency (SCADD),medium-chain acyl-CoA dehydrogenase
deficiency (MCADD), very-long-chain acyl-CoA dehydroge-
nase deficiency (VLCADD), and mitochondrial trifunctional
protein (MTP) deficiency. The ETF/ETFDH complex trans-
fers electrons from the dehydrogenases to the electron trans-
port chain, and the deficiency leads to multiple acyl-CoA
dehydrogenase deficiency (MADD). Furthermore, the β-
ketothiolase deficiency (BKTD) is caused by defects in the
metabolism of extrahepatic ketone bodies and the pathway
of isoleucine catabolism, which contribute to the last step of
fatty acid oxidation.

Since false positive results accounted for a fraction of
recalled newborns due to influence of maternal acylcarnitine
levels or the factors in the detection, the genetic testing is
golden standard of diagnosis for the diseases. To date, hun-
dreds of variants have been found in these FAOD-associated
genes. However, discerning the clinical relevance and the
pathogenicity of variants is still a challenge. Variant data-
bases are essential for both researchers and clinicians to
improve the knowledge of the diseases. Although there are
some variant databases for each FAOD gene in Leiden Open
Variation Database (LOVD), ClinVar, and Human Gene
Mutation Database (HGMD), most of the data were col-
lected from Caucasian and Ashkenazi Jewish populations.
The comprehensive Chinese-specific variant databases for
FAOD genes are still lacking. To address this gap, we present
a comprehensive variant database of FAODs, focused on the
Chinese population, recording the details of all the reported
variants through literatures, as well as unpublished data
from our laboratory. The database includes 538 variants in
total for 13 disease genes, of which 328 variants in our labo-
ratory and the majority of variants in literatures are found
through newborn screening. We also compared the inci-
dence of high-frequency variants of certain FAOD genes
among different populations. Thus, the database would pro-
vide the guidance for genetic screening of Chinese patients.

2. Methods and Results

2.1. LOVD of FAOD Variants in a Chinese Population

2.1.1. Data Collection and Database Content. The variant
data was collected from PubMed (https://www.ncbi.nlm

.nih.gov/pubmed) and Chinese core journals (http://www

.wanfangdata.com.cn/;http://mqikan.cqvip.com), as well as
the unpublished data derived from high-throughput sequenc-
ing data of patients of FAODs in Zhejiang province from our
laboratory. The variants are verified by Mutalyzer (https://
mutalyzer.nl/). The study was approved by the Ethical Com-
mittee of Children’s Hospital, Zhejiang University School of
Medicine (reference number: 2020-IRBAL-035). A total of
538 unique variants in 13 FAOD genes (SLC22A5, MIM#
603377; ETFDH, MIM# 231675; ETFA, MIM# 608053; ETFB,
MIM# 130410; SLC25A20, MIM# 613698; ACADS, MIM#
606885; ACADM, MIM# 607008; ACADVL, MIM# 609575;
ACAT1, MIM# 607809; CPT1A, MIM# 600528; CPT2, MIM#
600650; HADHA, MIM# 600890; and HADHB, MIM#
143450) are recorded (Table 1). The corresponding data was
displayed in http://www.genomed.zju.edu.cn/LOVD3/genes.

2.1.2. Database Structure. The database is a simple table, and
the left row shows the thirteen FAOD genes. Each gene links
to its own home database. For each variant, the exon, transcript
ID, nucleotide change, protein change, frequency in patients,
ACMG classification, and cited references are listed. Taking
SLC22A5 as an example (Figure 2), the homepage of the variant
database contains the basic information about the SLC22A5
gene in the general information section, and links to other
authoritative resources including Entrez gene, PubMed articles,
and Online Mendelian Inheritance in Man in the linkage sec-
tion. At the top of the web page are function buttons named
“Genes,” “Transcripts,” “Variants,” “Individuals,” “Diseases,”
“Screenings,” “Submit,” and “Documentation.” The remote
user can search the data and is encouraged to submit new var-
iants after registering as a submitter.

2.1.3. Data Submission. The LOVD-China database is avail-
able for public submission. Submitters should complete the
variant data and other information in detail. The authors
of this study are responsible for the control of each entry,
adding new entries, and updating existing variant data. More
detailed information can be found at http://www.genomed
.zju.edu.cn/LOVD3/docs/.

3. Discussion

The LOVD-China database was firstly built by Zhejiang
University as part of the International Human Variome
Project. It has already recorded comprehensive phenotype-
genotype datasets from China, including breast cancer [6],
colorectal cancer, long QT syndromes (LQTS) [7], and
hemoglobinopathies [8]. We integrated all the collectable
variants of FAODs in the Chinese population to establish
the LOVD-China database. The purpose of this study is to
display a comprehensive variation spectrum of FAODs on
the Chinese population. The database will not only assist
clinical geneticists in interpreting the genetic variation of
these genes but also aid genetic scientists in investigating
the function of the variants. By comparing and analyzing
the variation spectrum among different populations, we
can improve the knowledge of the ethnic-specific molecular
characteristics in different populations of certain diseases.
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3.1. Carnitine Cycle Defects. The primary carnitine defi-
ciency (PCD) is caused by defect of the organic cation
transporter OCTN2 on the cell membrane, which is
encoded by SLC22A5 gene and transports carnitine across
the plasma membrane. To date, more than 150 disease-
causing variants have been reported worldwide [9], and
our database recorded 103 variants occurred in the
Chinese population. The high-frequency variants, namely,
c.1400C>G (p.S467C), c.51C>G (p.F17L), c.760C>T
(p.R254X), c.338G>A (p.C113Y), and c.428C>T (p.P143L),
account for 33.1%, 18.3%, 7.3%, 4.8%, and 4.8%, respectively.
By analysis of the geographical distribution, c.1400C>G
(p.S467C) is the most common variant in Henan, Tianjin,
Shandong, Jiangsu, and Zhejiang provinces, while c.51C>G
(p.F17L) is most common in Guangxi, Hunan, and Hainan
provinces (Figure 3). c.760C>T (p.R254X) is the most
prevalent variant in southern part of China including Fujian,
Shanghai, Guangdong, Hong Kong, and Taiwan. However, it
is rarely reported in western countries. The previous studies
have revealed founder variants in several populations, such
as c.396G>A (p.W132X) and c.1400C>G (p.S467C) in Japan
[10] as well as c.95A>G (p.N32S) in the Faroe Islands [11].
However, c.396G>A (p.W132X) is only found in one case,
and c.95A>G (p.N32S) accounts for 0.75% in our database.
Moreover, in the United States, c.136C>T (p.P46S) is the
most common variant [9], while none has been found in
China yet.

The carnitine palmitoyltransferase 1 deficiency (CPT1D)
is mainly caused by variants in CPT1A gene which encodes
CPT1A, an integral outer mitochondrial membrane protein
catalyzing the transesterification of the acyl-CoA to acylcar-
nitine. Reports on Chinese patients with CPT1A deficiency
are limited. Only 28 different variants of CPT1A in Chinese
patients are identified in our database. c.2201T>C (p.F734S)

in exon 18 was the most frequent variant, accounting for
11.1%. This variant has not yet been found in other popula-
tions and could be a unique high-frequency variant of
Chinese populations. In the USA, c.1436C>T is the most
prevalent variant that up to 80% of native infants are homo-
zygous for the c.1436C>T in Alaska, but it has not been
reported in China [12].

The carnitine palmitoyltransferase 2 deficiency (CPT2D)
is caused by lack of CPT2 which reconverts the acylcarnitine
into an acyl-CoA inside the mitochondria and is encoded by
CPT2. 16 variants of CPT2 in Chinese patients are identified
in our database. c.1711C>A (p.P571T) was the most fre-
quent variant, accounting for 25%, followed by c.1055T>G
(p.F352C) and c.1102G>A (p.V368I), which accounted for
15.6% and 12.5%, respectively. It is reported that patients
harboring either c.1055T>G (p.F352C) or c.1102G>A
(p.V368I) are prone to influenza-associated encephalopathy
(IAE). These two variants are much more prevalent in the
Japanese and Chinese populations but have not been
reported in Caucasians [13].

The carnitine-acylcarnitine translocase deficiency (CACTD)
is caused by defect of CACT which catalyzes acylcarnitines to
transport across the inner mitochondrial membrane in
exchange of a free carnitine molecule. It is caused by variants
of SLC25A20 consisting of 9 exons. At present, there are 10
variants of SLC25A20 gene in our database. Aberrant mRNA
splicing appears to be a relatively common phenomenon in
SLC25A20 gene. c.199-10T>G in intron 2 is the most common
pathogenic variant in China, which accounts for 77.9%. This
variant occurred mostly often in Asia such as China, Vietnam,
Japan, and Thailand [14]. Hsu et al. found that c.199-10T>G
resulted in the omission of exon 3 or exon 3+4 and truncation
of CACT enzyme protein, which would lead to poor outcome
and high mortality [15].
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Figure 1: Mechanism of fatty acid mitochondrial catabolism.
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3.2. The β-Oxidation Cycle Defects. In humans, three
different acyl-CoA dehydrogenases, the very-long-chain,
medium-chain, and short-chain acyl-CoA dehydrogenases
(VLCAD, MCAD, and SCAD) carry out the metabolism of
acyl-CoAs from long- to medium- and eventually to short-
chain acyl-CoAs.

The short-chain acyl-CoA dehydrogenase deficiency
(SCADD) is caused by variants of ACADS gene. More than
70 ACADS variants have been reported worldwide, and most
are missense variants. 38 variants of ACADS in Chinese
patients are recorded in our database. It appears that
c.1031A>G (p.E344G) in exon 9 and c.164C>T (p.P55L) in
exon 2 have the highest detection rates in Chinese patients,
accounting for 34.6% and 15.6%, respectively. In the Amer-
ican [16], European, and Jewish [17] populations, c.625G>A
(p.G209S) and c.511C>T (p.R171W) are the most common
variants. The frequency of c.625G>A (p.G209S) was 30%
in patients with Spanish origin, 35% in Germany, 40% in
the Netherlands, and 22% in the United States [17], but only
3.9% in our database. The variation frequency of c.511C>T
(p.R171W) was 8% in Western Europe and 3% in the United
States [18], respectively, while it has not been reported in
China yet.

The medium-chain acyl-CoA dehydrogenase defi-
ciency (MCADD) is caused by variants in ACADM gene.
There are 56 variants of ACADM gene in our database.

c.449_452del (p. T150Rfs∗4) in exon 6 is the most common
variant in East Asian patients [19], including Japanese [20],
South Koreans [21], and Chinese (showed in our database).
However, c.985A>G (p.K329E) occurs most frequently in
Caucasian patients of Northern European descent [22], which
is not yet detected in China.

The very-long-chain acyl-CoA dehydrogenase deficiency
(VLCADD) is caused by variants of ACADVL. So far, about
260 variants have been reported worldwide. There are 93
variants of ACADVL gene in our database. c.1349G>A
(p.R450H) in exon 14 is the most common variant in
Chinese patients, accounting for 12.8%. Two variants,
c.664G>A and c.664G>C, leading to the same amino acid
change (p.G222R), account for 2.1% and 4.3%, respectively,
in our database and might only be reported in people with
Chinese origin.

Themultiple acyl-CoA dehydrogenase deficiency (MADD),
also called GAII, is caused by genetic defects in the electron
transfer flavoprotein ETF and its dehydrogenase ETFDH,
which are encoded by ETFA, ETFB, and ETFDH, respectively.
There are 143 ETFDH variants identified in our database.
c.250G>A (p.A84T), c.770A>G (p.Y257C), c.1227A>C
(p.L409F), and c.389A>T (p.L127P) account for 29.8%,
10.4%, 6.6%, and 4.9%, respectively (Figure 4). c.250G>A
(p.A84T) is the most common ETFDH pathogenic variant in
the southeast of China, including in Hunan, Shanghai,

Figure 2: Homepage of the SLC22A5 gene from our LOVD-China database for FAODs.
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Figure 3: The geographical distribution of three high-frequency variants of SLC22A5 in China.
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Zhejiang, Guangdong, and Hong Kong, especially in Fujian
and Taiwan [23]. It is also most prevalent in Southeast Asia
because of the migration and distribution of Southern Min
population in Southern China and neighboring countries
[24]. However, the c.250G>A (p.A84T) variant is not yet
reported in western countries. c.770A>G (p.Y257C) is the
most common variant in Northern China, including Beijing,
Shandong, Hebei, and Henan provinces. These results further
confirmed that there are different founder variants of ETFDH
variants between the southeastern and northern Chinese pop-
ulations [25]. Fu et al. [26] found that patients with severe
metabolic symptoms often presented with a wide spectrum
of ETFDH gene variants without high-frequency variants.
Reports on the Chinese patients with ETFA and ETFB variants
are limited; only 6 variants of ETFA and 2 variants of ETFB are
recorded in our database.

The mitochondrial trifunctional protein (MTP) is a multi-
enzyme complex that catalyzes the last three steps of long-
chain mitochondrial fatty acid β-oxidation. It consists of four
α and four β subunits encoded by the genes HADHA and
HADHB, respectively. In the Caucasian group, the variation
frequency of HADHA and HADHB is similar [27, 28]. How-
ever, in Asian patients, 80% patients harbor HADHB variants
[29]. Only two variants ofHADHA gene from one patient and
fourteen variants of HADHB gene are recorded in our
database. c.739C>T (p.R247C) in exon 9 and c.1175C>T
(p.A392V) in exon 14 are the rather common variants in
HADHB, accounting for 19.2% and 15.4%, respectively.

3.3. The β-Ketothiolase Deficiency (BKTD). The BKTD is
caused by defect in ACAT1 gene which encodes the
acetoacetyl-CoA thiolase (ACAT1). ACAT1 catalyzes the
metabolism of extrahepatic ketone bodies and isoleucine
and may also contribute to the last step of fatty acid
oxidation. At present, there are 28 variants of ACAT1 gene
in our database. c.622C>T (p.R208X) and c.1124A>G
(p.N375S) may be the high-frequency variants in general
Chinese patients with BKTD, accounting for 16.9% and
8.5%, respectively. The allele frequency of c.622C>T
(p.R208X) is especially high in Guangdong and Guangxi of
China, and it is also the main variant in Vietnam with a
frequency of 87.5% [30, 31]. The clinical manifestations of
c.1124A>G (p.N375S) were reported to associate with ner-
vous system damage [32]. In India, c.578T>G (p. M193R)
was the main variant with a frequency of 45% [33] but has
not been found in China yet.

In conclusion, the novel LOVD-China database for
FAODs will provide a great convenience for researchers
and clinicians to study, test, and diagnose FAODs caused
by variants on the involved genes. The database helps us
to improve molecular spectrum in Chinese population
and facilitates future genetic tests worldwide. Due to the
limitation of data collection or the lack of functional stud-
ies at protein level, so far, the connection between genetic
variants and clinical manifestations is not very clear yet. In
the future, if a new variant is identified, we will update the
database. We hope this database will be enriched with the
help of remote users and scholars that may submit their
own variants.
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