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Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disease affecting approximately two per 100,000 individuals
globally. While there are many benefits to offering early genetic testing to people with ALS, this has also led to an increase in the
yield of novel variants of uncertain significance in ALS-associated genes. Computational (in silico) predictors, including REVEL
and CADD, are widely employed to provide supporting evidence of pathogenicity for variants in conjunction with clinical,
molecular, and other genetic evidence. However, in silico predictors are developed to be broadly applied across the human genome;
thus, their ability to evaluate the consequences of variation in ALS-associated genes remains unclear. To resolve this ambiguity, we
surveyed 20 definitive and moderate ClinGen-defined ALS-associated genes from two large, open-access ALS sequencing datasets
(total people with ALS = 8,230; controls = 9,671) to investigate REVEL and CADD’s ability to predict which variants are most
likely to be disease-causing in ALS. While our results indicate a predetermined pathogenicity threshold for REVEL that could be of
clinical value for classifying variants in ALS-associated genes, an accurate threshold was not evident for CADD, and both in silico
predictors were of limited value for resolving which variants of uncertain significance (VUS) may be likely pathogenic in ALS. Our
findings allow us to provide important recommendations for the use of REVEL and CADD scores for variants and indicate that
both tools should be used with caution when attempting to evaluate the pathogenicity of VUSs in ALS genetic testing.

1. Introduction

Amyotrophic lateral sclerosis (ALS; [MIM: 105400]) is a
neurodegenerative disease characterized by progressive mus-
cle atrophy, weakness, dysarthria, and dysphagia, reflecting
adult-onset upper and lower motor neuron degeneration
[1]. ALS affects approximately two per 100,000 individuals
worldwide, of which 5-10% of cases present with a known
family history of disease [1]. Notably, heritability estimates
for ALS are high [2], and mutations known to cause the dis-
ease in patients with a family history, including pathogenic
variants in C9orf72 (recurring hexanucleotide repeat
expansion; [MIM: 614260]), SOD1 [MIM: 147450], TARDBP
[MIM: 605078], and FUS [MIM: 13707], have been frequently

observed in apparently sporadic patients as well [3–5]. Due to
the increasing knowledge of the genetic architecture of ALS,
expanding clinical genetic testing beyond those with a family
history of disease, as has been the conventional approach, to
ensure that all people with ALS carrying clinically actionable
variants are identified, has been proposed [6]. Genetic testing
is now considered an important tool in the clinical care of peo-
ple with ALS, as specific genetic profiles may offer early and
accurate diagnosis and access to clinical trials [7–9].

Recent advances in next-generation DNA sequencing
(NGS), which encompasses targeted gene panels, exomes,
and genome sequencing, have allowed rapid and inexpensive
genetic sequencing of people with ALS [10]. Yet, accurate clas-
sification of variant pathogenicity is a significant challenge for
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all diseases, especially late-onset disorders exhibiting incom-
plete penetrance. Variant classification typically follows the
American College of Medical Genetics and Genomics
(ACMG) pathogenicity classification guidelines which rely
on multiple lines of distinct evidence, such as functional
experimental evidence, minor allele frequency in healthy
populations and relevant disease cohorts, and computational
(in silico) predictors [11]. While some variants can be confi-
dently predicted using these criteria to be either pathogenic
or benign, in many cases, clinical and laboratory data can be
sparse or even conflicting, and as a result, many nonsynon-
ymous variants—particularly missense variants—are classified
as variants of uncertain significance (VUS). Consequently,
VUSs are rapidly accumulating in ALS-associated genes, as
shown by genetic testing of known genes in ALS cohorts hav-
ing identified VUSs in 15-25% of patients [12–15].

Given the practical limitations of experimentally validat-
ing all variants as part of an interpretation workup, compu-
tational tools that can accurately predict the pathogenicity of
rare variants are often cautiously applied. The incorporation
of in silico predictors in genetic variant classification was
outlined in 2015 by the ACMG, which stated that the lowest
level of evidence for pathogenic (PP3-supporting) or benign
(BP4-supporting) could be assigned if supported by multiple
lines of computational evidence [11]. In silico evidence
must then be combined with other lines of evidence to
classify the variant as being pathogenic, benign, or of
uncertain significance.

Many in silico predictors have been developed for evalu-
ating PP3/BP4 for missense, splice site, or noncoding vari-
ants. Rare Exome Variant Ensemble Learner (REVEL) is
an in silico method for predicting the pathogenicity of mis-
sense variants [16]. REVEL is based on the predictions of
13 tools and provides a score for individual missense vari-
ants ranging from 0 to 1, with a higher score reflecting a
higher probability that a variant is pathogenic. Combined
Annotation-Dependent Depletion (CADD) is an in silico
method that assigns a score measuring a variant’s deleteri-
ousness, a property that reduces organismal fitness and
correlates strongly with molecular functionality and patho-
genicity [17–19]. CADD scores are transformed into a
Phred-like rank score based on the genome-wide distribu-
tion of scores for all ~9 billion potential single nucleotide
variants (3 billion nucleotides and the possible change to
the three other types). For instance, a scaled CADD score
equal to or greater than 10 indicates that a variant is pre-
dicted to be among the 10% most deleterious variants, a
score equal to or greater than 20 indicates that a variant is
predicted to be amongst the 1% most deleterious, and so
on [18].

Although REVEL and CADD have both demonstrated
remarkable performance on their respective validation datasets,
these in silico tools are developed to be broadly applied across
the human genome and not to specific disease-associated
genes. As a result, their ability to accurately predict the conse-
quences of variants in ALS-associated genes remains unclear.
Herein, we investigate REVEL and CADD’s ability to identify
pathogenic variants in ALS-associated genes and test the
hypothesis that the in silico predictors may help resolve VUSs.

2. Materials and Methods

2.1. Participants and Genetic Sequencing. We obtained
sequencing data from the ALS Knowledge Portal [20] and
Project MinE ALS Sequencing Consortium [21]. The ALS
Knowledge Portal includes whole exome sequences of
3,864 people with ALS (hereafter referred to as pALS) and
7,839 controls that were subjected to rigorous quality control
measures, as previously described, including sequencing depth
and coverage assessment at a variant and sample level, genetic
ancestry matching by principal component analysis, and relat-
edness assessment using identity by descent metrics [20]. The
Project MinE ALS Sequencing Consortium dataset was
obtained from the Project MinE Data Browser and includes
whole-genome sequencing data between 4,366 pALS and
1,832 controls. The sequencing methodology and quality con-
trol measures closely reflect those applied for the ALS Knowl-
edge Portal and have also been previously described [21].

2.2. Selection of ALS-Associated Genes. Sequencing data from
the two datasets were restricted to only include variants
within 20 known ALS-associated genes (Table S1). Genes
were included in the analysis if the gene-disease validity
classification from the ALS ClinGen Gene Curation Expert
Panel (GCEP) [22] was definitive or moderate as of July
2023. C9orf72 was excluded as the pathogenic hexanucleotide
repeat expansion was not captured in our analysis.

2.3. Variant Annotations and Filtering. Variants observed in
the datasets were annotated with their respective REVEL
[16] and CADD [19] scores as well as their ClinVar classifi-
cation [23]. REVEL (v1.3) scores for all potential missense
variants were obtained from ZENODO (doi:10.5281/
zenodo.7072866, accessed February 9, 2023). ClinVar patho-
genicity classifications were downloaded from the ClinVar
public archive (accessed October 20, 2022) and were binned
into six categories: benign/likely benign (B/LB), conflicting
significance, VUS, pathogenic/likely pathogenic (P/LP), not
observed in ClinVar, and others. Variants binned into the
“other” classification included those initially classified as
protective, drug response, association, and risk factor/likely
risk factor in ClinVar (Table S2). Variants were annotated
with CADD scores (v1.6) as well as gene symbols, the
Genome Aggregation Database (gnomAD; v2.1.1) non-
Finnish European (NFE), nonneurological (n = 51,592)
allele frequency and allele counts [24], and variant
consequences using the Variant Effect Predictor (VEP;
v.109.0) [25]. The transcript identifiers used as input into
VEP for each dataset are provided in Table S3. Coding
variant consequences were reclassified into three categories:
(1) protein-truncating variant (PTV), (2) missense, and (3)
synonymous. PTVs included those classified as “splice_donor_
variant,” “splice_acceptor_variant,” “frameshift_variant,” “stop_
gained,” “start_loss,” and “stop_loss”. No “start_loss” or
“stop_loss” variants were observed across both datasets.

Finally, to focus our analyses on rare, coding variants in
ALS-associated genes, we filtered the ALS Knowledge Portal
and Project MinE ALS Sequencing Consortium datasets to
include PTV and missense variants that were rare in the
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general population (allele frequency < 0 01 in the gnomAD
v2.1.1 NFE non-neurological cohort). Because REVEL can
only be applied to evaluate missense variants, we focused
our score-specific analyses for both tools on missense vari-
ants only.

2.4. Assessing REVEL and CADD Scores According to
ClinVar Classifications. To determine whether REVEL and
CADD scores were lower, on average, for rare, missense var-
iants in ALS-associated genes classified as B/LB in ClinVar
than other pathogenicity classifications, we conducted the
Wilcoxon rank-sum tests comparing the mean scores of
each ClinVar category—conflicting, VUS, and P/LP—to
the mean score of variants classified as B/LB in ClinVar.

To assess the agreement between REVEL and CADD
scores across rare, missense variants in ALS-associated
genes, we measured the correlation between the scores
across all unique missense variants seen in both datasets
using Pearson’s method. We repeated this analysis following
the stratification of unique missense variants by ClinVar
classification.

2.5. Assessing REVEL and CADD Pathogenicity Thresholds
for Variants in ALS-Associated Genes.We used ClinVar clas-
sifications to define variant pathogenicity and established
binary variant categories by only including missense variants
classified as P/LP and B/LB in ClinVar; P/LP variants were
set as the positive reference, while B/LB variants were set
as the negative reference. We then fit binary logistic regres-
sion models to compute the odds that a variant was classified
as P/LP in ClinVar given a particular REVEL or CADD
score, as shown in equations (1) and (2) for REVEL and
CADD, respectively.

Log odds = log P
1 − P

= −7 474 + 11 192 REVEL score ,

1

Log odds = log P
1 − P

= −4 714 + 0 09892 CADD score

2
To assess the performance of REVEL and CADD for pre-

dicting missense P/LP variants, we harnessed the binary logis-
tic regression models to compute receiver operating
characteristic (ROC) curves using the empirical method
implemented in the ROCit (v2.1.1) R package [26]. To com-
pare the usefulness of REVEL and CADD for predicting
missense P/LP variants, we computed the area under the
empirically estimated ROC curves (AUC); a higher AUC sug-
gests that the tool performs better at distinguishing between
the positive—P/LP variants in ClinVar—and negative—B/LB
variants in ClinVar—classes. Then, to identify the score
thresholds for which the maximum difference was seen
between the true positive rate (TPR; sensitivity) and false pos-
itive rate (FPR; 1—specificity), we computed the maximum
Youden index (J) for the empirically estimated ROC curves.
In addition, we calculated the accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value

(NPV) of REVEL and CADD again using the ROCit (v2.1.1)
R package.

We produced the Kolmogorov-Smirnov plots using the
ROCit (v2.1.1) R package [26]. Specifically, the cumulative
empirical distribution functions for missense B/LB and P/
LP variants were plotted across REVEL and CADD scores.
The value of the cumulative empirical distribution at any
specific REVEL or CADD score was the fraction of var-
iants—B/LB or P/LP in ClinVar—with scores less than or
equal to the specified REVEL or CADD score. We then iden-
tified the REVEL and CADD scores at which the greatest
distance was seen between the empirical cumulative distri-
butions of B/LB and P/LP variants and computed the
Kolmogorov-Smirnov statistic as the cumulative empirical
distribution of B/LB variants subtracted from the cumulative
empirical distribution of P/LP variants.

2.6. Quantifying the Enrichment of VUS in pALS and
Controls. To determine whether pALS were enriched for
missense VUS that exceeded REVEL or CADD’s respective
pathogenicity thresholds compared to controls, we applied
a two-sided Fisher’s exact test. Rare, missense VUS in ALS-
associated genes were binned based on REVEL’s [27] and
CADD’s [18] predefined pathogenicity thresholds (REVEL:
0.000-0.643, ≥0.644; CADD: 0.000-19.999, ≥20.000), and the
proportion of observed variants in pALS from each bin was
compared to the proportion of observed variants in controls
from each bin for the ALS Knowledge Portal and Project MinE
ALS Sequencing Consortium datasets independently. We also
applied a combined analysis across the two cohorts using the
Cochran-Mantel-Haenszel (CMH) test. For these analyses,
VUS included variants characterized as either VUS in ClinVar,
conflicting in ClinVar, or absent from ClinVar, and P values
were adjusted for multiple comparisons using the Bonferroni
correction.

2.7. Variant-Level Assessments of REVEL and CADD Scores.
We compared REVEL and CADD scores of missense variants
observed in pALS and controls at a variant level. To determine
whether REVEL and CADD scores were correlated with vari-
ant odds ratio, we computed Pearson’s correlation. We calcu-
lated variant odds ratios for missense variants seen across both
datasets using the following equation:

Odds ratio = pALS variant counts/n pALS − pALS variant counts
control variant counts/n controls − control variant counts

3

The findings of the odds ratio analysis were validated
using Pearson’s correlation and the pALS carrier ratio. The
pALS carrier ratio for missense variants observed in pALS
across both datasets was calculated using equation (4), as well
as the gnomAD v2.1.1 NFE, nonneurological allele counts
[24], which offered a control cohort proxy of a larger sample
size than the ALS Knowledge Portal and Project MinE ALS
sequencing consortium.

pALS carrier ratio = ALS carriers
ALS carriers + gnomADcarriers 4
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To determine whether using REVEL or CADD could
uniquely identify missense VUS of potential interest in pALS
but not in controls, we applied a variant-level yield analysis
and compared the proportion of observed variants in pALS
and controls identified as supporting pathogenic. Rare, coding
variants in ALS-associated genes seen in pALS and controls
across both datasets were considered supporting pathogenic if
they were: P/LP in ClinVar, VUS in ClinVar and PTV, VUS in
ClinVar and missense with REVEL ≥ 0 644/CADD ≥ 20 000,
absent from ClinVar and PTV, or absent from ClinVar and
missense with REVEL ≥ 0 644/CADD ≥ 20 000.

2.8. Statistical Analyses. We performed all statistical analyses
using the R statistical software (v4.1.1) [28] in R studio
(v1.4.1717). In addition, we used the ggplot2 R package
(v3.4) [29] for data visualization.

3. Results

3.1. Distribution of Variants in ALS-Associated Genes. A
summary of the ALS Knowledge Portal (3,864 pALS and
7,839 controls) and Project MinE (4,366 pALS and 1,832 con-
trols) datasets used in our study is shown in Figure 1(a). For
these datasets, we identified 1,395 and 1,149 variants from
20 ClinGen definitive and moderate ALS genes. No variants
were observed in CHCHD10 [MIM: 615903] in the ALS
Knowledge Portal (poorly covered in exomes). Similarly, no
variants were observed in UBQLN2 [MIM: 300264] in Project
MinE (X-linked gene, not provided). As expected, the propor-
tions of observed variants (synonymous, missense, and PTV)
were similar between both datasets for pALS and controls,
with a greater frequency of PTVs in cases (Figure 1(b)).
Further, of the 2,180 unique variants from both datasets,
49.69% were previously reported in the ClinVar database
(Figure 1(c)). Among the 9,833 observed variants across both
datasets in pALS and controls, a marginally greater proportion
of B/LB variants was observed in controls (43.91% and 48.25%
of variants in pALS and controls, respectively), while a greater
proportion of P/LP variants was observed in pALS (4.74% and
0.846% of variants in pALS and controls, respectively)
(Figure 1(d)). Notably, 46.91% and 47.22% of observed vari-
ants in pALS and controls, respectively, were classified as
VUS, conflicting, or were absent from ClinVar.

3.2. Accuracy of REVEL and CADD for Missense Variants in
ALS-Associated Genes. To evaluate the accuracy of REVEL
and CADD pathogenicity estimations for missense variants
in ALS-associated genes, we investigated the relationship
between the scores and ClinVar classifications. The mean
REVEL score for B/LB variants (0.237) differed significantly
from P/LP variants (0.713; P = 5 43e − 15) and VUS (0.319;
P = 2 56e − 2), but not from variants of conflicting signifi-
cance (0.304; P = 1 87e − 1) (Figure 2(a); Figure S1).
Similarly, the mean CADD score for B/LB variants (18.650)
differed significantly from variants classified as P/LP (24.461;
P = 2 61e − 6) and VUS (20.966; P = 3 59e − 2), but not from
variants of conflicting significance (19.032; P = 7 56e − 1)
(Figure 2(b); Figure S1). Similar results were observed in the
distribution of REVEL and CADD scores per ClinVar

classification on a per-gene basis (Figure S2). Of note, we
observed that P/LP variants in ANXA11 (REVEL score =
0 145), MATR3 (REVEL score = 0 211), and TBK1 (REVEL
score = 0 207) had remarkably low REVEL scores. Similarly,
P/LP variants in MATR3 (CADD score = 0 098; one unique
variant) had low CADD scores. Importantly, however, very
few P/LP variants were identified in these genes (ANXA11,
n = 2; MATR3, n = 1; TBK1, n = 3).

To further investigate the performance of REVEL and
CADD formissense variants in ALS-associated genes at the gene
level, we explored the distribution of in silico scores according to
the gnomAD missense Z score, which describes a gene’s toler-
ance to missense variation (Figure S3). We observed that the
REVEL scores for the four ALS-associated genes with the
lowest Z score—SPG11 (Z = −1 39), SQSTM1 (Z = −0 94),
ANXA11 (Z = −0 25), and GRN (Z = 0 28)—were lower, on
average, than the REVEL scores for the four ALS-associated
genes with the highest Z score—TUBA4A (Z = 3 3), KIF5A
(Z = 3 6), TARDBP (Z = 3 71), and VCP (Z = 5 41). A similar
trend was not observed for CADD scores.

Based on the tools’ predetermined pathogenicity cut-
offs, we categorized REVEL scores into three bins: 0.000-
0.182, 0.183-0.643, and ≥0.644, and CADD scores into three
bins: 0.000-9.999, 10.00-19.999, and ≥20.000 to assess the
ClinVar classifications of the binned variants (Figure S4)
[18, 27]. One missense B/LB variant (1.69%) had a REVEL
score ≥ 0 644, while 31 of 59 missense B/LB variants
(52.54%) had CADD scores ≥ 20 000. Further, 43 of 65 P/LP
missense variants (66.15%) had REVEL scores ≥ 0 644, while
59 of 65 missense P/LP variants (90.77%) had CADD scores
≥ 20 000. Regardless of ClinVar classification and including
those absent from ClinVar, 68.24% of unique missense
variants had CADD scores ≥ 20 000.

To evaluate the concordance between REVEL and CADD
scores in ALS-associated genes, we measured the correlation
between the two scores across all unique missense variants
observed in either sequencing dataset and found they indeed
demonstrated a statistically significant, positive correlation
(Pearson’s R = 0 556, P value < 2.2e-16; Figure 2(c)). We
repeated this exercise following the stratification of variants
by ClinVar classification and consistently observed statistically
significant positive correlations (Figure 2(d)).

Additionally, we determined the REVEL and CADD
thresholds at which pathogenicity may be most accurately
defined for variants in ALS-associated genes. Here, we used
ClinVar classifications to define variant pathogenicity and
only included missense variants that were classified as B/
LB and P/LP. A Kolmogorov-Smirnov test was used to
identify the CADD and REVEL scores that described the
maximum distance (D) between the empirical cumulative
distributions of missense variants classified as B/LB and P/
LP in ClinVar (Figure 3(a)). A REVEL score of 0.458 showed
the maximum distance between B/LB and P/LP variants
(D = 0 806, P value < 2.2e-16), while a CADD score of
22.42 showed the maximum distance between B/LB and P/
LP variants (D = 0 543, P value < 2.2e-16). Next, an ROC
curve was used to examine the relationship between the true
positive rate (TPR) and false positive rate (FPR) for each
tool; REVEL showed a high AUC of 0.929, while CADD
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Figure 1: Summary of theALSKPandPMdatasets. (a)Descriptionof the sample sizes and rare, coding variants identified inALS-associated genes in
theALSKnowledge Portal (ALSKP) and ProjectMinEALS SequencingConsortium (PM) datasets. No variants were observed inCHCHD10 (poorly
covered in exomes) in theALSKPdataset,whilenovariantswereobserved inUBQLN2 (X-linkedgene,notprovided) in thePMdataset. (b)Proportion
of observed variants in the ALSKP and PM datasets according to variant consequence, stratified by ALS status. (c) Proportion of unique variants
observed across the ALSKP and PM datasets categorized by ClinVar classification. (d) Proportion of observed variants across the ALSKP and PM
datasets categorized by ClinVar classification and stratified by ALS status. The variant category denoted as “other” includes variants classified as
protective, drug response, association, risk factor/likely risk factor in ClinVar, and all synonymous variants. Abbreviations: B/LB: benign/likely
benign; pALS: people with ALS; P/LP: pathogenic/likely pathogenic; PTV: protein-truncating variant; VUS: variant of uncertain significance.
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Figure 2: REVEL and CADD scores of rare, missense variants in ALS-associated genes categorized by ClinVar classification. (a) REVEL
scores of the unique missense variants identified in ALS-associated genes in the ALS Knowledge Portal (ALSKP) and Project MinE ALS
Sequencing Consortium (PM) datasets, stratified by ClinVar classification. (b) CADD scores of the unique missense variants identified in
ALS-associated genes in the ALSKP and PM datasets, stratified by ClinVar classification. Wilcoxon’s rank-sum tests were conducted to
compare the mean REVEL or CADD scores of each ClinVar category to the mean REVEL or CADD score of benign/likely benign (B/
LB) variants. (c) Pearson’s correlation between CADD and REVEL scores of unique missense variants identified in the ALSKP and PM
datasets. (d) Pearson’s correlation between CADD and REVEL scores of unique missense variants identified in the ALSKP and PM
datasets, stratified by ClinVar classification. Abbreviations: P/LP: pathogenic/likely pathogenic; VUS: variant of uncertain significance.
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showed a moderate AUC of 0.754. REVEL had a Youden
index of 0.493, indicating the scores resulting in the maxi-
mum difference between the FPR and TPR and correspond-
ing to an FPR of 0.032 and a TPR of 0.838 (Figure 3(b)).
CADD had a Youden index of 22.501, corresponding to an
FPR of 0.310 and a TPR of 0.853. We then plotted the pos-
itive predictive value (PPV) (Figure 3(c)), negative predictive
value (NPV) (Figure 3(d)), accuracy (Figure 3(e)), specificity
(Figure S5A), and sensitivity (Figure S5B) for REVEL and
CADD. REVEL had high PPVs at pathogenicity thresholds
of 0.644 (PPV = 0 970), 0.773 (PPV = 1 00), and 0.932
(PPV = 1 00). In contrast, CADD had low PPVs at
pathogenicity thresholds of 20.000 (PPV = 0 101) and
30.000 (PPV = 0 052). REVEL also had high NPVs at
pathogenicity thresholds of 0.644 (NPV = 0 977), 0.773
(NPV = 0 967), and 0.932 (NPV = 0 940). Similarly, CADD
had high NPVs at pathogenicity thresholds of 20.000
(NPV = 0 983) and 30.000 (NPV = 0 923).

These results suggest that pathogenicity for rare, coding
variants in ALS-associated genes is best defined at a prede-
termined threshold of 0.644 for REVEL and 20.000 for
CADD. Subsequent analyses employed these pathogenicity
thresholds to evaluate REVEL and CADD’s ability to assess
the potential pathogenicity of variants in ALS-associated
genes characterized as either VUS in ClinVar, conflicting
in ClinVar, or absent from ClinVar, hereafter collectively
referred to as VUS.

3.3. Leveraging REVEL and CADD to Resolve the Pathogenicity
of Missense VUS in ALS-Associated Genes. We next aimed to
determine REVEL and CADD’s ability to evaluate the patho-
genicity of missense VUS in ALS-associated genes. Across
both datasets, pALS had higher proportions of observed mis-
sense VUS than controls with a REVEL score ≥ 0 644
(pALS = 9 69%, controls = 7 26%; Figure 4(a)). In contrast,
across both datasets, controls had a marginally higher propor-
tion of observed missense VUS with a CADD score of 20.000-
30.000 than pALS (pALS = 49 59%, controls = 52 15%), but
pALS had a higher proportion of missense VUS with a CADD
score ≥ 30 000 than controls (pALS = 13 00%, controls =
11 27%; Figure 4(a)). Similar results were observed when both
datasets were analyzed independently (Figures S6A and S6B).

We investigated whether pALS were enriched for VUS
that had REVEL or CADD scores that exceeded their
respective pathogenicity thresholds. The analyses revealed
that pALS were indeed enriched for VUS with a REVEL
score ≥ 0 644 (OR = 1 378 [1.079-1.761], P = 1 08e − 2) but
not for VUS with a REVEL score < 0 644 (OR = 0 981
[0.896-1.074], P = 6 95e − 1) across the combined dataset
(Figure 4(b)). In contrast, pALS were not enriched for
VUS that had a CADD score ≥ 20 000 (OR = 0 993 [0.898-
1.098], P = 9 12e − 1), nor for VUS that had a CADD score
< 20 000 (OR = 1 006 [0.888-1.141], P = 9 49e − 1), across
the combined dataset (Figure 4(b)). These results again
reflected those observed when both datasets were analyzed
independently (Figures S6C and S6D).

Next, we examined the correlation between the in silico
scores and variant odds ratio for rare, missense variants in
ALS-associated genes. Across all variants, REVEL and CADD

scores both demonstrated a positive correlation with a variant
odds ratio (R = 0 23, P < 2 2e − 16 and R = 0 058, P = 1 8e − 5,
respectively; Figures 5(a) and 5(b)). Similarly, when we
restricted the analyses to only include variants classified as
VUS or conflicting significance in ClinVar, REVEL and
CADD both maintained weak positive correlations with a
variant odds ratio (R = 0 053, P = 8 8e − 3 and R = 0 053,
P = 8 8e − 3, respectively; Figures 5(c) and 5(d)). We also
examined whether the scores were correlated with pALS
carrier ratio—respective to gnomAD v2.1.1 NFE, nonneurolo-
gical allele counts [24]—to validate the findings of the odds
ratio analyses. Again, across all variants, both REVEL and
CADD demonstrated statistically significant positive correla-
tions between their respective scores and pALS carrier ratio
(R = 0 31, P < 2 2e − 16 and R = 0 094, P = 2 4e − 12, respec-
tively; Figures 5(e) and 5(f)), which was maintained when
restricted to variants classified as VUS or conflicting sig-
nificance in ClinVar (R = 0 14, P = 1 3e − 12 and R = 0 07,
P = 5 5e − 4, respectively; Figures 5(g) and 5(h)). The corre-
lations between REVEL or CADD score and variant odds ratio
and pALS carrier ratio for missense variants classified as P/LP
and B/LB in ClinVar, as well as variants absent from ClinVar
are shown in Figures S7 and S8.

We applied a variant-level yield analysis to determine
whether using REVEL or CADD may identify missense
VUS of potential interest unique to pALS. Of the 5,106 rare,
coding variants observed in pALS from the combined data-
set, 328 variants (6.42%) were P/LP in ClinVar and VUS in
ClinVar but were protein-truncating variant (PTV) or
absent from ClinVar and PTV (Figures 6(a) and 6(b);
Table S4). In contrast, 66 of these types of variants (1.40%)
were observed in controls. In addition, REVEL scores
indicated that 175 missense variants (3.43%) in pALS and
123 missense variants (2.60%) in controls were supporting
pathogenic, including missense VUS in ClinVar with
REVEL ≥ 0 644 and missense variants absent from ClinVar
with REVEL ≥ 0 644. Finally, 1,193 variants (23.36%) in
pALS and 1,129 variants (23.88%) in controls had CADD
scores ≥ 20 000, including missense VUS in ClinVar and
missense variants absent from ClinVar. The independent
variant-level yield analyses for each dataset are shown in
Figure S9 and reflect the results observed in themerged analysis.

A higher proportion of REVEL-defined supporting path-
ogenic missense VUS was observed in pALS than in controls
for 15 of the 18 genes observed in both datasets. The greatest
number of REVEL- or ClinVar-defined supporting patho-
genic missense variants in pALS were observed in NEK1
[MIM: 604588], SOD1, and SPG11 [MIM: 610844], while
ALS2 [MIM: 606352], SQSTM1 [MIM: 601530], and SPG11
harbored the greatest number of supporting pathogenic mis-
sense variants in controls (Figure 6(c)). Notably, both ALS2
and SPG11 are large multiexon recessive genes. There were
also REVEL-defined supporting pathogenic missense variants
observed exclusively in pALS in SOD1 (17 observed variants),
TUBA4A (3 observed variants; [MIM: 191110]), UBQLN2
(1 observed variant), and VAPB (1 observed variant;
[MIM: 605704]) (Figure 5(d)). Analyzing the ≥20.000 CADD
missense VUS revealed that 12 of 20 genes showed a higher
proportion of observed variants in pALS than controls
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Figure 3: Continued.
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(Figure 6(e)), yet ALS2, NEK1, and SPG11 harbored the
greatest number of CADD- or ClinVar-defined supporting
pathogenic missense variants in both pALS and controls
(Figure 6(c)). There was also a selection of genes with surpris-
ingly high frequencies of CADD ≥ 20 000 within controls,
including ALS2 (268 observed variants), KIF5A (105 observed
variants; [MIM: 602821]), NEK1 (142 observed variants), and
SPG11 (217 observed variants). These findings should be
interpreted in the context of gene size, inheritance pattern,
and incomplete penetrance.

4. Discussion

The increasing number of novel variants reported in ALS-
associated genes has created new challenges in standardized
clinical testing for ALS. Computational (in silico) predictors,
including REVEL and CADD, are widely employed in
clinical and research settings to provide the lowest level of
evidence for pathogenic (PP3-supporting) or benign (BP4-
supporting) variants, as per the current ACMG guidelines
for genetic variant classifications [11] [30]. While in silico
evidence may be insufficient to change a variant classifica-
tion from VUS to P/LP or B/LB, which requires very strong,
strong, or moderate evidence, it still provides valuable infor-
mation for interpreting variant pathogenicity. However, in
silico predictors are developed to be broadly applied across
the human genome and not to specific diseases or genes
[27]. As a result, their ability to evaluate the consequences
of rare, missense variants in ALS-associated genes remains
unclear and could lead to misinterpretation. To resolve this

uncertainty, we extracted 20 genes classified as “definitive”
or “moderate” ALS genes as evaluated by the ALS ClinGen
GCEP, from two pALS-control open-access, sequencing
datasets to investigate REVEL and CADD’s ability to predict
which missense variants are contributing to disease patho-
genesis. While our results indicate a predetermined pathoge-
nicity cut-off for REVEL that could be of clinical value for
classifying variants in ALS-associated genes, an accurate
cut-off was not evident for CADD, and both in silico predic-
tors were of limited value for resolving which VUS are truly
pathogenic in ALS. Our findings allow us to provide impor-
tant recommendations for interpreting REVEL and CADD
scores for missense variants in ALS-associated genes and
indicate that both tools should be used with caution when
attempting to evaluate the pathogenicity of VUS in ALS
genetic testing.

A major limitation of in silico predictors is that score
thresholds are typically established using a genome-wide
set of variants and, as a result, are often not calibrated to par-
ticular genes or diseases [27]. In our analysis, we leveraged
REVEL’s thresholds that were estimated using missense var-
iants across the whole exome [27] and CADD’s Phred-like
rank scores, which are based on the genome-wide distribu-
tion of scores for all ~9 billion possible single nucleotide var-
iants [18] to establish which thresholds most accurately
defined pathogenic missense variants in ALS-associated
genes. When applied to a dataset restricted to missense var-
iants classified as B/LB and P/LP in ClinVar, REVEL’s pre-
determined supporting pathogenicity threshold (≥0.644)
captured the highest proportion of unique missense variants
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Figure 3: Evaluation of REVEL and CADD scores for rare, missense variants in ALS-associated genes. Performance evaluations were
conducted on rare, missense variants in ALS-associated genes classified as benign/likely benign (B/LB) or pathogenic/likely pathogenic
(P/LP) in ClinVar. (a) The Kolmogorov-Smirnov plots for REVEL and CADD. The red, vertical line represents the REVEL or CADD
score that describes the maximum distance between the empirical cumulative distribution of missense variants classified as B/LB and P/
LP in ClinVar. (b) Receiver operating characteristic (ROC) curve and area under the curve (AUC) for REVEL and CADD. The purple
and orange points represent the Youden index for REVEL and CADD, respectively. (c) Positive predictive value of REVEL and CADD.
(d) Negative predictive value of REVEL and CADD. (e) Accuracy of REVEL and CADD.
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classified as P/LP (66.15%), corresponded most closely with
the Kolmogorov-Smirnov statistic describing the maximum
distance between the empirical cumulative distribution of
missense B/LB and P/LP variants, and maintained high
accuracy. Further, in general, for a tool to have clinical value,
it should have a high NPV (~95%) to avoid missing truly
pathogenic variants and at least a moderate PPV (~50%) to
minimize further clinical investigation [31]. When applied
to a dataset comprising only missense B/LB and P/LP vari-
ants, the NPV for REVEL’s supporting pathogenic threshold
was 97.7%, indicating that only 2.3% of truly pathogenic
missense variants would receive a false-negative classifica-
tion, and the PPV was 97.0%, limiting the false-positive rate
to 3.0%. REVEL’s supporting pathogenic threshold also

demonstrated an ability to identify benign variants with con-
fidence, as 98.18% of unique missense variants classified as
B/LB in ClinVar had a REVEL score < 0 644. Collectively,
our results suggested that REVEL could be of clinical value
at a cut-off of 0.644 for variants in ALS-associated genes.

In contrast, a CADD threshold ≥ 20 000 was highly
inclusive for benign missense variants; however, it still corre-
sponded most closely with the KS statistic and the Youden
index computed from the ROC curve. A CADD threshold
≥ 30 000 was too restrictive, capturing only 12.31% of
unique missense variants classified as P/LP in ClinVar, while
a CADD threshold ≥ 20 000 captured 90.77% of unique mis-
sense variants classified as P/LP in ClinVar. Yet, there were
remarkable limitations regarding the relationship between

Missense VUS in ALS-associated genes
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Figure 4: Distribution of rare, missense VUS in ALS-associated genes. Missense variants categorized as variants of uncertain significance
(VUS) in ClinVar, conflicting in ClinVar, or absent from ClinVar are collectively referred to as VUS. (a) Proportion of observed VUS across
the ALS Knowledge Portal and Project MinE ALS Sequencing Consortium (PM) datasets, stratified by ALS status and binned REVEL or
CADD score. (b) Cochran-Mantel-Haenszel (CMH) tests investigating whether people with ALS (pALS) were enriched for VUS that had
REVEL or CADD scores that exceeded their respective pathogenicity thresholds (REVEL ≥ 0 644; CADD ≥ 20 000) compared to controls. P
values corresponding to each variant category are shown on the right of the plot. Abbreviation: CI: confidence interval.
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Figure 5: REVEL and CADD scores according to variant odds ratio and pALS carrier ratio. Pearson’s correlation was computed using rare,
missense variants in ALS-associated genes. (a) Correlation between REVEL score and variant odds ratio across all ClinVar categories. (b)
Correlation between CADD score and variant odds ratio across all ClinVar categories. (c) Correlation between REVEL score and variant
odds ratio for variants of uncertain significance (VUS) and conflicting significance in ClinVar. (d) Correlation between CADD score and
variant odds ratio for VUS and conflicting significance in ClinVar. (e) Correlation between REVEL score and variant carrier ratio in
people with ALS (pALS carrier ratio) across all ClinVar categories. (f) Correlation between CADD score and pALS carrier ratio across all
ClinVar categories. (g) Correlation between REVEL score and pALS carrier ratio for VUS and conflicting significance in ClinVar. (h)
Correlation between CADD score and pALS carrier ratio for VUS and conflicting significance in ClinVar. Only variants that had an
odds ratio within three standard deviations of the mean are shown and were included when computing Pearson’s correlation.
Abbreviations: B/LB: benign/likely benign; P/LP: pathogenic/likely pathogenic.
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Figure 6: Harnessing REVEL and CADD to identify supporting pathogenic rare, missense variants in ALS-associated genes. Variants were
considered supporting pathogenic if they were either pathogenic/likely pathogenic (P/LP) in ClinVar, protein-truncating variant (PTV) of
uncertain significance in ClinVar, missense variant of uncertain significance (VUS) in ClinVar with REVEL ≥ 0 644/CADD ≥ 20 000, PTV
absent from ClinVar, or a missense variant absent from ClinVar with REVEL ≥ 0 644/CADD ≥ 20 000. The proportion of observed missense
variants in pALS and controls from the ALS Knowledge Portal (ALSKP) and Project MinE ALS Sequencing Consortium (PM) datasets that
were identified as supporting pathogenic by (a) ClinVar and REVEL and (b) ClinVar and CADD is presented. (c) Supporting pathogenic
missense variants seen in pALS and controls across the ALSKP and PM datasets, stratified by ALS status and ALS-associated gene. (d)
Missense variants identified in the ALSKP and PM datasets that were either VUS in ClinVar with REVEL ≥ 0 644 or absent from
ClinVar with REVEL ≥ 0 644, stratified by ALS status and ALS-associated gene. (e) Missense variants identified in the ALSKP and PM
datasets that were either VUS in ClinVar with CADD ≥ 20 000 or absent from ClinVar with CADD ≥ 20 000, stratified by ALS status
and ALS-associated gene. The heat maps show the number of observed variants seen in people with ALS (pALS) and controls, while the
bar charts show the proportion of observed variants seen in pALS and controls. The colored track beneath the heat map represents the
gene-disease validity classification from the ALS ClinGen Gene Curation Expert Panel [22] for the corresponding gene.
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the CADD score and variant pathogenicity classifications for
rare, missense variants in ALS-associated genes, even though
the sensitivity and specificity of CADD have been shown to
be high in datasets balanced for known pathogenic and
benign variants [31]. Surprisingly, 64.15% of all unique mis-
sense variants had CADD scores ≥ 20 000, with 4.69% being
classified as B/LB in ClinVar. It is important to note that
CADD scores are distributed using a Phred-like system, such
that the score of one variant is relative to the scores—and
therefore deleteriousness—of all other possible variants
[18]. It is well-established that rare variants are more likely
to be deleterious than common variants because of natural
selection [18], and as such, we anticipate that the CADD
scores of rare variants are likely to be higher than the CADD
scores of common variants. Herein, we specifically selected
for rare variants, which may have biased the dataset to
include more variants with a higher CADD score and lim-
ited the perceived accuracy of the CADD ≥ 20 000 threshold.
Indeed, when CADD was applied to a dataset restricted to
rare, missense variants classified as B/LB and P/LP in Clin-
Var, the PPV at a cut-off of 20.000 was 1.01%, indicating
that using this pathogenicity threshold would lead to an
overwhelming overestimation of rare, missense variant path-
ogenicity. Although CADD had an NPV of 98.3% at a cut-
off of 20.000, these data ultimately suggest that the PPV of
CADD is not high enough to effectively classify rare, mis-
sense variants in ALS-associated genes or reduce the number
of potentially pathogenic variants to those that could be effi-
ciently followed up in clinical practice.

Concerningly, VUS carrier rates from multigene panel
testing in ALS have been reported to range from 15% to
25%. These variants not only complicate genetic counseling
but also may prevent patient enrollment in clinical trials
and are undoubtedly frustrating for patients and their fami-
lies [32, 33]. Missense variants are particularly difficult to
assess for pathogenicity, making up a large majority of iden-
tified VUS. Consistent with previous studies [12–15], we
observed that 20% of pALS in the ALS Knowledge Portal
were carriers of at least one rare, missense VUS in an ALS-
associated gene. Given the prevalence of VUS in NGS panel
testing in ALS, we aimed to determine whether we could
harness the in silico predictors and their corresponding
thresholds to elucidate the pathogenicity of missense VUS
in ALS-associated genes.

Enrichment analysis revealed a significantly higher fre-
quency of VUS with a REVEL score ≥ 0 644 in pALS than
controls. However, our variant-level positive yield analysis
revealed that the proportion of observed REVEL-defined
supporting pathogenic VUS was only marginally higher in
pALS than in controls (pALS = 3 43%; controls = 2 60%).
Although REVEL demonstrated strong performance in
distinguishing true pathogenic variants from true benign
variants in our earlier analyses, the modest difference in
REVEL-defined supporting pathogenic VUS identified in
pALS and controls suggests the real-world value of REVEL
in further evaluating VUS may be limited when applied to
ALS. It is possible that the REVEL-defined supporting path-
ogenic VUS identified in controls may represent variants of
reduced penetrance [34], and the use of a REVEL threshold

of ≥0.644 may remain useful in a clinical testing context for
ALS; however, our analyses are limited regarding details of
the true pathogenic nature of the identified VUS. Future
analyses regarding the usefulness of REVEL in revealing
the potential pathogenicity of VUS in ALS-associated genes
would benefit from additional benchmarking using func-
tional experimental assay evidence.

Based on the limitations of REVEL observed across all 20
ALS-associated genes, we sought to determine if the findings
were specific to individual ALS-associated genes. Interest-
ingly, pALS had a greater proportion of VUS that met
REVEL’s 0.644 cut-off than controls for 15 genes, and no
VUSs that exceeded REVEL’s 0.644 cut-off were observed
in SOD1, TARDBP, TUBA4A, UBQLN2, and VAPB in con-
trols, all of which are definitively associated with ALS [22].
Only 79 REVEL-defined supporting pathogenic VUS were
observed in controls across genes that are definitively associ-
ated with ALS. The observation of supporting pathogenic
missense VUS in controls may be due to false-positive clas-
sifications by REVEL or may represent cases of incomplete
penetrance in the controls [34]. Furthermore, among the
genes that had reached maximum genetic and experimental
evidence for association with ALS by the ClinGen GCEP as
of July 2023 [22]—FUS, OPTN [MIM: 602432], SOD1,
SPG11, TARDBP, TBK1 [MIM: 604834], UBQLN2, VAPB,
and VCP [MIM: 601023]—all except for SPG11 and VCP
showed a >2-fold increase in the proportion of observed
supporting pathogenic VUS in pALS than controls
(Table S1). Taken together, REVEL is most valuable for
identifying VUS that are truly pathogenic in a subset of
genes that are most strongly associated with ALS, which
may be promising for its application in ALS clinical genetic
testing as these genes are most commonly included on ALS
panels [35].

Unsurprisingly, the performance of CADD in evaluating
the pathogenicity of VUS in ALS-associated genes trailed
behind REVEL. Enrichment analysis revealed no significant
difference in the frequency of VUS with a CADD score ≥
20 000 in pALS compared to controls. Additionally, the pro-
portion of observed CADD-defined supporting pathogenic
missense VUS was nearly equal between pALS and controls
(pALS = 23 36%; controls = 23 88%). At a gene-specific level,
a remarkably high proportion of VUSs exceeded CADD’s
threshold in both pALS and controls across all 20 ALS-
associated genes. Based on our findings, CADD is of limited
value for refining the pathogenicity prediction of missense
VUSs in ALS-associated genes, given the exceedingly high
false-positive rate for the control cohort.

5. Conclusion

We conclude that a REVEL score ≥ 0 644 for rare, missense
variants in ALS-associated genes is likely sufficient to
identify variants of further pathogenic interest in a clinical
and research setting, especially for genes which are most
strongly associated with ALS, including FUS, OPTN, SOD1,
TARDBP, TBK1, UBQLN2, and VAPB. In contrast, employ-
ing CADD’s ≥ 20 000 threshold demonstrated a remarkably
low positive predictive value for identifying truly pathogenic
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missense variants in ALS-associated genes; thus, the use of
CADD may lead to a gross overestimation of supporting
pathogenic variants in ALS. Our findings highlight the need
for improved tools that are specific to disease-associated
genes and molecular pathways to accurately predict the
pathogenicity of VUSs in multifactorial, late-onset disorders
such as ALS.
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