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Biallelic variants in ABCA4 cause Stargardt disease (STGD1), the most frequent heritable macular disease. Determination of the
pathogenicity of variants in ABCA4 proves to be difficult due to (1) the high number of benign and pathogenic variants in the
gene; (2) the presence of many rare ABCA4 variants; (3) the presence of complex alleles for which phasing data are absent; (4)
the extensive variable expressivity of this disease and (5) reduced penetrance of hypomorphic variants. Therefore, the
classification of many variants in ABCA4 is currently of uncertain significance. Here, we complemented the ABCA4 Leiden
Open Variation Database (LOVD) with data from ~11,000 probands with ABCA4-associated inherited retinal diseases from
literature up to the end of 2020. We carefully adapted the ACMG/AMP classifications to ABCA4 incorporating ClinGen
recommendations and assigned these classifications to all 2,246 unique variants from the ABCA4 LOVD to increase the
knowledge of pathogenicity. In total, 1,248 variants were categorized with a likely pathogenic or pathogenic classification,
whereas 194 variants were categorized with a likely benign or benign classification. This uniform and improved structured
reclassification, incorporating the largest dataset of ABCA4-associated retinopathy cases so far, will improve both the diagnosis
as well as genetic counselling for individuals with ABCA4-associated retinopathy.

1. Introduction

Biallelic variants in ABCA4 are the cause of Stargardt disease
(STGD1) [1], which is the most frequent heritable macular
degeneration [2, 3]. It is estimated to affect between
1:6,500 and 1:20,000 people [4-7]. The broad clinical spec-
trum includes classical STGD1 (onset between 10 and 40
years), cone-rod dystrophy (CRD) (onset before 10 years),
and late-onset STGD1 (onset after 40 vyears) [8, 9].

ABCA4-associated retinopathy (ABCA4-AR) is, therefore,
sometimes used as an umbrella term for all retinal pheno-
types associated with ABCA4. Due to the recessive nature
of the disease, the different levels of severity of variants,
and the large allelic heterogenedity, it is currently challenging
to genetically diagnose individuals with ABCA4-AR [10].
Furthermore, in determining the pathogenicity of an
ABCA4 variant, multiple other factors should be considered.
Several missense and synonymous variants are known to


https://orcid.org/0000-0001-7619-927X
https://orcid.org/0000-0003-0402-9006
https://orcid.org/0000-0003-3595-0797
https://orcid.org/0000-0001-6636-5537
https://orcid.org/0009-0003-1013-1717
https://orcid.org/0000-0002-5609-6895
https://orcid.org/0000-0003-3015-3545
https://orcid.org/0000-0003-4719-4124
https://orcid.org/0000-0002-4954-5592
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6815504

cause splicing defects in ABCA4 [11-13]; therefore, missense
variants at positions that are not conserved and synonymous
variants cannot simply be dismissed as likely benign. In
addition, reduced penetrance has been reported for multiple
hypomorphic variants in ABCA4 [14, 15] meaning that var-
iants with a relatively high allele frequency can still be path-
ogenic. One might expect that when two ABCA4 variants are
detected in a person with a STGDI-like phenotype, these
must be biallelic and causal. However, it is not uncommon
to find variants to be in cis in ABCA4, and multiple complex
alleles have been described [16-18]. Several studies indicate
that in cases with a single variant in ABCA4 or a single com-
plex ABCA4 allele, the disease-causing variant(s) can be
found in other genes [19-21]. Moreover, the effect of sever-
ity on protein function varies enormously among ABCA4
pathogenic variants. Two deleterious loss of function or null
alleles can cause legal blindness before the age of 10 [22-25],
whereas mild variants usually only cause disease when pres-
ent in trans with a null or severe allele. These mild variants
are associated with foveal sparing [14, 26], resulting in a late
age at onset. Furthermore, population statistics and family
studies revealed reduced penetrance for some of these vari-
ants [15]. The variant c.5603A>T (p.(Asn1868Ile)) has been
shown to cause visual impairment in ~5% of individuals
when in trans with a deleterious allele [14, 26], rendering it
a clear hypomorphic variant. This further illustrates the
complexity of ABCA4-AR and the difficulty of classifying
ABCA4 variants.

Consequently, many individuals with ABCA4-AR are
currently not genetically diagnosed, as only one pathogenic
variant or allele or biallelic variants of uncertain significance
have been identified. For these individuals, it is important to
know whether the variants they have are pathogenic. Cur-
rently, determining the pathogenicity of ABCA4 variants is
crucial as many clinical trials for gene-specific therapies
require individuals to have biallelic pathogenic alleles to be
eligible for participation. Moreover, as the carrier rate of
pathogenic ABCA4 variants in the general population is rel-
atively high [6, 27], carrier analysis is performed frequently
to determine the risk for future offspring, and in these cases,
it is important to know whether identified variants are
pathogenic.

Databases, such as the ABCA4-Leiden Open (source)
Variation Database (LOVD) [28] and ClinVar [29], provide
a wealth of information for ABCA4 variants including path-
ogenicity classifications. However, there is discordance
between databases. The ABCA4-LOVD reports that up to
85% of the variants could be pathogenic, whereas in ClinVar,
~40% of the variants are reported to be likely pathogenic,
which might be because many novel variants of uncertain
significance are reported in ClinVar. Both the ABCA4-
LOVD and ClinVar also allow for variable classifications as
they are submitter-reported. Therefore, due to the variety
of classification methods, it is difficult to truly assess and
compare the pathogenicity of different variants.

A broadly used pathogenicity classification system is the
ACMG/AMP classification as described by Richards et al. in
2015 [30]. This classification method incorporates informa-
tion such as type of variant, cis/trans criteria, variant fre-
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quency, phenotype, functional studies, segregation, and in
silico predictions. All information can be collected per vari-
ant and can easily be combined to a final pathogenicity clas-
sification with five tiers: benign, likely benign, variant of
uncertain significance (VUS), likely pathogenic, or patho-
genic. Since it is consistently used worldwide, it allows easy
interpretation and comparison of pathogenicity levels.

In order to increase the knowledge on the pathogenicity
of genetic variants in ABCA4, we collected all the data on
ABCA4-AR cases that have been published up to 31 Decem-
ber 2020 and uploaded these data into the ABCA4-LOVD.
Here, we adapted ACMG/AMP classifications incorporating
ClinGen recommendations specifically for ABCA4 and
applied them to all 2,246 variants present in the ABCA4-
LOVD.

2. Methods

We collected all papers published until 31 December 2020,
which contain likely pathogenic ABCA4 variants in individ-
uals with retinopathy by searching the following search
terms in PubMed:

(ABCAA4[All Fields] OR ((“Stargardt disease”[All Fields]
OR “Macula Lutea”[All Fields]) AND (“Genetics”[All
Fields] OR “mutation”[All Fields] OR “Sequence Analysi-
s”[All Fields] OR “gene panel”[TiAb]))) OR (“Retinal Dys-
trophies”[All Fields] AND (“mutation”[All Fields] OR
“Sequence Analysis”[All Fields] AND “gene panel”[TiAb]))

Reported variants were collected per patient as well as
additional available data such as gender, type of vision
impairment, ethnicity, geographical origin, age at onset, phe-
notype at onset, segregation data, consanguinity status, and
other remarks. The data were supplemented with data from
412 persons with ABCA4-AR from PreventionGenetics (a
division of Exact Sciences). All data have been uploaded into
the ABCA4-LOVD [28].

2.1. ABCA4-LOVD. All ABCA4 variant data from the
ABCA4-LOVD were downloaded on 5 April 2022.

2.2. Nomenclature. The annotation of all variants was done
according to Human Genome Variation Society (HGVS)
nomenclature guidelines where possible and is based on the
GRCh37 hgl9 genomic coordinates, gene location NM_
000350.3. All variants were checked using the Batch Validator
of the online VariantValidator tool [31]. Throughout the arti-
cle, the c. notation of variants is used, supplemented with the
p- notation, if available, when mentioned for the first time.

2.3. ACMG/AMP Classification. All variants were classified
according to ACMG/AMP variant classification guidelines
described by Richards et al. [30], the updated recommen-
dations from ClinGen [32], and the naturally scaled
ACMG/AMP point system of Tavtigian et al. [33]. Our
project group, consisting of experts on ABCA4 genetics
and ophthalmology, decided how best to apply the
ACMG/AMP categories and ClinGen recommendations
to ABCA4 variants, which is summarized in Figure 1 and
can be found in more detail in the Supplemental Materials
& Methods (available here).
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Subsequent and iterative applied ACMG/AMP classification steps
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FiGure 1: Applied ACMG/AMP classification steps incorporating ClinGen recommendations. (a) Initial steps taken to classify ABCA4
variants from LOVD based on ACMG/AMP classification. For each step, a number of points are awarded and the sum of the points is
used to determine the initial ACMG/AMP classification according to Tavtigian et al. [33]. GAM BAP gnomAD data are described in
Cornelis et al. [27]. (b) Based on the initial ACMG/AMP classification, subsequent and iterative classification steps were executed. #The
missense classification steps were not iterated to avoid circular reasoning. (c) The total sum of points lead to the final ACMG/AMP
classification: benign (<-7), likely benign (-6 to —1), VUS (0 to 5), likely pathogenic (6 to 9), and pathogenic (>10).

3. Results

3.1. Published ABCA4-AR data Cohort. After the removal of
likely duplicates, the collection of data contained variants from
10,391 likely ABCA4-AR individuals, of which 3,411 were
already reported in our 2017 study [34]. The cohort con-
tained 6,240 likely biallelic cases and 4,151 monoallelic

cases. Among these were 943 nonconsanguineous homozy-
gous cases and 127 consanguineous homozygous cases. A
total of 2,094 unique variants were identified in the cohort.
All data were uploaded to the ABCA4-LOVD database [28].

3.2. ACMG/AMP Classification. ACMG/AMP classifications
incorporating ClinGen recommendations were given to all
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TaBLE 1: Overview of the number of ABCA4 variants from LOVD
per ACMG/AMP categorization.

Initial (before

ACMG/AMP category iteration steps) Final
Benign 8 (0.4%) 12 (0.5%)
Likely benign 191 (8.5%) 182 (8.1%)

971 (43.2%)
498 (22.2%)
579 (25.8%)

804 (35.8%)
452 (20.1%)
796 (35.4%)

Variant of uncertain significance
Likely pathogenic
Pathogenic

variants from the published cohort as well as other ABCA4
variants from the ABCA4 LOVD (Table S1) and were
annotated with the predicted pathogenicity severity
according to Cornelis et al. [27] when available. Results of
each ACMG/AMP classification step can be found in
Tables S2-S10. After applying the noniterative classification
steps, 1,276 variants could be categorized as benign, likely
benign, likely pathogenic, or pathogenic. The iterative
classification steps increased this number to 1,442 (Table 1
and Figure 2(a)). Of note, at the end of the analysis, 49 null
variants reach “pathogenic” without the PVS1 criterium
and >10% of variants associated with ABCA4-AR are loss of
function confirming that the use of PVS1 flowchart is
correct [35].

3.3. Null Variants. In total, 752 null variants were reported.
Interestingly, 24 of these variants (3%) are still classified as
VUS after the application of the ACMG/AMP classification
system (Figure 2). Compared to other null alleles, the splice
predictions for these 24 variants indicated that alternative
in-frame splicing could occur or in-frame deletions were
predicted. Furthermore, their occurrence in the dataset was
too low to reach significance in the frequency analysis.

3.4. Missense Variants. A group of variants that are very dif-
ficult to interpret without an ACMG/AMP classification are
missense variants. Here, we were able to classify 431 mis-
sense variants as (likely) pathogenic and 33 missense vari-
ants as likely benign. At the end of the analyses, 627
variants were classified as VUS (Figure 2).

3.5. Synonymous Variants. Of the 86 synonymous variants,
five variants could be classified as (likely) pathogenic and
67 variants as (likely) benign (Figure 2).

3.6. Frequency Analysis. In the frequency analysis, 856 vari-
ants reached significant enrichment in the likely biallelic data-
set compared to the earlier described [27] genetic ancestry
matched (GAM) to biallelic affected persons (BAP) gnomAD
control dataset after correction for multiple testing with the
Benjamini-Hochberg method [36]. Interestingly, two vari-
ants, ¢.5603A>T and c.4253+43G>A ((p.[=,Ile1377Hisfs*
3])), were significantly enriched but had an odds ratio close
to 1 (1.10 and 1.49, respectively) without having 1 in the con-
fidence interval. This is a smaller odds ratio than 3, which is
generally considered by Richards et al. [30] as the minimal
odds ratio for variants with a modest Mendelian effect size.
This effect is likely due to the reduced penetrance of these var-

iants. Furthermore, 1,125 variants were not enriched in the
likely biallelic dataset but had an allele frequency below
0.0001 in all gnomAD populations and therefore got “PM2_
Supporting” evidence.

3.7. In Silico Analyses. SpliceAl scores were given to all
variants < 50 nucleotides apart from indels. When possible,
indels were given a CI-SpliceAl score. In total, 472 variants
had a (CI-)SpliceAl score > 0.2 and received PP3 as minimal
evidence. In parallel, REVEL and CADD scores were given
to missense variants and other variants, respectively. In total,
1,141 variants received “PP3_Moderate” evidence, of which
658 variants were missense variants. On the lower end of
the spectrum, 194 variants received “BP4_Moderate.” Inter-
estingly, of those 194 variants, only 6 were missense variants,
and 80 were other exonic variants (71 synonymous variants,
6 point deletions, and 3 in-frame duplications). Finally, 180
additional variants received PP3, and 48 variants received
BP4. Of note, when comparing CADD and REVEL scores
for missense variants based on the cut-offs as described by
Pejaver et al. [37], it was noticed that only 7 variants received
“BP4_Moderate” based on the cut-off of <0.183 for REVEL,
while 124 variants would have received “BP4_Moderate” if
the CADD score (cut-off of <17.3) would have been used
(Figure S1).

3.8. Segregating Complex Alleles. The dataset contained a
total of 65 unique alleles containing two or more variants
(also known as complex alleles) for which segregation had
been reported (Table S13). Of note, many individuals with
multiple ABCA4 variants were not reported to have
undergone segregation analysis, resulting in a relatively low
number of known complex alleles. The three most
frequently reported complex alleles were c.[1622T>
GC;3113C>T]  (p.[Leu541Pro;Alal038Val]), c.[5461-10T>
C;5603A>T] (p.[Thr1821Aspfs*6,Thr1821Valfs*13;Asn
1868lle]), and ¢.[2588G>C;5603A>T]  (p.[Gly863Ala,
Gly863del;Asn18681le]). Forty-three complex alleles were
reported only once. Furthermore, twelve complex variants,
including the three most frequent complex variants
mentioned above, reached a likely pathogenic
categorization based solely on the in trans analysis without
correction for allele frequency. The nine other likely
pathogenic complex allele variants were c¢.[302+68C>
T:4539+2028C>T], ¢.[769-784C>T;5603A>T], c.[983A>
T;3106G>A], ¢.[1715G>A;2588G>C], c.[3758C>T;
5882G>A], c.[4222T>C4918C>T], c.[4253+43G>A;6006-
609T>A], c.[4469G>A;5603A>T], and c.[4926C>G;5044
5058del] (for protein notations, see Table S13). Of note,
the pathogenicity scores of alleles with two variants do not
have to reflect that both single variants have the same
scores. Therefore, for reference, ACMG/AMP classifications
of the single variants contained in the complex allele are
given in Table S13 as well.

3.9. Frequent Pathogenic Variants. Two previously known
pathogenic variants met the BS1 criterium—an allele
frequency of >0.0163 in any gnomAD population—while
also reaching a (likely) pathogenic classification. The
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¢.5882G>A (p.(Gly1961Glu)) variant has an allele frequency
of 0.023 in the gnomAD Ashkenazi Jewish population. The
other variant is ¢.6320G>A (p.(Arg2107His)), which has an
allele frequency of 0.021 in the gnomAD African population.
For each gnomAD population, the three most frequent
(likely) pathogenic variants are reported in Table S11.
Interestingly, three relatively less well-known variants,
c.2791G>A (p.(Val931Met)), ¢.2971G>C (p.(Gly991Arg)),
and ¢.6320G>A, have a very high frequency (0.004-0.021)
in the gnomAD African population, while they are less
frequent in other populations. Similarly, in the Latino/

Admixed American population, variant ¢.872C>T
(p.(Pro291Leu)) with an allele frequency of 0.0038 was
found to be likely pathogenic. Given their high allele
frequencies, it will be of interest to investigate if they show
reduced penetrance, which might not be unexpected as all
of these variants were predicted to be mild [27, 38].
Previously reported frequent pathogenic variants and their
updated ACMG/AMP classification can be found in
Table S12. Interestingly, the variant c.2588G>C, earlier
described as “North European,” has a high frequency in
the gnomAD South Asian population as well.
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4. Discussion

In this study, we assigned ACMG/AMP classifications other
than VUS to 1,442 of 2,246 ABCA4 variants based on the
point system of Tavtigian et al. [33] and ClinGen recom-
mendations [32], which is more than twice as much as our
2017 classification [34]. Compared to the 2017 classification,
1,419 new variants were analyzed. From the previously ana-
lyzed variants, 210 variants got a more severe pathogenicity
score, and 142 got a more benign pathogenicity score. In
total, 93 variants are now classified as VUS, while the 2017
study assigned a different classification to them. These differ-
ences are likely the result of an increase in available knowl-
edge, such as information from new functional studies and
improved prediction software, as well as a more gene-
specific approach of applying the ACMG/AMP rules. In
total, 1,248 variants were classified as either likely pathogenic
or pathogenic, 804 variants were classified as VUS, and 194
variants were classified as either likely benign or benign.
Furthermore, Table S1 provides a framework that can easily
be adjusted to improve the AMP/ACMG classification of
ABCA4 variants when additional information becomes
available. This will be of important value to clinical
geneticists, individuals affected by ABCA4-AR, their family
members, and ongoing clinical trials for gene-specific
therapies.

4.1. The Limitation of ACMG/AMP Classification for ABCA4
Variants. The ACMG/AMP classification is designed in a
way that likely pathogenic and likely benign variants are
classified with >90% certainty. Although this is usually inter-
preted as a very reliable classification, it should be men-
tioned that when a large group of variants is classified,
some variants will receive an incorrect classification. Fur-
thermore, it is important to mention that the dichotomous
pathogenicity framework that the ACMG/AMP classifica-
tion system is based on currently categorizes a variant as
pathogenic if it can cause disease, even if it does not always
cause disease in trans with another pathogenic variant, such
as for the reduced penetrant variants that have been reported
in ABCA4 [15]. Recently, multiple studies have shown that
using the Mendelian model of traits being either recessive
or dominant limits the understanding of the role genetic var-
iants have in disease mechanisms that show a gradual or
varying effect [39, 40]. It has, therefore, been suggested to
expand the ACMG/AMP classification to a seven-tier system
including “predisposing” and “likely predisposing” as addi-
tional classifications [39]. The term “predisposing” may
indeed be a better classification for variants with reduced
penetrance than the dichotomous term “pathogenic.” How-
ever, for most variants, it will be difficult to determine
whether they show reduced penetrance, leading to a “Predis-
posing” classification, or not, leading to a “pathogenic” clas-
sification. Here, we annotated variants that have been
reported to show reduced penetrance (Table S1). Reduced
penetrance is reflected in both discordance in families with
ABCA4-AR as well as in a low odds ratio in enrichment
studies, e.g., below 28.1 in this study (Table S4). It may,
therefore, be advisable to be cautious for pathogenic and

likely pathogenic variants with an odds ratio <28.1 in
particular, as these might be variants with reduced
penetrance.

Interestingly, the well-known variant ¢.5603A>T, which
shows a very low penetrance when in trans with a severe
or null allele (approximately 5%) [14] is classified as a
VUS. This variant was long believed to be benign as it was
found to cooccur with the less frequent variant ¢.2588G>C
which was thought to be pathogenic [41]. However, in
2017, Zernant et al. identified that c.5603A>T is disease
causing, and ¢.2588G>C without ¢.5603A>T might not be
pathogenic [26]. It was clear that ¢.5603A>T was underre-
ported in the data from before 2017 because of this, since
¢.2588G>C has often been reported without ¢.5603A>T in
the literature. This means that the pathogenicity of
c.2588G>C is likely overclassified here, while that of
¢.5603A>T is likely underclassified. Similarly, the mild vari-
ant ¢.4253+43G>A, which shows a splice defect in vitro [16]
and shows reduced penetrance [42], is classified as VUS. A
possible explanation for this is that deep intronic variant-
s—including the ones reported by Braun et al. in 2013,
although to a lesser extent [43]—are underreported in liter-
ature, since targeted ABCA4 exon sequencing or WES were
the norm for a long time and additionally because their
interpretation can be challenging. Therefore, they are less
likely to reach significant enrichment in the dataset in step
PS4 and may be excluded from the PM3 criterium in trans
classification when they are not reported. Of note, new and
more affordable techniques are now increasing the number
of identified deep intronic variants [16, 44, 45], which will
likely improve the knowledge on their pathogenicity. How-
ever, since those techniques are not yet available everywhere,
it will be challenging to identify the pathogenicity of deep
intronic variants in all populations.

This illustrates the difficulty of recognizing frequent mild
pathogenic variants that show reduced penetrance. There-
fore, variants with an odds ratio between 1 and 3 should par-
ticularly be treated with caution, although reduced
penetrance has been predicted for variants with an odds
ratio up to 28.1 [15]. Larger studies are necessary to identify
whether these variants show reduced penetrance or that
instead, they may be in linkage disequilibrium with an
unknown pathogenic variant. The distinction between these
may in part be predicted by the variants identified in trans; if
the majority of those are severe, the variant or a variant in
linkage disequilibrium with it is likely mild and might show
reduced penetrance. However, if the variants in trans are not
consistently severe, then the variant is likely in linkage dis-
equilibrium with an unidentified (moderately) severe
variant.

Modifiers seem to play a role in ABCA4-AR and may
explain the occurrence of variants with reduced penetrance.
A sex imbalance has been reported for individuals having
mild likely reduced penetrant variants [15], and common
PRPH?2 variants and rare ROM1 variants have been reported
to act as modifiers of ABCA4-AR [46]. In three Dutch fam-
ilies with biallelic sibling pairs carrying c.5603A>T in trans
with another severe ABCA4 variant, not all siblings were
affected by ABCA4-AR [14]. Kjellstrom and Andréasson



may also have found two unaffected male individuals over 50
that had both ¢.5603A>T and a severe variant [47]. Modi-
fiers may similarly explain the reported high variety in the
disease course of ABCA4-AR [48]. Furthermore, modifiers
might also aggravate the ABCA4-AR phenotype of individ-
uals; Leber’s congenital amaurosis, causing severe vision loss
in the first year of life, is usually not associated with variants
in ABCA4, but Panneman et al. identified probands in which
two ABCA4 null alleles are hypothesized to cause Leber’s
congenital amaurosis [49] (Panneman, Koenekoop, Cre-
mers, unpublished data).

Another important point to raise for recessive disease is
that variants leading to a protein with reduced but not abol-
ished expression and/or function may not always be disease
causing, depending on the variant in trans. For example, if a
variant reduces protein expression to 45% compared to WT,
then its occurrence next to a null variant is likely disease
causing. A homozygous occurrence of this variant, however,
will lead to expression only just below that of an individual
with a null allele in addition to a WT allele. This may cause
a situation similar to a combination of a hypomorphic vari-
ant next to a null allele, where modifiers may determine
whether an individual will be affected or not. In other words,
considering that all ABCA4 variants are on a spectrum based
on residual protein function and resulting cellular dysfunc-
tion, it is likely that the combined severity of ABCA4 vari-
ants and modifiers together determine disease penetrance
and severity.

Furthermore, several studies indicate that pathogenic
variants in other genes can be responsible for ABCA4-AR
even when one likely pathogenic ABCA4 variant is present
in the patient. Disease-causing variants can sometimes be
found in genes like PRPH2 and PROM]I, but also in less
common genes associated with ABCA4-like diseases like
BEST1, CDHRI, CERKL, CNGA3, CRX, ROM1, and RPE65
[19, 20, 50].

4.2. Study Limitations. Apart from the aforementioned limi-
tation that the ACMG/AMP guidelines have when consider-
ing variants with a gradual versus a dichotomous
pathogenicity effect, there are a few more limitations to this
study. The first one is associated with PS4, the allele fre-
quency analysis. First, the GAM BAP control dataset used
is based on the reported ethnicity, which may not corre-
spond with the gnomAD population that individuals were
matched with, since ethnicity is a social construct and gno-
mAD populations are for a big part based on principal com-
ponent analyses [51], and it is unknown to what extent those
overlap. Second, for those patients without reported ethnic-
ity, the GAM BAP gnomAD has incorporated estimated eth-
nicity based on population statistics. However, there may be
a bias in the ethnicity of patients who are able to either
afford healthcare, who have the option to take part in a
study, or who feel safe to take part in a study since, for exam-
ple, historic transgressions have been made against Black
research participants [52]. Finally, as labs that study
ABCA4-AR and report individuals with ABCA4-AR are
unequally distributed over the world, a bias in the genetics
of subpopulations of those regions could occur. Therefore,
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it is likely that population stratification will have affected
the results of the allele frequency test. In order to improve
healthcare for everyone, it is, therefore, important that rare
genetic variants in individuals with underreported genetic
ancestry in literature are studied more to improve the
knowledge on all genetic variants, and that variants with a
high-frequency difference between populations are investi-
gated more closely to study their effect since differences in
identified variants and numbers of ABCA4-AR cases
between different ethnicities have been reported [53]. Cur-
rently, both genetic and disease data of white individuals
with ABCA4-AR are overrepresented, creating an imbalance
in understanding of the genetic cause of ABCA4-AR and
treatment options between these individuals and individuals
of color with ABCA4-AR.

Moreover, based on the final classification, 298 total var-
iants from the biallelic dataset (2.3%) are likely benign or
benign. This means that up to 298 cases from this dataset
are not actually known biallelic, which might indicate that
those cases are not actually ABCA4-AR cases, which could
create a bias in the enrichment analysis for the variants pres-
ent in trans.

Furthermore, the ACMG/AMP guidelines and recom-
mendations warn for the use of functional studies. We
indeed encountered that a variant, ¢.4539+2028C>T
(p.[=,Argl514Leufs*36]), which likely is a pathogenic vari-
ant based on genotype-phenotype correlations [43], shows
a higher percentage of WT RNA in patient-derived retinal-
like cells than expected [54]. We decided to remove this data
point from the dataset as an outlier in the classification
based on functional studies in step BS3. In addition, other
variants, e.g., €4539+2001G>A (p.[=,Argl514Leufs*36])
and ¢.1937+435C>G (p.[=,Ser646Serfs*25]), show a rela-
tively high percentage of WT RNA production, 75% and
55%, respectively, in patient-derived retinal-like cells [54]
and midigene assays, respectively [16], while genotype-
phenotype correlations show that these variants are likely
pathogenic [43, 55]. This indicates that other variants could
show a similar pattern, meaning that intronic variants caus-
ing a relatively high amount of WT RNA may nevertheless
be pathogenic. Therefore, results from midigene assays and
patient-derived retinal-like cells should be interpreted with
caution. However, since most variant results seem to corre-
late with their pathogenicity, BS3_Supporting was deemed
to be of proper evidence strength.

In addition, in the use of in silico predictions, the CADD
score was used for nonmissense variants. However, the
applied cut-offs were based on the study of Pejaver et al.
[37] in which only missense variants were studied. Further-
more, when comparing REVEL and CADD scores for
ABCA4 missense variants, CADD scores seem to lead to a
more benign category (Figure S1). Only one variant that
got PP3_Moderate because of its REVEL score would have
gotten BP4_ Moderate if CADD would have been used.
However, since REVEL is specialized in scoring missense
variants and as it outperformed CADD in two studies [37,
56], the REVEL scores were considered to be more
trustworthy. Therefore, we decided to increase the range of
CADD scores leading to no in silicoevidence score from
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22.7-25.3 to 20-25.3 to avoid incorrectly classifying in-frame
insertions/deletions, noncanonical splice variants, and
synonymous variants as benign since 20 is often used as a
cut-off between a benign and a pathogenic indication. In
the final categorization, this led to four variants being
categorized as likely pathogenic or pathogenic instead of a
lower category.

Finally, it should be mentioned that variant classification
is, and should be, dynamic. Since the initial ACMG/AMP
guidelines were published in 2015 [30], new insights have
led to many recommendations to improve the classification
system [32, 33, 37, 39]. With the increasing knowledge on
genetic disease and improving strategies to understand vari-
ant effects, it is, therefore, important to regularly incorporate
evolving variant classification strategies.

4.3. Future Scope. Finally, the ABCA4 variant dataset ana-
lyzed here mostly stems from 421 peer-reviewed publica-
tions as well as data from PreventionGenetics (a division of
Exact Sciences). In the future, it would be very valuable to
include variant data collected in all academic and nonaca-
demic diagnostic centers worldwide. This will be challenging
as privacy rules may prevent data sharing and differences
between rules in different countries likely create a bias in
the data. Furthermore, data currently existing in different
online databases may show overlap and are not all curated.

With the advent of novel therapies, it is essential to have
an accurate genetic diagnosis, which emphasizes the impor-
tance of the classification of variants and proper guidelines.
ABCA4 variant classification is challenging due to the higher
mutation frequency, presence of complex alleles, and hypo-
morphic variants with reduced penetrance. The adapted
ACMG/AMP classifications provided in this study, in com-
bination with the earlier established severity assessments
for ABCA4 variants, will facilitate the interpretation of diag-
nostic results for ABCA4-AR, the most common recessive
retinal disease.
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classifications are based on the point system as described by
Tavtigian et al. [33]. In short, supporting, moderate, strong,
and very strong evidence is combined into a score where each
type of evidence gives a score of 1, 2, 4, or 8, respectively,
where pathogenic evidence gives a positive score and benign
evidence gives a negative score. The resulting total score per
variant results in a benign (<-6), likely benign (-1--6), VUS
(0-5), likely pathogenic (6-9), or pathogenic (>9) classifica-
tion. Table S2: ACMG/AMP classification step PVS1 Null var-
iants. Table S3: ACMG/AMP classification step PM6 de novo
variants. Table S4: ACMG/AMP classification step PS4 variant
frequency and use of control populations. Table S5: ACMG/
AMP classification step PM4 protein length changes due to
in-frame deletions/insertions and stop losses. Table S6:
ACMG/AMP classification steps PP3 and BP4 computational
(in silico) data. Table S7: ACMG/AMP classification step BP7
synonymous variants. Table S8: ACMG/AMP classification
steps BS1 and PM2 variant frequency and use of control pop-
ulations. Table S9: ACMG/AMP classification steps PS1 and
PMS5 Same amino acid change and novel missense at the same
position. Table S10: ACMG/AMP classification steps PS3 and
BS3 functional studies. Table S11: three most frequent (likely)
pathogenic variants per gnomAD population. Table S12: pre-
viously reported frequent pathogenic variants based on litera-
ture. Table S13: published segregating complex alleles. Figure
S1: in silico comparison of CADD and REVEL for missense
variants in ABCA4. In silico comparison of ABCA4 missense
variants. CADD PHRED values are plotted against REVEL
values. Cut-off values between “BP4_Moderate” and “BP4,”
and between “PP3” and “PP3_Moderate” are shown in green
and red, respectively, vertically for CADD scores and horizon-
tally for REVEL scores. Overall, it can be observed that the var-
iants reach a higher category for REVEL than for CADD.
Figure S2: correlation between variant F-indexes and age of
onset in patients. Correlations between ABCA4 variants’ F-
index and the corresponding log 10 and square root trans-
formed age at onset for homozygous configuration (A) and
compound heterozygous configuration with a severe variant
(B). (Supplementary Materials)
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