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Mathematical	Description	
	
Clinical	Assessment	of	Variants	by	Likelihood	Ratio	(CAVaLRi)	framework	overview	

LRs	are	advantageous,	intuitive,	and	can	be	converted	to	posterior	probabilities	given	

some	observed	diagnostic	evidence	(E)	and	a	prior	probability	(p).	“Diagnostic	evidence”	in	

this	context	is	a	set	of	variant	features	identified	by	genomic	sequencing,	their	segregation	

in	 a	pedigree,	 and	phenotypic	 information	derived	 from	a	patient	 chart	 (manually	or	 via	

NLP).	Using	 a	 formulation	 of	Bayes'	 theorem	 tailored	 for	 the	 LR	 context,	 these	posterior	

probabilities	 are	 highly	 interpretable	 when	 determining	 if	 a	 given	 disease	 is	 present	

(Equation	1).	 Pr(𝐷|𝐸)	 is	 the	posterior	probability,	 i.e.,	 the	probability	 of	 disease	D	 being	

present	given	diagnostic	evidence	E.	p	is	the	prior	probability,	which	represents	our	initial	

belief	or	estimate	of	the	likelihood	of	the	disease	before	seeing	any	diagnostic	evidence.	LRD	

is	 the	 LR	 for	 disease	D,	which	 quantifies	 how	many	 times	more	 likely	 a	 disease	 is	 to	 be	

present	given	E	compared	to	its	absence.	This	equation	is	used	to	update	our	initial	belief	

(prior	probability)	 based	on	new	evidence	 (phenotypes	 and	ES/GS	 results)	 to	 produce	 a	

revised	belief	(posterior	probability).	

	 Pr	(D	|	E) = !	⋅	LR!
(%&!)((!	⋅	LR!)

	 (1)	

Components	 of	 the	 clinical	 diagnosis	 workflow	 can	 be	 modeled	 by	 separate	 LRs	

representing	the	contribution	of	phenotypic	(LRpheno),	genotypic	(LRgeno),	and	segregation	

(LRseg)	information	to	posterior	belief	in	a	given	diagnosis.	The	product	of	these	individual	

LRs	are	equivalent	to	a	single	composite	LR	(LRD)	(Equation	2).	

	 LR) = LR*+,-. ⋅ LR/,-.0" ⋅ LR1,/0# 	 (2)	

CAVaLRi	 departs	 from	 the	 traditional	 LR	 definition	 by	 introducing	 a	 statistical	

learning	 technique.	 This	 technique	 empirically	 corrects	 for	 misspecification	 of	 the	
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component	 LRs	 by	 optimizing	 the	 relative	 weights	 between	 LRs	 (c!,c"),	 resulting	 in	

enhanced	 performance	 and	 accuracy	 (Figure	 2).	 Of	 note,	 CAVaLRi	 ultimately	 prioritizes	

genes	rather	than	variants	or	diseases.	As	such,	the	highest-scoring	disease	associated	with	

a	given	gene	G	is	chosen	to	represent	the	CAVaLRi	gene	score	(Equation	3).	In	simple	terms,	

the	 equation	 states	 that	 the	 highest	 LR	 among	 all	 diseases	 associated	 with	 gene	 G	 (DG)	

determines	the	LR	for	a	gene	(LR#).	If	a	gene	is	linked	to	multiple	diseases,	and	one	of	those	

diseases	 has	 strong	 diagnostic	 evidence	 (high	 LR),	 then	 the	 gene	will	 inherit	 that	 strong	

evidence	score.	This	approach	effectively	elevates	the	most	compelling	evidence	from	the	

disease-specific	level	to	the	broader	gene-associated	context.	

	 LR2 	=	 max3∈3$	
(LR3)		 (3)	

	
	
Phenotype	Likelihood	Calculation	

Estimation	of	LRpheno	

The	 CAVaLRi	 LRpheno	 for	 a	 given	 disease	 (D)	 and	 a	 given	 patient	 phenotype	 (𝑥$)	

(LR%&'()**𝑥$+)	 is	 calculated	by	dividing	 the	probability	of	observing	phenotype	𝑥$	 given	

that	 disease	D	 is	 present	 (Pr(𝑥$|𝐷))	 by	 the	 probability	 of	 observing	 phenotype	𝑥$	 in	 an	

instance	 of	 any	 other	 RGD	 except	D	 (Pr(𝑥$|¬𝐷)).	 This	 can	 be	 rewritten	 as	 a	 quotient	 of	

conditional	 probabilities.	 To	 limit	 the	 capacity	 for	 relatively	 small	 values	 to	 penalize	 the	

overall	phenotype	score,	the	maximum	is	returned	between	the	calculated	quotient	and	a	

configurable	minimum	phenotype	score	(value	of	1	determined	by	grid	search	optimization,	

Supplemental	Figure	1(c);	Equation	4):	

	 LR*+,-.3+𝑥!- = 	max .
56(7%|3)
56(7%|¬3)

, 11		 (4)	
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A	disease-phentoype	frequency	map	for	the	candidate	disease	(FD)	must	be	generated	

before	calculating	Pr(𝑥$|𝐷).	If	a	term	𝑥	has	a	frequency	for	disease	𝐷	in	HPO	annotations,	we	

set	 𝐹*(𝑥)	 to	 be	 equal	 to	 that	 frequency;	 however,	 if	 𝑥	 has	 descendants	 with	 disease	𝐷	

frequency	annotations,	we	set	𝐹*(𝑥)	to	be	the	maximum	of	descendent	frequencies.	When	a	

patient	 phenotype	 term	𝑥$	 lies	within	 the	 ancestral	 closure	 of	 any	 term	 associated	with	

disease	 D	 (XD),	 we	 define	 Pr*𝑥$0𝐷+	 to	 be	 equal	 to	 the	 value	 stored	 in	 the	 propagated	

frequency	map,	𝐹*(𝑥).	 If	𝑥	does	not	belong	 to	 the	ancestral	 closure	of	XD,	 the	set	of	most	

recent	common	ancestors	are	determined	between	𝑥$	and	XD,	which	we	denote	by	Xca.	For	

each	common	ancestor	term	𝑥+,	∈	Xca,	a	candidate	value	of	Pr(𝑥$|𝐷)	is	calculated	by	taking	

the	product	of	the	𝑥+,	disease	frequency,	𝐹*(𝑥+,),	and	the	ratio	of	the	genes	associated	with	

𝑥$,	 (𝐺-! , gene	count	 ;𝐺-!;),	 versus	 the	 number	 of	 genes	 associated	 with	 𝑥+, ,	 (𝐺-"# ,	 gene	

count	0𝐺-"#0).	This	penalty	effectively	drives	candidate	values	of	Pr(𝑥$|𝐷)	lower	the	farther	

𝑥+,	is	in	the	ontology.	The	maximum	score	amongst	all	candidate	values	is	taken	to	estimate	

Pr(𝑥$|𝐷).	Of	note,	the	𝑥+, 	that	maximizes	Pr(𝑥$|𝐷)	is	almost	always	the	closest	to	𝑥$	in	the	

HPO	graph	due	to	the	relatively	less	penalizing	value	of	
.#$!.

/#$"#/
	(smallest	value	of	0𝐺-"#0).	This	

property	 is	 not	 guaranteed	 in	 the	presence	 of	multiple	 parentage,	which	 is	why	 0𝐺-"#0	 is	

calculated	 for	 all	 𝑥+,	 ∈ 𝑎𝑛𝑐(𝑋+,	).	 We	 denote	 the	 𝑥+,	 that	 maximizes	 Pr(𝑥$|𝐷)	 as	 𝑥+,∗.	

(Figure	3(c),	Equation	5).	

Pr(𝑥$|𝐷) 	= A
		𝐹**𝑥$+																																																																						, 𝑥$ ∈ 𝑎𝑛𝑐(𝑋*	)	

max
-"#∈3"#

𝐹*(𝑥+,) 	 ⋅ 	
.#$!.

/#$"#/
	= 	𝐹*(𝑥+,∗) 	 ⋅ 	

.#$!.

/#$"#∗/
, 𝑥$ ∉ 𝑎𝑛𝑐(𝑋*	)

	 	(5)	
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We	 estimate	Pr(𝑥$|¬𝐷)	using	 the	 HPO	 annotations	 table,	 specifically	 dividing	 the	

number	 of	 RGDs	 associated	 with	 𝑥+,∗	 by	 the	 total	 number	 of	 diseases	 with	 phenotype-

disease	annotations.	In	essence,	more	specific	terms	will	have	lower	frequencies,	while	more	

general	terms	will	have	higher	frequencies	due	to	associations	with	multiple	diseases.	For	

example,	 the	Kayser-Fleischer	ring	(HP:0200032)	 is	a	grey-green	or	brownish-pigmented	

ring	 around	 the	 edge	 of	 the	 cornea.	 Currently,	 this	 term	 is	 only	 associated	with	 a	 single	

disease,	Wilson	disease	(OMIM:	277900,	an	RGD	that	prevents	the	body	from	removing	extra	

copper).	Given	the	uniqueness	of	the	term-disease	association	and	the	fact	that	HP:0200032	

∈ 𝑎𝑛𝑐(𝑋4565:	"889::)	(𝑥+,∗	=	HP:0200032),	the	Pr(𝑥$|¬𝐷)	for	Kayser-Fleischer	ring	would	

be	 !
|4565	<=>'?>'>|

.	 However,	 the	 parent	 term	 of	 Kayser-Fleischer	 ring	 is	 corneal	 opacity	

(HP:0007957),	a	term	with	19	child	terms	associated	with	329	diseases.	This	less	specific	

term	would	have	a	Pr(𝑥$|¬𝐷)	of	
@"9

|4565	<=>'?>'>|
.	

Multiple	 LRs	 for	 individual	 phenotypic	 abnormalities	 present	 in	 a	 patient	 can	 be	

multiplied	 together	 to	 compute	 an	 aggregate	 LR	 for	 a	 disease	 D	 and	 a	 set	 of	 patient	

phenotypes	𝑋$.	Assuming	 independence	 between	 phenotypic	 abnormalities	 𝑥$ ∈ 𝑋$,	 this	

aggregate	 LR	 can	 be	 calculated	 by	 taking	 the	 product	 of	 all	 LR%&'()**𝑥$+	for	 𝑥$ ∈ 𝑋$	

(Equation	6):	

	 LR*+,-.3+𝑋!- = ∏ LR*+,-.3(𝑥!)7%∈:% 	 (6)	

CAVaLRi	 introduces	 a	 novel,	 iterative	 procedure	 to	 detect	 phenotype-disease	 signal	 by	

incrementing	the	number	of	ordered	patient	phenotypes	to	consider	(Supplemental	Figure	1(a,b)).	

Initially,	the	top-ranked	phenotype	is	assessed	individually,	followed	by	the	product	of	scores	for	the	

top	 two	 phenotypes.	 This	 process	 continues,	 combining	 scores	 for	 the	 top-i	 ranked	 phenotypes	
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(LRD(𝑋!(1,i))),	until	reaching	a	maximum	of	19	phenotypes.	(value	of	19	determined	by	grid	search	

optimization,	Supplemental	Figure	1(c)).	For	each	subset,	the	value	of	LRD(𝑋!(1,i))	is	stored	in	a	vector.	

The	maximum	 of	 these	 values	 is	 returned	 to	 represent	 the	 phenotypic	 evidence	 in	 support	 of	 a	

diagnosis	of	disease	D	(Equation	7):	

	 LR*+,-.3 = max
%;<;%=

LR*+,-.3(𝑋!(%,<))	 (7)	

	

Genotype	Likelihood	Calculation	

Once	 all	 variants	 are	 scored	with	 functional	 region-specific	 pathogenicity	 in	 silico	

predictors,	 the	 CAVaLRi	 LRgeno	 is	 calculated	 for	 all	 genes	 with	 possibly	 disease-causal	

variants.	We	define	the	CAVaLRi	LRgeno	as	follows	(Equation	8):	

	 LR/,-. =
56(?@|3)
56(?@|¬3)

	 (8)	

By	applying	Bayes’	Rule,	Pr(𝑔𝑡| 𝐷)	can	be	converted	to	conditional	probabilities	that	

are	easier	to	calculate	(Equation	9).	

	 56(?@|3)
56(?@|¬3)

= 56(3|?@)∗56	(?@)
56(?@|¬3)∗56	(3)

	 (9)	

The	probability	of	observing	a	genotype	in	the	non-disease	population	(Pr(𝑔𝑡|¬𝐷))	

is	roughly	equivalent	to	observing	a	genotype	in	the	general	population, Pr(𝑔𝑡),	given	the	

relatively	low	incidence	of	any	individual	RGD.	As	such,	these	terms	can	be	canceled	in	the	

final	LRgeno	calculation	(Equation	10).	

	 56(3|?@)∗56	(?@)
56(?@|¬3)∗56	(3)

	≈ 56(3|?@)
56(3)

	 (10)	

By	substituting	the	probability	of	being	diagnosed	with	𝐷	given	the	patient’s	genotype	

(Pr(𝐷| 𝑔𝑡))	 with	 the	 obtained	 variant	 pathogenicity	 probabilities,	 the	 LRA'()	 can	 be	

calculated	by	dividing	Pr(𝐷| 𝑔𝑡)	by	prior	probability	of	observing	the	disease	(Pr(𝐷)).	This	
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prior	probability	of	observing	the	disease	is	estimated	by	sampling	a	uniform	distribution	of	

all	possible	OMIM	diseases,	or	 !
|4565|

,	assuming	a	described	genetic	disease	is	present.	

The	last	nuance	of	LRA'()	calculation	relates	to	genetic	variants	annotated	as	having	

pathogenic	or	likely	pathogenic	significance,	according	to	ClinVar.	If	a	gene	contains	such	a	

variant,	the	LRA'()	is	heuristically	squared	to	model	the	emphasis	placed	on	these	variants	

during	review	and	under	ACMG	guidelines	[8].	

	

Redefining	posterior	probability	calculation	

One	obvious	consequence	of	 introducing	hyperparameters	is	that	the	scaled	LR	no	

longer	represents	a	true	LR.	To	address	this	limitation,	probability	distributions	were	fitted	

to	the	CAVaLRi	scores	in	diagnostic	and	non-diagnostic	gene	sets	under	the	assumption	of	

uniform	prior	probabilities	 for	all	diseases	 (Supplemental	Figure	3(a,b)).	Diagnostic	odds	

can	be	calculated	by	comparing	conditional	probabilities	of	a	given	CAVaLRi	gene	score	being	

sampled	from	either	the	diagnostic	(Pr(CAVaLRi	score|𝐷𝑖𝑎𝑔)	or	non-diagnostic	distribution	

(Pr(CAVaLRi	score|¬𝐷𝑖𝑎𝑔)	 in	 context	 of	 prior	 frequencies	 (Pr(𝐷𝑖𝑎𝑔)	 and	 Pr(¬𝐷𝑖𝑎𝑔),	

respectively)	(Equation	11):	

	 𝐷𝑖𝑎𝑔.BB1 =	
56(CDEFGHI	10.6,|3<J?)	∗	56	(3<J?)
56(CDEFGHI	10.6,|¬3<J?)	∗	56(¬3<J?)

	 (11)	

Conditional	probabilities	are	drawn	from	fitted	probability	distributions,	while	prior	

probabilities	are	estimated	from	all	scored	genes	in	the	clinical	ES	training	partition.	From	

the	 diagnostic	 odds,	 the	 probability	 that	 a	 given	 variant	 is	 diagnostic	 can	 be	 calculated	

(Equation	12):	

	 Pr(𝐷𝑖𝑎𝑔|CAVaLRi	score) = 	 %
%(	3<J?&''(

		 (12)	
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This	 CAVaLRi	 definition	 of	 the	 posterior	 probability	 relies	 on	 probability	

distributions	 fitted	 to	 variant	 frequencies	 observed	 in	 the	 clinical	 ES	 training	 partition.	

Following	variant	preprocessing,	CAVaLRi	candidate	variant	lists	are	of	similar	length.	This	

ensures	that	the	ratio	of	diagnostic	to	non-diagnostic	variants	is	comparable	to	those	used	

to	fit	the	probability	distributions.	
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SUPPLEMENTAL	FIGURE	1.	Optimization	of	CAVaLRi	LRpheno.	(a)	Each	phenotype	term	is	first	
ordered	 based	 on	 information	 content,	 from	 left	 to	 right	 in	 this	 example	 with	 the	most	
informative	phenotyping	being	“Fatigable	Weakness”.	All	 terms	are	 then	scored	based	on	
their	relationship	with	the	query	disease’s	phenotype	terms	(Equation	4).	The	“floor”	value	
effectively	 limits	 how	 much	 one	 phenotype	 can	 penalize	 the	 overall	 phenotype	 score.	
Illustrated	are	two	phenotype	score	floor	scenarios,	0.1	and	1.	(b)	The	CAVaLRi	LRpheno	of	the	
patient’s	phenotype	set	is	calculated	by	taking	the	maximum	of	the	cumulative	LRpheno	over	
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a	range	of	phenotype	set	lengths.	In	this	example,	when	individual	term	scores	are	floored	at	
0.1,	the	maximum	LRpheno	occurs	when	the	phenotype	set	contains	4	terms.	When	the	floor	
value	is	increased	to	1,	the	cumulative	function	is	monotonically	increasing,	resulting	in	the	
maximum	LRpheno	value	occurring	at	the	maximum	set	length	value	(19)	(c)	The	selection	of	
19	 as	 the	 maximum	 set	 length	 was	 determined	 empirically	 by	 greedy	 searching	 a	 two-
dimensional	hyperparameter	space	 that	 includes	maximum	phenotype	set	 length	(x-axis)	
and	 the	previously	defined	 individual	phenotype	 floor	 score	 (y-axis).	The	area	under	 the	
precision-recall	curve	(PR	AUC)	of	the	maximum	LRpheno	was	chosen	as	the	accuracy	metric	
to	 optimize.	 Data	 from	 the	 training	 partition	 of	 the	 clinical	 ES	 cohort	 was	 utilized	 in	
calculating	PR	AUC.	The	greedy	search	was	 initiated	at	 the	origin	of	 this	hyperparameter	
space	to	favor	smaller	values.	In	the	case	of	maximum	phenotype	set	length,	a	smaller	value	
would	be	favorable	to	accommodate	cases	with	fewer	phenotypes.	A	maximum	phenotype	
set	length	of	19	and	floor	value	of	1	were	selected	at	the	termination	of	the	greedy	search.	Of	
note,	PR	AUC	was	lower	when	the	floor	value	was	set	to	0.1	compared	to	1,	suggesting	more	
accurate	 results	 when	 an	 individual	 term	 is	 not	 capable	 of	 penalizing	 the	 LRpheno	of	 the	
phenotype	set.	
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SUPPLEMENTAL	FIGURE	2.	CAVaLRi	statistical	learning	procedure	As	opposed	to	available	
gene	prioritization	algorithms,	CAVaLRi	is	trained	to	weight	each	component	LR	based	on	
relative	importance	(Equation	2).	(a)	To	ensure	that	CAVaLRi	was	naïve	to	a	set	of	cases,	the	
clinical	 ES	 cohort	was	 split	 70-30	 into	 training	 and	 test	 partitions,	 respectively.	 (b)	 The	
training	partition	was	further	divided	into	5	cross-folds	to	ensure	that	every	training	case	
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was	masked	during	one	iteration	of	hyperparameter	tuning.	(C)	For	each	of	the	5	iterations,	
unmasked	training	data	was	utilized	in	a	greedy	search	procedure	across	two-dimensional	
scalar	space	to	determine	the	relative	importance	of	the	LRgeno	(c1	in	Equation	2)	and	LRseg	
(c2	 in	 Equation	 2).	 The	 greedy	 search	 was	 initialized	 at	 the	 origin.	 The	 area	 under	 the	
precision-recall	curve	(PR	AUC)	was	selected	as	the	optimized	accuracy	metric.	Data	from	
the	 training	 partition	 of	 the	 clinical	 ES	 cohort	 was	 utilized	 in	 calculating	 PR	 AUC.	 The	
arithmetic	mean	of	the	five	optimization	points	(c1,	c2)	is	the	result	of	the	statistical	learning	
procedure.	The	returned	mean	optimization	point	values	have	been	set	as	 the	default	LR	
scalars	in	the	CAVaLRi	configuration	settings	(c1	=	2.29,	c2	=	3.69).	 	
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SUPPLEMENTAL	 FIGURE	 3.	 Fitting	 probability	 distributions	 for	 diagnostic	 and	 non-
diagnostic	variants.	(a)	Histograms	were	generated	from	the	CAVaLRi	Score	for	all	variants	
included	in	model	training.	Non-diagnostic	variants	are	shown	in	red	with	counts	indicated	
on	the	left	y-axis;	diagnostic	variants	are	shown	in	blue	with	counts	displayed	on	the	right	y-
axis.	 (b)	 Skewed	 Gaussian	 distributions	 were	 fit	 individually	 for	 diagnostic	 and	 non-
diagnostic	variants.	Associated	probability	density	functions	form	the	basis	of	the	CAVaLRi	
posterior	probability	calculation	(diagnostic	parameters:	𝛼	=	-1.06	𝜁	=	26.25,	𝜔	=	7.59;	non-
diagnostic	parameters:	𝛼	=	1.38	*	107,	𝜁	=	4.53,	𝜔	=	5.86).	
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SUPPLEMENTAL	FIGURE	4.	Observed	and	expected	diagnostic	variant	frequencies	indicate	
accurate	 modeling	 of	 posterior	 probability.	 (a)	 Illustration	 of	 Equation	 11	 mapping	
CAVaLRi	 score	 to	diagnostic	posterior	probability	 utilizing	diagnostic	 and	non-diagnostic	
Gaussian	CAVaLRi	score	distributions.	(b)	Variants	in	the	clinical	ES	test	partition	and	DDD	
validation	 cohort	were	binned	by	predicted	diagnostic	 probability	 (bin	 size	10).	Average	
predicted	values	within	these	bins	were	used	to	calculate	the	expected	diagnostic	rate.	The	
observed	diagnostic	rate	within	each	bin	was	calculated	by	dividing	the	count	of	diagnostic	
variants	 by	 the	 total	 number	 of	 variants	 contained	 in	 each	 bin.	 The	 close	 alignment	 of	
expected	and	observed	diagnostic	rates	supports	the	accuracy	of	the	newly	defined	CAVaLRi	
posterior	probability.	Of	note,	CAVaLRi	posterior	probabilities	were	consistently	higher	than	
observed	diagnostic	ratios	in	the	DDD	cohort	when	diagnostic	probability	predictions	were	
high.	This	may	indicate	that	cohort	calibration	may	be	necessary	in	clinical	settings.	
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SUPPLEMENTAL	 FIGURE	 5.	 Diagnostic	 variant	 classification	 accuracy	 by	 component	
likelihood	 ratio.	 CAVaLRi	 extends	 the	 likelihood	 ratio	 (LR)	 framework	 that	 was	 first	
described	in	LIRICAL.	Precision-recall	(a-c)	and	Top-N	(d-f)	curves	are	displayed	to	compare	
the	diagnostic	classification	accuracy	of	the	LRgeno	and	LRgeno	for	CAVaLRi	and	LIRICAL.	
Three	cohorts	are	illustrated,	the	Clinical	ES	test	partition	with	clinician-curated	phenotypes	
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(Clinical	 ES	 (Clinician),	 a-b),	 the	 Clinical	 ES	 test	 partition	 with	 NLP-curated	 phenotypes	
(Clinical	ES	(Computational),	c-d),	and	the	DDD	cohort	(DDD	(Validation),	e-f).	Generally,	
CAVaLRi	 component	 LRs	 outperformed	 their	 LIRICAL	 equivalents,	 the	 CAVaLRi	 LRgeno	
outperformed	 the	 LRpheno	(with	 the	 exception	 of	 the	 average	 diagnostic	 rank	 in	 the	DDD	
cohort),	and	the	LIRICAL	LRpheno	outperformed	the	LRgeno.	Of	note,	LIRICAL	seems	to	run	in	
global	 mode	 when	 TSV	 formatted	 output	 is	 requested.	 HTML	 formatted	 output	 was	
generated	to	obtain	LRpheno	and	LRgeno	values.	
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SUPPLEMENTAL	FIGURE	6.	Optimizing	the	relative	importance	of	likelihood	ratios	leads	to	
significant	gains	 in	accuracy.	CAVaLRi	achieves	critical	 improvement	 in	accuracy	 in	 the	
Clinical	ES	test	partition	after	determining	the	relative	importance	of	component	likelihood	
ratios.	CAVaLRi	optimization	yielded	increases	in	both	(a)	precision-recall	area	under	the	
curve	(0.483	increased	to	0.701)	and	(b)	average	diagnostic	rank	(1.70	decreased	to	1.59)



SUPPLEMENTAL	FIGURE	7.	Sets	of	phenotype	 terms	are	substantially	 larger	when	using	
computational	 approaches	 than	 manual	 curation.	 In	 practice,	 physicians	 manually	
review	the	clinical	record	to	extract	only	the	most	genetically	meaningful	phenotype	terms	
when	ordering	clinical	ES	testing.	Natural	language	processing	algorithms,	namely	ClinPhen,	
return	far	more	terms	on	average	than	manually	curated	sets.	Clinician	curated	set	length	
(red):	mean=30.1,	 SD=13.2;	 compared	 to	 computationally	 generated	 via	 ClinPhen	 (blue):	
mean=151.4,	SD=102.6.	



SUPPLEMENTAL	 TABLE	 1.	 Diagnostic	 DDD	 cases	 excluded	 due	 to	 diagnostic	 variants	
occurring	in	non-splicing,	intronic	regions.	There	were	56	diagnostic	cases	(58	variants)	
in	the	DDD	cohort	where	the	causal	variant	was	in	an	intronic	region	not	within	2	base	pairs	
of	an	exonic	splice	region.	These	cases	were	omitted	from	the	final	analysis.	

 
 
Case 

 
 
Gene 

 
 
Variant (GRCh38) 

 
 
Reasoning 

DDDP100135 SCN1A 2-165992435-A-T Intronic for both selected and MANE transcripts 
DDDP100153 NSD1 5-177238305-G-A Synonymous for both selected and MANE transcripts 
DDDP100209 KAT6B 10-75022006-G-A Synonymous for both selected and MANE transcripts 
DDDP100502 ITPR1 3-4815123-A-C 3' UTR for selected transcript, missense for MANE transcript 
DDDP101064 KAT6B 10-75022006-G-A Synonymous for both selected and MANE transcripts 
DDDP101305 SETD5 3-9468525-T-A Missense for selected transcript, intronic for MANE transcript 
DDDP101570 SNRPB 20-2467306-C-G Missense for selected transcript, intronic for MANE transcript 
DDDP101628 NRXN1 2-49974149-T-G Intronic for both selected and MANE transcripts 
DDDP102250 TCF4 18-55228372-T-C Intronic for both selected and MANE transcripts 
DDDP103218 ITPR1 3-4814521-G-C 3' UTR for selected transcript, missense for MANE transcript 
DDDP103895 MEF2C 5-88823891-C-T 5' UTR for both selected and MANE transcripts 
DDDP104933 NKX2-1 14-36517958-G-C 3' UTR for selected transcript, missense for MANE transcript 
DDDP106042 IFITM5 11-299504-G-A 5' UTR for both selected and MANE transcripts 
DDDP106913 PORCN X-48509783-G-A 5' UTR for selected transcript, splicing for MANE transcript 
DDDP107539 IFITM5 11-299504-G-A 5' UTR for both selected and MANE transcripts 
DDDP107924 HNRNPU 1-244862480-TGTGTCATCGAA-T Intronic for selected transcript, frameshift for MANE transcript 
DDDP109280 SMARCB1 22-23800933-T-G Intronic for both selected and MANE transcripts 
DDDP110855 CPLANE1 5-37226811-A-C 3' UTR for selected transcript, stopgain for MANE transcript 
DDDP110961 ALG13 X-111685040-A-G 3' UTR for selected transcript, missense for MANE transcript 
DDDP111138 NGLY1 3-25737407-G-A Missense for selected transcript, synonymous for MANE transcript 
DDDP111266 CASK X-41555605-G-A Intronic for selected transcript 
DDDP111304 MEF2C 5-88823814-G-A 5' UTR for both selected and MANE transcripts 
DDDP111509 CAMK2A 5-150228191-C-T Intronic for selected transcript, splicing for MANE transcript 
DDDP111580 ITPR1 3-4814497-G-A 3' UTR for selected transcript, missense for MANE transcript 
DDDP112008 MEF2C 5-88823796-G-A 5' UTR for both selected and MANE transcripts 
DDDP112091 HNRNPU 1-244862731-C-T Intronic for selected transcript, splicing for MANE transcript 
DDDP112101 GLI3 7-42023622-G-C Intronic for both selected and MANE transcripts 
DDDP112533 KMT2D 12-49027152-G-T Synonymous for both selected and MANE transcripts 
DDDP112668 WDR45 X-49076771-T-C Missense for selected transcript, intronic for MANE transcript 
DDDP112875 ITPR1 3-4815176-CAGA-C 3' UTR for selected transcript, inframe deletion for MANE transcript 
DDDP114293 ST3GAL5 2-85848169-CT-C Intronic for selected transcript, frameshift for MANE transcript 
DDDP115427 STXBP1 9-127612378-C-G 5' UTR for both selected and MANE transcripts 
DDDP115727 KAT6B 10-75022006-G-A Synonymous for both selected and MANE transcripts 
DDDP118412 ST3GAL5 2-85848203-CT-C Intronic for selected transcript, frameshift for MANE transcript 
DDDP118900 HNRNPU 1-244862714-TTC-T Intronic for selected transcript, frameshift for MANE transcript 
DDDP121248 ITPR1 3-4711828-T-C 3' UTR for selected transcript, missense for MANE transcript 

DDDP121714 KCTD1 18-26548477-AGCGCTGGCGCTGCCGCCC-
A 

Intronic for selected transcript, inframe deletion for MANE 
transcript 

DDDP122052 GRIA2 4-157361561-T-G Missense for selected transcript, intronic for MANE transcript 
DDDP122642 WT1 11-32391967-C-T Intronic for selected transcript, splicing for MANE transcript 
DDDP123526 DNM1 9-128226027-G-A Splicing for selected transcript, intronic for MANE transcript 
DDDP124153 WDR26 1-224431591-T-C Intronic for both selected and MANE transcripts 
DDDP125386 CREBBP 16-3769366-C-T Intronic for both selected and MANE transcripts 
DDDP125746 ZC4H2 X-64917770-G-GCT Frameshift for selected transcript, 3' UTR for MANE transcript 
DDDP125766 CPLANE1 5-37226580-A-C 3' UTR for selected transcript, missense for MANE transcript 
DDDP125766 CPLANE1 5-37226811-A-C 3' UTR for selected transcript, stopgain for MANE transcript 
DDDP125767 CPLANE1 5-37226580-A-C 3' UTR for selected transcript, missense for MANE transcript 
DDDP125767 CPLANE1 5-37226811-A-C 3' UTR for selected transcript, stopgain for MANE transcript 
DDDP127064 MEF2C 5-88823854-T-A 5' UTR for both selected and MANE transcripts 
DDDP127760 SLC52A2 8-144360922-C-T Missense for selected transcript, synonymous for MANE transcript 
DDDP127855 MEF2C 5-88729356-A-C Intronic for both selected and MANE transcripts 
DDDP128881 ITPR1 3-4814521-G-A 3' UTR for selected transcript, missense for MANE transcript 
DDDP128906 HUWE1 X-53625900-CGGGACT-C Intronic for both selected and MANE transcripts 
DDDP135483 HUWE1 X-53625871-G-GGGGCCA Intronic for both selected and MANE transcripts 
DDDP136425 KAT6B 10-75022006-G-A Synonymous for both selected and MANE transcripts 
DDDP137348 GFAP 17-44908075-G-A 3' UTR for selected transcript, missense for MANE transcript 
DDDP137672 NIPBL 5-37022036-A-G Intronic for both selected and MANE transcripts 
DDDP138296 OFD1 X-13752714-C-A Intronic for both selected and MANE transcripts 
DDDP139049 ITPR1 3-4814521-G-C 3' UTR for selected transcript, missense for MANE transcript 



	

Case Gene Variant (GRCh38) Zygosity Biological Sex Disease MOI 
DDDP102261 PHF6 X-134417289-C-T Heterozygous Female OMIM:301900 XLR 
DDDP104701 OGT X-71559365-T-A Heterozygous Female OMIM:300997 XLR 
DDDP107584 CDT1 16-88807284-C-T Heterozygous Male OMIM:613804 AR 
DDDP109173 NRXN1 2-50922661-G-A Heterozygous Female OMIM: 600565 AR 
DDDP110885 ARHGEF9 X-63697176-A-T Heterozygous Female OMIM:300607 XLR 
DDDP111554 BRWD3 X-80693016-AC-A Heterozygous Female OMIM: 300659 XLR 
DDDP111896 ARHGEF9 X-63674082-T-TA Heterozygous Female OMIM:300607 XLR 
DDDP113450 FARS2 6-5613259-C-G Heterozygous Male OMIM:614946 AR 
DDDP115974 NRXN1 2-50472472-C-T Heterozygous Male OMIM: 600565 AR 
DDDP117224 SLC6A8 X-153694347-G-A Heterozygous Female OMIM:300036 XLR 
DDDP117298 OTC X-38401372-G-C Heterozygous Female OMIM:311250 XLR 
DDDP121636 ARHGEF9 X-63706287-AG-A Heterozygous Female OMIM:300607 XLR 
DDDP123972 PHF6 X-134393557-T-A Heterozygous Female OMIM:301900 XLR 
DDDP126473 GRID2 4-93490747-T-C Heterozygous Male OMIM:616204 AR 
DDDP127185 KDM5B 1-202729961-C-A Heterozygous Female OMIM:618109 AR 
DDDP132170 CLCN5 X-50090678-C-T Heterozygous Female OMIM: 300009 XLR 
DDDP134103 NRXN1 2-51027934-A-AGG Heterozygous Male OMIM: 600565 AR 
DDDP134528 PHF6 X-134413956-A-G Heterozygous Female OMIM:301900 XLR 
DDDP135070 NRXN1 2-50538378-G-C Heterozygous Female OMIM: 600565 AR 

SUPPLEMENTAL	TABLE	2.	Diagnostic	DDD	cases	excluded	due	to	incompatible	modes	of	inheritance.	There	were	19	instances	
where	a	diagnostic	variant	was	 called	diagnostic	despite	 contrasting	 the	annotated	mode	of	 inheritance.	These	 cases	were	
omitted	from	the	final	analysis.	


