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In silico predictive tools can help determine the pathogenicity of variants. The 2015 American College of Medical Genetics and
Genomics (ACMG) guidelines recommended that scores from these tools can be used as supporting evidence of pathogenicity.
A subsequent publication by the ClinGen Sequence Variant Interpretation Working Group suggested that high scores from
some tools were sufficiently predictive to be used as moderate or strong evidence of pathogenicity. REVEL is a widely used
metapredictor that uses the scores of 13 individual in silico tools to calculate the pathogenicity of missense variants. Its ability
to predict missense pathogenicity has been assessed extensively; however, no study has previously tested whether its
performance is affected by whether the missense variant acts via a loss-of-function (LoF) or gain-of-function (GoF)
mechanism. We used a highly curated dataset of 66 confirmed LoF and 65 confirmed GoF variants to evaluate whether this
affected the performance of REVEL. 98% of LoF and 100% of GoF variants met the author-recommended REVEL threshold of
0.5 for pathogenicity, while 89% of LoF and 88% of GoF variants exceeded the 0.75 threshold. However, while 55% of LoF
variants met the threshold recommended for a REVEL score to count as strong evidence of pathogenicity from the ACMG
guidelines (0.932), only 35% of GoF variants met this threshold (P = 0 0352). GoF variants are therefore less likely to receive
the highest REVEL scores which would enable the REVEL score to be used as strong evidence of pathogenicity. This has
implications for classification with the ACMG guidelines as GoF variants are less likely to meet the criteria for pathogenicity.

1. Introduction

In silico predictive tools can be used to help predict the path-
ogenicity of genetic variants in Mendelian disease. They are
particularly useful for missense variants since these have a
variable effect on the protein: even in genes where missense
variants are a known cause of disease, not all missense vari-
ants will be pathogenic.

As part of the standardisation of the classification of var-
iants causing Mendelian disease, the 2015 American College
of Medical Genetics and Genomics (ACMG) guidelines
stated that in silico predictive tools can be used as support-
ing evidence in variant classification [1] (PP3 criteria to sup-
port a variant being pathogenic and BP4 to support a variant
being benign). The guidelines stratified the different lines of
evidence that can be used to support a classification of path-

ogenic into different weights: supporting, moderate, strong,
and very strong. These different lines of weighted evidence
are then combined to produce an overall variant classifica-
tion of either benign, likely benign, uncertain significance,
likely pathogenic, or pathogenic. By classifying predictions
from in silico tools as only supporting evidence, they sug-
gested limited weight could be put on their results. However,
Pejaver et al. [2], as part of the ClinGen [3] Sequence Vari-
ant Interpretation Working Group, recommended that some
tools were sufficiently predictive of pathogenicity and that
high scores could be used as moderate (PP3_moderate) or
even strong (PP3_strong) evidence for pathogenicity.

REVEL (Rare Exome Variant Ensemble Learner) is a
metapredictor—an in silico tool that combines multiple dif-
ferent tools and types of evidence for pathogenicity into a
combined score [4]. It uses scores from 13 individual tools:
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MutPred [5], fathmm v2.3 [6], VEST 3.0 [7], PolyPhen-2
[8], SIFT [9], PROVEAN [10], MutationAssessor [11],
MutationTaster [12], LRT [13], GERP++ [14], SiPhy [15],
phyloP [16], and phastCons [17], to predict the likelihood
that missense variants are pathogenic. This means that
REVEL uses multiple strands of evidence to predict
whether a variant is pathogenic: conservation, the difference
in the physicochemical characteristics of the new amino
acid compared to the reference, and the effect of the amino
acid change on the structural and functional properties of
the protein.

REVEL is widely used in a range of applications and
can have clinical implications. Toratani et al. [18] used
REVEL to highlight a potential pathogenic variant in
RUNX1 predisposing to acute myeloid leukemia in a family,
which led to choosing a stem cell donor from outside the
family. Schuurmans et al. [19] explored genotype-
phenotype correlation in glutaric aciduria type 1 and
showed that a higher REVEL score correlated with lower
residual enzyme activity. Kingdom et al. [20] used REVEL
to identify likely deleterious variants in genes associated
with developmental disorders in order to screen the UK
Biobank population cohort of 500,000 people for related
phenotypes. As these examples highlight, REVEL is partic-
ularly useful as an automated assessment of pathogenicity,
which can be used to take a cautious approach to pathoge-
nicity (as in the transplant example). REVEL scores can
also be easily correlated with other data, such as functional
domains and enzymatic activity in the glutaric aciduria type
1 example. Finally, the scores offer the ability to classify a
large number of variants in order to study the broad picture
of a disease or phenotype in a large cohort where manual
curation of variants may not be practical.

Gunning et al. [21] demonstrated that metapredictors,
such as REVEL, provide superior predictive value over indi-
vidual in silico tools. They analysed a dataset of variants
from ClinVar, Human Gene Mutation Database (HGMD),
and the Genome Aggregation Database (GnomAD) as well
as a clinically representative dataset derived from a
research/diagnostic exome and panel sequencing. REVEL
had the best performance of the metapredictors tested on
the results of the clinically representative dataset with an
area under the receiver operating characteristic curve of
0.82. However, this study did not test whether the mecha-
nism of action, loss of function (LoF) or gain of function
(GoF), had an impact on REVEL’s performance.

REVEL produces a score for a missense variant of
between 0 and 1 with larger scores indicating a higher
chance that the variant is pathogenic. In the paper describ-
ing the tool, the authors give two potential thresholds for
considering a variant to be pathogenic: a REVEL score of
0.5, which in their dataset (a subset of HGMD) gave a sensi-
tivity of 0.75 and specificity of 0.89, and a REVEL score of
0.75, which gave a sensitivity of 0.55 and a specificity of
0.97 [4]. Alternative thresholds were suggested by Pejaver
et al. [2] who evaluated the predictive power of the REVEL
scores for pathogenic and benign variants in ClinVar to rec-
ommend that a score of 0.773 could be used as moderate and
a score of 0.932 as strong evidence for the pathogenicity of a

variant when assigning pathogenicity using the ACMG
guidelines [1]. The ability of REVEL to accurately predict
the pathogenicity of a variant with relatively high sensitivity
and specificity has led to the tool being incorporated into
gene-specific ACMG guidelines by Variant Curation Expert
Panels (VCEPs). These include RYR1 variants causing
malignant hyperthermia susceptibility [22], ITGA2B/ITGB3
variants causing Glanzmann thrombasthenia [23], and
MYOC variants causing glaucoma [24]—the latter of which
is likely caused by a GoF mechanism.

In a previous study, SIFT and PolyPhen, two widely used
in silico tools, were shown to perform less well at predicting
the pathogenicity of GoF compared to LoF variants [25].
This study exploited the fact that GoF and LoF variants in
three genes (ABCC8, KCNJ11, and GCK) cause opposing
disease phenotypes (monogenic diabetes and congenital
hyperinsulinism), creating a unique resource for evaluating
different disease mechanisms within the same genes. In this
study, we utilised this highly curated dataset to evaluate the
performance of REVEL for predicting the pathogenicity of
LoF and GoF variants within the same genes.

2. Materials and Methods

To evaluate the performance of REVEL on LoF and GoF
variants, we studied the curated set of 133 pathogenic vari-
ants from Flanagan et al. [25]. We excluded two variants
as one was a start-loss variant and the other was a multinu-
cleotide variant, which REVEL is not designed to evaluate.
This resulted in a set of 131 different pathogenic missense
variants in the ABCC8 (n = 47), KCNJ11 (n = 56), and GCK
(n = 28) genes (Supplementary Table 1). 66 variants were
LoF while 65 were GoF. The authors of the REVEL paper
[4] confirmed that the variants used in this study were not
included in the training dataset for REVEL.

We downloaded the REVEL 1.3 dataset and looked up
the REVEL scores for the 131 variants included in this study
and evaluated the different thresholds for pathogenicity.
This included REVEL scores of 0.5 and 0.75 as recom-
mended by the authors of the tool [4]. We also investigated
the REVEL thresholds recommended by Pejaver et al. [2] for
using REVEL scores as different levels of evidence for path-
ogenicity (0.773 for moderate and 0.932 for strong).

Statistical significance was tested using Fisher’s exact test.

3. Results

3.1. Using Author-Recommended REVEL Thresholds
Correctly Predicts Pathogenicity of LoF and GoF Variants.
The authors of REVEL recommend potential thresholds for
the pathogenicity of REVEL scores of 0.5 or 0.75 depending
on the context in which the tool was to be used—whether
specificity or sensitivity was most important [4].

Using a 0.5 REVEL threshold for pathogenicity, 65/66
(98%) of LoF and 65/65 (100%) of GoF variants were pre-
dicted as pathogenic. Using a 0.75 REVEL threshold for
pathogenicity, 59/66 (89%) LoF and 57/65 (88%) GoF
variants were predicted as pathogenic (Figure 1).
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3.2. REVEL Scores for LoF Variants Are More Likely to Meet
Criteria for Strong Evidence for Pathogenicity. The REVEL
scores for 36/66 (55%) LoF variants meet the criteria for
strong evidence (REVEL score of 0.932) as recommended
by Pejaver et al. [2] (Figure 2). In contrast, only 23/65
(35%) GoF variants meet the criteria to use REVEL as strong
evidence for pathogenicity (P = 0 0352).

Similarly, 58/66 (88%) of LoF variants meet at least the
threshold for moderate evidence (REVEL score of 0.773)
while 51/65 (78%) of GoF variants meet that threshold,
although this difference is not statistically significant

(P = 0 1677). 62/66 (94%) of LoF and 63/65 (97%) of GoF
variants meet at least the criteria for supporting evidence
(REVEL score of 0.644).

4. Discussion

We used a dataset of 66 LoF and 65 GoF variants to assess
the performance of the widely used metapredictor REVEL
for identifying pathogenic LoF and GoF variants. Using the
REVEL score thresholds recommended by the authors of
the tool (0.5 and 0.75) [4], REVEL performed similarly for

0.8

1

0.6

0.4

0.2

Pr
op

or
tio

n 
of

 v
ar

ia
nt

s w
ith

 sc
or

e
un

de
r t

hr
es

ho
ld

0
0.2 0.3

>0.5 >0.75

REVEL score
0.50.4 0.6 0.7 0.8 0.9 10.10

Gain of function
Loss of function

Figure 1: A high proportion of LoF and GoF variants meets author-recommended thresholds for pathogenicity. A graph showing the
cumulative frequency of loss-of-function (LoF) and gain-of-function (GoF) variants which meet that REVEL score threshold. The
REVEL score thresholds of 0.5 and 0.75 are highlighted as they were given by the tool authors as potential thresholds for pathogenicity [4].
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Figure 2: LoF variants are more likely to meet the threshold for strong evidence for pathogenicity. A graph showing the cumulative
frequency of loss-of-function (LoF) and gain-of-function (GoF) variants which meet that REVEL score threshold. The REVEL score
thresholds for supporting, moderate, and strong evidence are highlighted as recommended by Pejaver et al. [2].
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LoF and GoF. However, when we then used the threshold
recommended by Pejaver et al. [2] as strong evidence of
pathogenicity (REVEL score 0.932), a greater proportion of
LoF than GoF variants met the criteria for strong evidence
of pathogenicity.

There is not a clear pattern for the GoF variants that met
the threshold for strong: they are split between the three
genes studied and spread across protein domains. For exam-
ple, in ABCC8, using the protein domain classifications from
De Franco et al. [26], the variants that met the criteria for
strong were split between the highly conserved nucleotide-
binding domain (n = 3/6), transmembrane domain (n = 2/6
), and cytoplasmic domain (n = 1/6). In comparison, the
variants which did not meet the criteria for strong were in
the transmembrane (n = 3/17), cytoplasmic (n = 13/17),
and extracellular (n = 1/17) domains. This suggests that
while the protein domain may affect the REVEL score, it is
not deterministic of whether a variant will meet the thresh-
old to be used as strong evidence for pathogenicity.

Our results suggest that GoF variants are less likely than
LoF variants to get the very highest REVEL scores that
would enable them to be used as strong evidence for patho-
genicity. This is in keeping with the previous findings of
Flanagan et al. [25] for SIFT and PolyPhen which found that
their predictive power was lower for these GoF variants.
Since REVEL includes SIFT and PolyPhen-2 scores as part
of its algorithm, this may explain some of this difference
in performance.

In silico predictors are not a substitute for expert judge-
ment and should not be used in isolation but as part of an
overall assessment of different strands of evidence as recom-
mended by the ACMG guidelines [1, 27]. Even if a REVEL
score meets the threshold to use as strong evidence, further
independent strands of evidence need to be provided for a
variant to meet the ACMG criteria for pathogenicity. How-
ever, the ability to use the score from an in silico predictive
tool as strong evidence of pathogenicity has important
implications for variant classification. The ACMG guidelines
state that two strong pieces of evidence are sufficient to
declare that a variant is pathogenic [1]. A variant with a suf-
ficiently high REVEL score would therefore only need one
additional piece of strong evidence, such as in vitro func-
tional evidence, to demonstrate pathogenicity. In contrast,
if the in silico evidence can only be used as supporting
evidence, then in addition to a strong piece of evidence,
you would also need two moderate (such as the variant being
located in a well-established functional domain without
benign variation) and a second supporting piece of evidence
(such as the patient’s phenotype being highly specific for the
disease), for example, to meet the threshold for pathogenic-
ity. Some VCEPs have conservatively chosen to cap the use
of REVEL scores for PP3 criteria to moderate [22] or sup-
porting [23], which would mitigate the potential difference
between the REVEL scores of GoF and LoF variants.

The finding that GoF variants are less likely than LoF
variants to meet the score threshold to use as strong evi-
dence of pathogenicity is important for diagnostic genetic
testing of genes that cause disease via a GoF mechanism.
This highlights a potential utility in developing bespoke

REVEL thresholds for specific genetic conditions caused by
GoF variants that would enable the scores to be used as
moderate or strong evidence of pathogenicity. Indeed, Pram-
paro et al. [28] calculated a bespoke REVEL cutoff for
pathogenic variants in CYP27A1 causing cerebrotendinous
xanthomatosis to study the prevalence and geographic dis-
tribution of the disease.

Variants in this study come from three genes where we
have the expertise to confidently define whether they act
via a LoF or GoF mechanism, since the two mechanisms
cause the opposite phenotypes of monogenic diabetes or
congenital hyperinsulinism. We did not include benign var-
iants in the study as our aim was to evaluate the relative per-
formance of REVEL on LoF and GoF variants rather than to
assess the ability of the tool to accurately predict whether a
variant was pathogenic or benign, which has already been
established [4, 21]. While we expect our results to be widely
applicable, we recognise that our study was limited to three
disease genes, and we therefore recommend that further
studies be performed on additional genes with known LoF
and GoF mechanisms of pathogenicity in order to replicate
our findings.

In conclusion, we found that REVEL correctly predicts a
high proportion of both LoF and GoF variants as patho-
genic based on the REVEL score thresholds recommended
by the tool authors. However, GoF variants are less likely
to receive the highest REVEL scores, which would preclude
the score from being used as strong evidence of pathogenicity
in some cases.
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Supplementary Table 1.
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