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Clinical exome and genome sequencing (ES/GS) have become indispensable diagnostic tools for rare genetic diseases (RGD).
However, the interpretation of ES/GS presents a substantial operational challenge in clinical settings. Test interpretation
requires the review of hundreds of genetic variants, a task that has become increasingly challenging given the rising use of ES/
GS. In response, we present Clinical Assessment of Variants by Likelihood Ratios (CAVaLRi), which employ a modified
likelihood ratio (LR) framework to assign diagnostic probabilities to candidate germline disease genes. CAVaLRi models
aspects of the clinical variant assessment process, taking into consideration the predicted impact of the variant, the proband
and parental genotypes, and the proband’s clinical characteristics. It also factors in computational phenotype noise and weighs
the relative significance of genotype, phenotype, and variant segregation information. We trained and tested CAVaLRi on
variant and phenotype data from an internal cohort of 655 clinical ES cases. For validation, CAVaLRi’s performance was
benchmarked against four leading gene prioritization algorithms (Exomiser’s hiPHIVE and PhenIX prioritizers, LIRICAL, and
XRare) using a distinct cohort of 12,832 ES cases. Our findings reveal that CAVaLRi significantly outperforms its counterparts
when clinician-curated phenotype sets are used, as evidenced by its superior precision-recall curve (PR AUC: 0.701) and
average diagnostic gene rank (1.59). Notably, even when substituting highly focused clinician-curated phenotype sets with large
and potentially nonspecific computationally derived phenotypes, CAVaLRi retains its precision (PR AUC: 0.658; diagnostic
gene average rank: 1.68) and markedly outperforms other tools. In a large, heterogeneous validation cohort, CAVaLRi stood
out as the most precise prioritization algorithm (PR AUC: 0.335; average diagnostic rank: 1.91). In conclusion, CAVaLRi
presents a robust solution for prioritizing diagnostic genes, surpassing current methods. It demonstrates resilience to noisy,
computationally-derived phenotypes, providing a scalable strategy to help labs focus on the most diagnostically relevant
variants, thus addressing the growing demand for ES/GS interpretation.

1. Introduction

Rare genetic diseases (RGDs) affect 8% of the U.S. popula-
tion and collectively represent the leading cause of infant
mortality [1]. Multiple studies demonstrate the importance

of an accurate diagnosis in cases of suspected RGD, includ-
ing a more precise prognosis, increased cost-effectiveness
of care, and risk assessment in future family planning
[2–4]. While exome and genome sequencing (ES/GS) are
increasingly relied upon for diagnosing RGD, they are not
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without challenges. Compared to a reference genome,
patients are expected to have 4-5 million genetic variants,
primarily single nucleotide variants (SNVs), but also
insertions, deletions (indels), and structural variants. After
removing noncoding variants (i.e., focusing on the ~2% of
the human genome that is exonic), common variants, and
those annotated as having benign significance, hundreds of
potentially disease-causing candidate variants remain for
manual review [5, 6]. Given the scale of the problem, effi-
cient prioritization of potential disease-causing variants is a
critical need [7].

For each candidate variant identified in ES/GS, clinical
genomicists assess the pathogenicity of the variant (either
implicitly or explicitly by applying a variant assessment
framework [8]) and the concordance of the patient’s pheno-
types with phenotypic frequencies in disease(s) associated
with the gene of interest [9]. Efforts to curate gene-disease
associations have led to the creation of databases, such as
the Human Gene Mutation Database [10] and Online
Mendelian Inheritance in Man (OMIM) [11], that aim to cat-
alog the thousands of known RGDs and their molecular bases.
Similarly, disease-phenotype annotations have been standard-
ized under the Human Phenotype Ontology (HPO) [12]. In
addition to database comparison, clinical genomicists analyze
available parental ES/GS data to ascertain whether candidate
variants segregate in a manner consistent with the associated
diseases’ mode of inheritance (MOI).

Despite the availability of these valuable resources, the
limited pool of experts capable of performing variant assess-
ment, compounded by the sheer number of candidate
variants they must assess per case [13–15], precludes current
processes from scaling to meet the growing demand for ES/
GS testing [3]. In addition to the initial ES/GS analysis,
reanalysis of previously unsolved ES/GS, powered by emerg-
ing gene-disease associations or the phenotypic evolution of
individual patients, is an increasingly recognized means of
diagnosing RGDs [16]. Given that the diagnostic yield of ini-
tial ES/GS is 25-45% [17–21], as the initial use of ES/GS
grows, the number of unsolved ES/GS cases from years prior
also grows. Considering these factors, the need for scalable
and reproducible variant prioritization in ES/GS analysis
has never been greater.

Several computational approaches have been proposed
that model the human-directed, manual process of review-
ing a genetic variant for diagnostic potential [22]. When
comparing variant prioritization algorithms to human-
directed efforts in our hospital’s clinical molecular genetics
laboratory, it became evident that computational approaches
do not always consider parental genotype and commonly fail
to account for the relative importance between genotype and
phenotype. We developed the Clinical Assessment of
Variants by Likelihood Ratios (CAVaLRi) framework to
more accurately prioritize potentially diagnostic genetic var-
iation. Additionally, CAVaLRi is designed to handle large,
noisy, computational phenotypes and thus can be combined
with natural language processing (NLP) algorithms to auto-
mate diagnostic variant prioritization (a feature particularly
beneficial in reinterpretation). By increasing the accuracy
of diagnostic variant (and by extension, gene and disease)

prioritization, the assessment burden per patient decreases,
enabling scalability in an environment of growing demand
for ES/GS.

2. Materials and Methods

2.1. Data Used for Model Training, Testing, and Validation

2.1.1. Training and Testing Cohort: Local Suspected RGD
Clinical ES Cohort. Phenotype and ES data were curated
from 655 patients suspected of RGD (clinical ES), 203 of
whom were determined to have one or more diagnostic var-
iant(s) recorded in their clinical record. This data was gener-
ated from Nationwide Children’s Hospital (NCH) patients
evaluated at The Steve and Cindy Rasmussen Institute for
Genomic Medicine (IGM) Clinical Laboratory. This molecu-
lar genetics laboratory is fully accredited by the College of
American Pathologists and certified according to the Clini-
cal Laboratory Improvement Amendments (CAP/CLIA).
As part of the routine diagnostic testing process, phenotype
descriptions from the medical record were manually mapped
to HPO terms by laboratory genetic counselors through a
phenotype curation interface developed at NCH (manual
phenotypes). Computationally derived phenotype terms were
extracted from prediagnostic electronic health records using
ClinPhen [23] for 586 clinical ES cases where clinical notes
were available (computational phenotypes). This previously
published tool extracts HPO terms and has demonstrated util-
ity in generating computed phenotypes in cases of suspected
RGD [23]. The 69 clinical ES cases without available notes
were excluded from computational versus manual phenotype
assessment (see Algorithmic Comparison).

2.1.2. External Validation Cohort: Deciphering Developmental
Disorders RGD ES Cohort. For external validation, 13,462
RGD patients from the Deciphering Developmental Disorders
(DDD, EGAS00001000775) study [24] were initially consid-
ered, 12,823 of which were included in the final analysis
(Figure 1). DDD provides germline variant calls for patients
and their parents, as well as the patient’s phenotypic abnor-
malities encoded in HPO terms. Of the DDD cases analyzed,
3,615 (28.2%) were considered diagnosed by exonic or splice
region findings according to a recently published diagnostic
variant set [25] (Table 1). This validation cohort’s phenotype
was treated as clinician-curated phenotypes, as DDD does
not provide access to original medical records.

2.1.3. Variant Calling. Clinical ES variants in the local cohort
were called using Churchill [26], a best practice implementa-
tion of sequence read alignment to the GRCh38 human
reference genome, base quality score recalibration, and
genotyping that the IGM clinical laboratory utilizes. The
resulting variant call format (VCF) files and provided
DDD VCF files were independently annotated with intraco-
hort frequencies. Following annotation, filtering was applied
to exclude variants of low quality (QUAL < 50) and variants
occurring at a frequency greater than 2% within respective
cohorts. In the DDD germline VCFs, variants with a
VSQLOD (for variant quality score log-odds) FILTER value
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were changed to PASS, as several diagnostic variants were
assigned a VSQLOD value.

2.2. Clinical Assessment of Variants by Likelihood Ratios
(CAVaLRi) Framework Overview. A likelihood ratio (LR)
framework for OMIM disease prioritization was previously
detailed in LIRICAL [27]. In a curated RGD cohort, LIRICAL
demonstrated superior performance compared to Exomiser’s
PhenIX and hiPHIVE prioritizers [28]. This framework allows
for the independent scoring of concepts that are critical in
determining the clinical significance of a genetic variant,
namely, the impact on functional regions (LRgeno) and pheno-
typic overlap with candidate diseases (LRpheno). Mathemati-
cally, a product of these LRs can be used to scale the
likelihood that a given variant is causing the disease pheno-
type. Along with a known prior probability, this composite

LR can yield a posterior probability of a certain RGD being
present, which is preferable for human interpretation.

CAVaLRi expands this framework to account for large phe-
notype sets (generated manually or via NLP, Supplemental
Figure 1), variant segregation in a pedigree, and the relative
importance of diagnostic concepts (Figure 2, see Supplemental
Materials for expanded mathematical description). These
concepts are represented as separate LRs and capture
phenotypic (LRpheno), genotypic (LRgeno), and variant
segregation (LRseg) information. The relative importance of
each component LR is established empirically via a statistical
learning procedure that optimizes the accuracy of diagnostic
variant classification (Supplemental Figure 2). CAVaLRi
departs from the traditional LR definition by introducing
these LR weights. To restore this loss of interpretability, the
scaled composite LR (CAVaLRi score) is calibrated to
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Figure 1: DDD CONSORT diagram. 13,642 cases from the DDD cohort were initially considered before narrowing the final case count to
12,832. 138 proband were removed due to expected data not being present (sample missing in VCF, no phenotypes listed, or diagnostic
variant missing in VCF). 12 proband were removed due to low quality or high cohort frequency. 459 probands were removed due to
lying outside of the scope of CAVaLRi detection (CNVs, nonexonic, and synonymous function, see Figure 3(b), Supplemental Table 1).
19 probands were removed due to disagreement between patient genotype and annotated mode of inheritance (heterozygous variants
causing recessive conditions; Supplemental Table 2).
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Table 1: Demographic distribution of reported cases.

Clinical ES training Clinical ES test DDD

n 458 197 12832

Diagnostic variant count (%)

0 315 (68.8) 137 (69.5) 9217 (71.8)

1 141 (30.8) 54 (27.4) 3551 (27.7)

2 2 (0.4) 6 (3.1) 63 (0.5)

3 — — 1 (<0.1)
Diagnostic = true (%) 143 (31.2) 60 (30.5) 3615 (28.2)

Trio status (%)

Singleton 31 (6.8) 18 (9.1) 3297 (25.7)

Duo 108 (23.6) 27 (13.7) 82 (0.6)

Trio 319 (69.6) 152 (77.2) 9453 (73.7)

Years from sign out (mean (SD)) 4.52 (1.05) 4.41 (1.02) —

Sign-out age (mean (SD)) 7.66 (7.00) 6.63 (6.15) —

Clinical notes = available (%) 400 (87.3) 186 (94.4) —

Sex = M (%) 257 (56.1) 111 (56.3) 7843 (61.1)

Race (%)

Asian 15 (3.3) 8 (4.1) —

Black or African American 28 (6.1) 15 (7.6) —

Multiple races 21 (4.6) 8 (4.1) —

Unknown 33 (7.2) 13 (6.6) —

White 361 (78.8) 153 (77.6) —

Ethnicity (%)

Hispanic or Latino 16 (3.5) 10 (5.1) —

Not Hispanic or Latino 420 (91.7) 181 (91.9) —

Unknown 22 (4.8) 8 (4.0) —

The clinical ES training and test partitions were stratified by diagnostic variant presence and race. DDD demographic distribution is also provided where
applicable, and not all demographic data were provided in the EGAS00001000775 download.
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Proband germline variants

Parental germline variants
LRseg
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Filter
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LRgeno

LRpheno

LRseg

LRcomposite

Pre-test probability
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relative
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Figure 2: CAVaLRi implements novel extensions to the LR paradigm. LIRICAL first described a likelihood ratio model for prioritizing
disease-causing genetic variants; however, some critical clinical components of the diagnostic process were not represented. Novel
components incorporated into the extended framework are indicated in blue and include incrementing filtered phenotype sets, adding a
mode of inheritance likelihood ratio (LRseg) and rescaling the relative importance of each likelihood ratio component. CAVaLRi takes a
list of HPO IDs (.csv format), a list of variants (.vcf format), and a pedigree file detailing familial relationships (.ped format).
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diagnostic and nondiagnostic score distributions to yield a
new posterior probability. CAVaLRi ultimately outputs a
prioritized gene list sorted by these posterior probabilities.

2.3. Phenotype Likelihood Calculation

2.3.1. Generation of a Given Patient’s Set of Phenotypes. The
phenotypic abnormalities in a patient suspected of RGD can
be represented computationally by a set of HPO terms.
Trained clinicians curate these phenotype sets manually by
reviewing a patient’s clinical record and determining the
HPO terms most relevant to a patient’s condition. This sub-
jective process typically prioritizes HPO terms with a high
potential of being associated with a genetic diagnosis (i.e.,
high information content terms [29]). Alternatively, pheno-
type sets can be generated by NLP algorithms designed to
extract HPO terms from plain-text clinical notes. Computa-
tionally derived phenotype sets tend to be larger and have
more noise than manually curated sets [30]. However, some
level of noise can be expected in both methods. Conceptu-
ally, a full phenotypic description of a patient with an
RGD will include HPO terms attributable to the RGD, non-
genetic etiologies, and possibly terms related to a second
RGD. In practice, one does not know which group a given
term belongs to. Identifying the optimal set of HPO terms
to focus on for a given patient is further complicated by
the fact that many RGDs are sparsely annotated in the
HPO compared to the complete phenotypic spectrum of
the condition [31, 32].

To overcome these limitations, rather than attempting to
model whether an individual HPO term is attributable to a
given RGD, wemimic the typical approach of clinical genomi-
cists by iteratively considering subsets of phenotype terms to
identify the subset that best supports a given candidate diag-
nosis. Consider a patient who has been referred to a clinical
geneticist for assessment due to manifestations of intellectual
disability and sensorineural hearing loss, amongst other clini-
cal features. Genome sequencing has identified a potentially
pathogenic variant in a gene associated with hearing loss.
While not as compelling as a potentially pathogenic variant
in a gene associated with both intellectual disability and senso-
rineural hearing loss, this variant should not be discounted
just because the intellectual disability is not explainable by
the candidate variant. This permits a dual diagnosis; our
example patient could be diagnosed with both monogenic
nonsyndromic hearing loss and a different diagnosis that
accounts for intellectual disability. We represent this thought
process computationally by creating patient phenotype
subsets with the terms most consistent with a candidate
genetic diagnosis. This requires a two-step process. First,
patient phenotype terms from the HPO are ranked by rele-
vance in genetic disease. Second, the highest-ranking pheno-
types are incrementally subsetted when calculating the
phenotype LR (LRpheno).

Two distinct approaches were utilized to rank phenotypes,
depending on whether the terms were derived manually or
computationally. For manually derived clinician-assigned
phenotypes, HPO terms were ranked by assigning informa-
tion content (IC) scores to each term using the IC formulation

provided in Phrank [29]. This IC score is a function of HPO
phenotype-gene annotations, where more specific terms with
fewer gene annotations relative to their ancestors in the
HPO graph receive higher scores. Computational phenotype
sets were generated by the NLP algorithm, ClinPhen, which
ranks each HPO term by the number of occurrences of the
term within a patient’s medical record. The developers of
ClinPhen demonstrated that term occurrences outperformed
IC when ranking diagnostic genes [23].

2.3.2. Estimation of LRpheno. Once phenotype terms are
sorted according to IC or clinical text occurrences, disease
likelihoods are calculated in the context of the phenotype
set for all OMIM disease entries. For each disease entry,
the likelihood of the disease being present, given the
observed phenotypic abnormalities, is calculated. Each phe-
notype element is estimated individually and combined to
represent the LRpheno for the candidate disease. Estimating
the likelihood that a specific phenotype is indicative of a par-
ticular disease is challenging given the sparsity of disease-
phenotype frequency annotations within the HPO (average
of 15.5 annotated terms/diseases). This is especially true
when considering the myriad of possible disease-phenotype
combinations (>17,000 HPO terms in the phenotypic abnor-
mality subontology, >8,100 OMIM diseases). Thoughtful
propagation of the null fields in the phenotype-disease
matrix can increase annotation coverage and accuracy in
modeling.

The HPO is structured as a directed acyclic graph, where
specific phenotypic abnormalities (child terms) are grouped
under more general terms (parent terms). For example, “short
stature” (HP:0004322) is a specific manifestation of the broader
category “abnormality of body height” (HP:0000002). This
parent-child relationship in the HPO is termed an “is a”
relationship. We can capitalize on this hierarchical structure
to address the sparsity issue, as it allows for the inheritance of
frequency annotations from child to parent (making general
categories inherit specifics). By extension, frequency annota-
tions can be passed from child to parent terms (imparting
general knowledge from more specific terms). For example, if
“pituitary dwarfism” occurs in 40% of patients with a given dis-
ease, then “short stature” (its parent term) also occurs in at least
40% of those patients. In cases where a parent term has multi-
ple annotated child terms, the maximum frequency amongst
the child nodes is selected. To extend the previous example,
assume another child term of “short stature,” “birth length less
than 3rd percentile” is annotated with a disease frequency of
20%. The true disease frequency of “short stature” lies some-
where between 40% and 60%, depending on the coexpression
of these terms in the disease population. Unfortunately, coex-
pression frequencies are not available under the current HPO
annotations. Given this limitation, only the child node with
the highest disease frequency is considered.

In the context of a directed acyclic graph, the “ancestral
closure” of a node (or term) refers to the set of nodes on any
path drawn from the term of interest to the root node
(Figure 3(a)). For the HPO, the root node is “phenotypic
abnormality” (HP:0000118). So, if you select a term (like
“pituitary dwarfism”), the ancestral closure would include

5Human Mutation



Figure 3: Calculating phenotype concordance between patient and disease phenotype sets. (a) Given a set of patient phenotypes
(Xp = HP A, HP B, HP C ) and a set of disease phenotypes (XD = HP X, HP Y, HP Z ), CAVaLRi calculates phenotype-disease
concordance by iterating through each patient phenotype term xp ∈ Xp and comparing to XD. First, the ancestral closure is determined
for xp ∈ Xp by selecting all nodes separating xp from the root node (HP:0000118 in the case of the Human Phenotype Ontology, or
HPO). Next, the ancestral closure of XD (anc XD ) is defined, which is a union of anc xD for xD ∈ XD. (b) A disease-phenotype
frequency lookup table (FD) is then populated by propagating annotated disease-phenotype frequencies up the HPO graph. When a
node has more than one child node, the maximum disease-phenotype frequency amongst child nodes is assigned. Gene counts ( Gx ) are
indexed for all xp ∈ Xp and xD ∈ anc XD . (c) Pr xp D is calculated according to Supplemental Materials Equation 5 (F xp when
xp ∈ anc XD , F xca

∗ · Gxp
/ Gxca∗

, when xp ∉ anc XD ). For xp ∈ Xp, the set of common ancestors (Xca) is determined by

intersecting anc xp with anc XD . The common ancestor term with the highest Pr xp D (xca
∗) is identified and used to complete Equation

5 calculation.
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every term (or nodes) you encounter as you trace back to
“phenotypic abnormality”: “pituitary dwarfism” (is a), “short
stature” (is a), “abnormality of body height” (is a), “growth
delay” (is a), “growth abnormality” (is a), and “phenotypic
abnormality.” By extension, we define the ancestral closure
of a phenotype set to be all nodes (or terms) connecting a
patient’s phenotypes to the root node.

By propagating known disease-phenotype frequencies
up the edges of the HPO graph, a frequency lookup table
can be built that is keyed on HPO ID and stores the highest
disease-phenotype frequencies across all descendent HPO
terms (Figure 3(b)). This ancestrally closed phenotype repre-
sentation contains more than four times as many values
compared to the annotated terms alone (mean of 70.4 anno-
tated terms/disease when ancestrally closed). The probability
of observing the patient’s phenotypes, given the presence of
the candidate disease, is determined by querying the gener-
ated disease-frequency lookup table (Figure 3(c)). The
probability of observing a patient’s phenotypes, given the
candidate disease is not present, is estimated by counting
the number of OMIM diseases associated with each pheno-
type. These probabilities are used to calculate the LRpheno
of the patient’s phenotype set. Lastly, as previously men-
tioned, CAVaLRi identifies the combination of phenotypes
that most strongly support the diagnosis of each candidate dis-
ease (Supplemental Figure 1). The list of patient phenotypes,
sorted by IC, is truncated to the i most informative terms
over each iteration (i ranges from 1 to a configurable subset
length maximum). Prior to iterating, an output vector is
initialized to store the LRpheno for each truncated subset.
Starting with a subset of size one, the LRpheno of the most
informative term is stored in the first position of an output
vector. Next, the LRpheno of the two most informative terms
are combined and stored in the second position of the
output vector. This process continues until reaching a
configured largest subset size, at which point a maximum is
taken across all elements in the output vector. This value is
returned as the LRpheno for the patient’s phenotype set for
the candidate disease. This procedure identifies the subset of
patient phenotypes that most support the candidate disease.

2.4. Genotype Likelihood Calculation.When prioritizing can-
didate variants, two procedures are required: (1) obtain a list
of variants that could be diagnostic and (2) sort the list based
on some calculated score. First, CAVaLRi preprocesses the
provided variants to remove any that are unlikely to be con-
sidered pathogenic, such as those that are common to the
population (i.e., variants with a high gnomAD frequency),
artifactual (i.e., variants resulting from low-quality sequence
coverage or alignment issues), or those that are unlikely to
impact the translational process (i.e., those that occur in
intronic regions). Second, following this filtering step, the
likelihood of each genetic variant to cause disease (LRgeno)
is utilized to aid in sorting the candidate variant list.

2.4.1. Variant Preprocessing. Before scoring variants for
pathogenicity, provided variants are subjected to annotation
and filtering to obtain a list of candidate variants. If artifac-
tual regions are known, a file detailing the corresponding

genomic coordinates can be provided. Any variants occur-
ring in these regions will be removed. Configurable thresh-
olds can also remove variants with quality or depth values
lower than specified values. Validation is then applied to ref-
erence the proband sample column in the VCF and remove
variants where the proband does not have an alternative
allele. The resulting set of variants is normalized with
bcftools [33] and annotated using the RefSeq, gnomAD,
and ClinVar databases [34–36] via the ANNOVAR variant
annotation tool [37]. Additional filtering is then applied to
remove variants (1) occurring in frequencies greater than
1% in any gnomAD population, (2) located in a nonexonic
region, or (3) synonymous functional effect. Variants occur-
ring in canonical splice regions are rescued from the exonic
filter, and variants with submitted pathogenic significance in
ClinVar are retained regardless of the previously stated fil-
tering logic. These filtered variants represent the case’s can-
didate list of diagnostic variants and are subjected to LRgeno
calculation.

2.4.2. Estimation of LRgeno. CAVaLRi relies on in silico path-
ogenicity prediction algorithms to identify variants that may
be disease-causal. Algorithms were chosen that output the
probability of pathogenicity for compatibility with the LR
framework. Only variants with a higher probability of being
pathogenic rather than benign (i.e., an in silico score greater
than or equal to 0.5) are considered for evaluation. Any var-
iant with a score less than 0.5 is heuristically omitted from
further analysis. All variants are annotated as either exonic
or intronic and scored accordingly.

Exonic variants resulting in reading frame shifts or alter-
ation of start or stop codons are heuristically assigned a
pathogenic probability of one. For nonsynonymous SNVs,
CAVaLRi uses MetaRNN to predict pathogenicity [38]. For
inframe indels, MutPred-Indel was utilized [39]. Of note,
MutPred-Indel is computationally expensive and may be
overridden in CAVaLRi to automatically assign nonframe-
shift indels a pathology score of 0.5. For intronic variants
impacting a canonical splice site (within 2 base pairs of the
splicing junction), SpliceAI is used to predict the pathogenic
impact [40]. All other intronic variants are heuristically
omitted. The CAVaLRi LRgeno is calculated with these path-
ogenicity predictions, variant population frequencies, and
disease frequencies (see Mathematical Method Descriptions
in Supplementary Materials). Additional heuristics are
applied if one or more of the candidate variants in an asso-
ciated gene are annotated as having pathogenic significance
in ClinVar.

Of note, some genes are associated with multiple OMIM
diseases. LRgeno is equivalent for all diseases associated with
a gene, given that they share the same candidate variants.
Thus, the LRgeno is calculated once for every gene containing
a candidate pathogenic variant. If multiple variants are
present within a single gene, the inheritance pattern for the
associated candidate disease is considered. If the disease is
dominant, the variant with the highest predicted pathoge-
nicity is considered. If the disease is recessive, the top two
scoring variants are averaged to obtain the predicted
pathogenicity.
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Candidate variants are further filtered at this stage as
candidate variants transition to candidate genes. If the dis-
ease associated with the candidate gene is recessive, the gene
must contain two predicted disease-causal alleles, whereas
the dominant disease requires only one. If the number of
alleles within the candidate gene is less than required, the
gene is not scored and is heuristically omitted from further
analysis. If a candidate gene is associated with both domi-
nant and recessive diseases, a dominant mode of inheritance
is assumed.

2.5. Segregation Likelihood Calculation. A core component
of reaching a genetic diagnosis is determining whether
detected variants segregate as expected, given the known
MOI of a disease. Fortunately, parental samples are often
available in pediatric ES/GS [19]. A “segregation” LR (LRseg)
is heuristically defined as 10-1 in the case where variant
inheritance does not match the annotated MOI (thus allow-
ing for the possibility of incomplete penetrance, which is not
systematically annotated in OMIM), 101 if the variant inher-
itance does match the annotated MOI (i.e., two candidate
variants in a recessive disease gene, inherited in trans), and
100 if inheritance cannot be determined due to lack of paren-
tal data. If only one parent is present, partial inheritance evi-
dence is modeled by taking the square root of the calculated
LRseg for the available parental data.

2.6. Optimization of Relative LR Importance. CAVaLRi
introduces an optimization step to statistically learn the rel-
ative importance of phenotype, genotype, and segregation.
Hyperparameters (exponential constants) are introduced to
differentially scale each LR (the LRpheno constant is fixed
to 1) and effectively capture the relative importance of each
modeled component. This optimization also accounts for
the various approximations and heuristics applied to deter-
mine each component LR may be. Constant values (c1, c2)
were optimized to maximize the area under the precision-
recall curve (PR AUC, see Accuracy Metric Selection below).
To assess the generalizability of the approach, a train-test
split was performed (70% training, 30% test), stratifying over
diagnostic status, self-reported race, and biological sex to
reduce any potential biases in model training (Table 1 and
Supplemental Figure 2(a)). The training data were further
partitioned into five cross-validation folds before searching
the two-dimensional (c1, c2) scalar space (Supplementary
Figure 2(b)). A greedy search optimization approach was
employed, starting from the origin of scalar space and
stepping in the direction that maximizes the PR AUC
(Supplementary Figure 2(c)). Each training partition’s
optimal (c1, c2) coordinates were averaged. Following the
optimization procedure, scalars of 2.29 and 3.69 were
assigned to LRgeno and LRseg, respectively.

2.7. Accuracy Metric Selection. CAVaLRi posterior probabil-
ities were utilized to sort a list of candidate variants for each
case and generate a corresponding precision-recall (PR)
curve. PR curves demonstrate that classifier performance is
maintained despite the stark class imbalance between the
total number of diagnostic versus nondiagnostic variants.

Furthermore, utilizing PR curves allows for performance
assessment in a cohort containing both diagnostic and non-
diagnostic cases. Mean diagnostic gene rank is also reported
in cases with a known diagnosis. Mean rank was selected
over median rank, as median rank maximizes to one for
any algorithm ranking the diagnostic variant first at least
50% of the time, while mean rank allows one to distinguish
between algorithms exceeding this level of accuracy.

2.8. Algorithmic Comparison. The PR AUC and mean diag-
nostic variant rank are considered tomeasure the performance
of CAVaLRi against other leading variant prioritization algo-
rithms. The initial comparison considers manually curated
phenotypes from the clinical ES and DDD validation cohorts.
A second comparison in the clinical ES cohort evaluates algo-
rithmic performance given either manually curated or compu-
tationally generated phenotype sets. Comparators include the
Exomiser prioritizers (hiPHIVE, PhenIX), LIRICAL, and
XRare. These algorithms were cited in a recent review as
highly accurate and open-source, allowing for reliable bench-
marking [41].

3. Results

When utilizing manually curated phenotypes in the clinical ES
cohort, CAVaLRi output was more informative compared to all
other algorithms in terms of both PR AUC (0.701) and average
diagnostic gene rank (1.59; 72.7% of diagnostic genes were
ranked in the first position) (Figures 4(a) and 4(b)). The Exomi-
ser prioritizers were the next most accurate methods in terms of
PR AUC (hiPHIVE: 0.351, PhenIX: 0.208) and average diag-
nostic gene rank (hiPHIVE: 4.42, 74.2% first position; PhenIX:
3.38, 59.1% first position). LIRICAL (PRAUC = 0 091, average
diagnostic rank = 50 95, 25.8% first position) and XRare
(PRAUC = 0 057, average diagnostic rank = 12 08, 24.2% first
position) were less accurate than all other comparators. Of
note, LIRICAL seems to run in global mode when TSV for-
matted output is requested. HTML formatted output was also
generated to curb this behavior, but the diagnostic variant
recall was inadequate. Diagnostic recall, or the percentage of
diagnostic genes recovered after applying variant preprocess-
ing (different for each comparator), was high across all algo-
rithms in the clinical ES test partition (CAVaLRi: 97.0%,
hiPHIVE: 90.9%, PhenIX: 90.9%, LIRICAL: 100%, and XRare:
97.0%). CAVaLRi did not recall two diagnostic genes due to
one variant having a high population frequency and one
variant having a low MetaRNN score. Differences in prepro-
cessing resulted in differing numbers of candidate genes
requiring review. Across the clinical ES cohort, CAVaLRi
returned 2,925 candidate genes (averaging 14.8 per case),
Exomiser returned 23,207 (117.8 per case, same preprocessing
for hiPHIVE and PhenIX prioritizers), XRare returned
25,024 (127.0 per case), and LIRICAL returned 31,469
(159.7 per case).

In the DDD validation cohort, less accurate results were
obtained for all algorithms (Figures 4(c) and 4(d)). The rel-
ative accuracy between algorithms was mostly consistent
with the results observed in the clinical ES cohort both in
terms of PR AUC (CAVaLRi: 0.335, hiPHIVE: 0.159,
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PhenIX: 0.135, LIRICAL: 0.125, and XRare: 0.111) and aver-
age diagnostic rank (CAVaLRi: 1.91, hiPHIVE: 3.27, Phe-
nIX: 4.20, LIRICAL: 13.33, and XRare: 4.77). CAVaLRi
placed the diagnostic gene in the first position more than
all algorithms, at 61.4% (hiPHIVE: 59.8%, PhenIX: 46.6%,
LIRICAL: 24.2%, and XRare: 37.7%). Recall of diagnostic
genes was similar to that seen in the clinical ES test partition
for all algorithms (CAVaLRi: 96.0%, hiPHIVE: 91.9%,
PhenIX: 91.9%, LIRICAL: 98.6%, and XRare: 98.5%).
Diagnostic genes that were not recalled by CAVaLRi include
95 with variants whose scores were below the indicated
thresholds, 38 where RefSeq annotation indicated an intro-
nic functional effect, and 13 where HPO annotations were
not available for the disease associated with the diagnostic
gene. CAVaLRi preprocessing returned the lowest number
of candidate genes across the DDD cohort at 175,827
(averaging 13.7 per case). Exomiser returned 1,475,485
candidate genes (115.7 per case), XRare returned 791,638

(61.7 per case), and LIRICAL returned 1,034,646 (80.6
per case).

When computational phenotypes were substituted for
manually curated phenotypes in the clinical ES test partition,
CAVaLRi was the only algorithm to maintain high levels of
accuracy when compared to performance with manually
curated phenotypes (Figure 5). The accuracy of all algo-
rithms generally decreased according to both PR AUC
(reductions were CAVaLRi: 6%, hiPHIVE: 0%, PhenIX:
26%, LIRICAL: 79%, and XRare: 28%) and average diagnos-
tic rank (reductions were CAVaLRi: 6%, hiPHIVE: 33%,
PhenIX: 28%, LIRICAL: 51%, and XRare: 17%). Overall,
CAVaLRi was markedly resilient to the use of potentially
noisy computational phenotypes and continued to display
more accurate results compared to all other algorithms
according to both PR AUC (CAVaLRi: 0.658, hiPHIVE:
0.352, PhenIX: 0.153, LIRICAL: 0.019, and XRare: 0.041)
(Figure 5(a)) and average diagnostic rank (CAVaLRi: 1.68,

Figure 4: CAVaLRi demonstrates marked gains in diagnostic accuracy compared to existing methods in multiple patient cohorts. CAVaLRi
was benchmarked against four leading diagnostic variant prioritization algorithms with clinician-curated phenotype sets (comparators
include the hiPHIVE and PhenIX Exomiser prioritization, LIRICAL, and XRare). In the test partition for the clinical ES cohort,
CAVaLRi displayed the highest accuracy as demonstrated by (a) higher PR AUC and (b) lower average diagnostic rank compared to all
other algorithms. Similar relative performance was observed in the validation cohort (DDD) in terms of both (c) PR AUC and (d)
average diagnostic rank.
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hiPHIVE: 5.89, PhenIX: 4.32, LIRICAL: 77.15, and XRare:
14.13) (Figure 5(b)). CAVaLRi placed the diagnostic gene
in the first position more than all algorithms, at 71.0%
(hiPHIVE: 56.5%, PhenIX: 45.2%, LIRICAL: 3.23%, and XRare:
17.7%). The order of comparator algorithm performance did
not change between the two accuracy metrics, except for XRare
outperforming LIRICAL in terms of PR AUC when provided
with computationally-derived phenotypes.

The posterior probabilities appeared well-calibrated, with
predicted diagnostic probabilities in the clinical ES test set
closely aligning with observed diagnostic frequencies (Supple-
mental Figure 4(a, b)). Posterior probabilities in the DDD

cohort were slightly higher than observed probabilities,
particularly when the posterior probability was greater than
50%.

Considerable differences in CAVaLRi performance were
observed based on the availability of parental GS data. In the
clinical ES test set, algorithmic performance on trios outper-
formed performance in duos and singletons in terms of both
PR AUC (Figure 6(a), trios: 0.756, duos: 0.443, and single-
tons: 0.313) and average diagnostic gene rank (Figure 6(b),
trios: 1.47, duos: 2.29, and singletons: 2.00). The same pat-
tern was observed in the DDD cohort for PR AUC
(Figure 6(c), trios: 0.381, duos: 0.223, and singletons:

Figure 5: CAVaLRi remains equally performant regardless of the source of phenotype terms. The performance of all comparators was
evaluated using sets of phenotype terms that were either curated by clinicians (“manual”; solid lines) or generated computationally
through NLP processing of medical records (“ClinPhen”; dashed lines) from the test partition for the clinical ES cohort. Accuracy was
measured again by (a) PR AUC and (b) top-N curves. CAVaLRi was slightly less accurate in terms of PR AUC and nearly identical in
terms of average diagnostic rank when provided with computationally derived phenotype sets. By contrast, the other four algorithms
evaluated, hiPHIVE, PhenIX, LIRICAL, and XRare, demonstrated a significant performance decrease when utilizing computationally
generated phenotypes.
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0.229) and average diagnostic gene rank (Figure 6(d), trios:
1.82, duos: 2.12, and singletons: 2.26).

Of note, when running CAVaLRi, the run_mutpredindel
flag was set to False after initial attempts to process the
cohort data consumed exorbitant computational resources.
This has been designated as the default value in the
CAVaLRi settings.

4. Discussion

Of the open-source algorithms available for us to evaluate,
CAVaLRi proved to be the most accurate algorithm in prior-
itizing diagnostic variants. Moreover, our approach provides
an automated and scalable solution to meet the growing
demand for ES/GS. CAVaLRi promotes scalability more
than comparator algorithms by reducing the number of can-
didate genes requiring review by 87.4% in the clinical ES
cohort and 77.8% in the DDD cohort compared to the
second-best comparators (Exomiser in clinical ES, XRare
in DDD). Additionally, in RGD cases where diagnostic var-

iants are present, the burden of detailed manual review is
significantly reduced considering that CAVaLRi demon-
strated the lowest average diagnostic variant rank. CAVaLRi
accounts for the segregation of variants more comprehen-
sively than any published, open-source gene prioritization
algorithm we are aware of. This feature is helpful in cases
of incomplete penetrance, where robust phenotype matching
and implied biological significance can outweigh an incom-
patible inheritance pattern. The CAVaLRi LRpheno and
LRgeno outperformed their equivalents in the LIRICAL,
indicating a more informative representation of both
phenotypic and genotypic data in the CAVaLRi framework
(Supplemental Figure 5). The CAVaLRi LRgeno was more
informative in binary classification compared to LRpheno,
while the opposite trend was observed in LIRICAL.

The significant gains in accuracy were primarily attribut-
able to the hyperparameter optimization procedure, where
each LR was scaled according to the learned relative
importance (Supplemental Figure 6(a, b)). The relatively
high scalar values assigned to the LRgeno and LRseg are

Figure 6: CAVaLRi’s diagnostic prioritization accuracy is highly dependent on available parental data. Differences in prioritization accuracy
were explored between cases where ES was available for both parents (trio), only one parent (duo), or neither parent (singleton). The
availability of parental data improved CAVaLRi performance in the clinical ES test partition when parental data, with trio cases
outperforming duo cases, and duo cases outperforming singleton cases, as assessed by (a) PR AUC and (b) top-N curves. The same
pattern was observed in the DDD validation cohort as assessed by (c) PR AUC and (d) top-N curves.
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concordant with the hypothesis that the true phenotypic
spectrum of many RGDs is, at best, poorly understood.
Instead, disease-phenotype annotations often reflect the
distribution of phenotypes amongst those who are severely
affected and were likely initially identified and described as
the “classic” forms of a particular RGD. Future efforts to
identify phenotypes that fall outside of these canonical
features, for example, through reverse phenotyping approaches
[42], would likely increase the utility of the LRpheno. By
extension, this implies that refitting hyperparameters will be
necessary as curated biomedical knowledge evolves.

Sorting and filtering phenotypes by IC allowed for
extracting phenotype signals from otherwise noisy computa-
tionally generated phenotypes. The phenotype filtering
extension of CAVaLRi hedges against phenotypic noise by
prioritizing phenotypes associated with an RGD and only
considering the subset of phenotypic terms that most closely
align with candidate diagnoses. Computationally generated
phenotype sets include significantly more HPO terms
(mean = 151 4, SD = 102 6) compared to manually curated
phenotype sets (mean = 30 1, SD = 13 2) (Supplemental
Figure 7), requiring significant filtering to avoid performance
degradation. By considering all phenotypes rather than an
informative subset, comparator algorithms are vulnerable to
losing important phenotype signals amongst genetically
irrelevant phenotype terms. This was evidenced by less
accurate performance across all comparator algorithms when
provided larger computational sets compared to smaller,
manually curated phenotype sets. Of note, the initial
description of LIRICAL simulated noisy manually curated
phenotypes and demonstrated minimal degradation in
performance. However, these phenotype sets were not
representative of computational phenotype sets derived from
clinical notes, as they were much smaller.

This result confirms that computational methods that
perform phenotype extraction in a fraction of the time
human experts can be used with the right prioritization algo-
rithm to save time without substantially sacrificing accuracy.
Here, we used one such open-source NLP algorithm, Clin-
Phen, to convert plain-text clinical notes into a prioritized list
of patient phenotypes with high accuracy and speed [23].
CAVaLRi’s accuracy fell 6% with computational versus man-
ually curated phenotypes in terms of both PR AUC and
average diagnostic rank. However, the other algorithms dem-
onstrated marked reductions in performance, ranging from
17% to 51% reductions in average diagnostic rank. Even with
this 6% performance reduction, CAVaLRi was more accurate
with computational phenotypes than all comparators using
manually curated phenotypes. Considering that manual phe-
notyping is time-consuming, this result demonstrates that
CAVaLRi combined with clinical NLP algorithms could fur-
ther support scaling the availability of ES/GS.

When machine learning techniques are involved in opti-
mizing algorithmic performance, there is always a concern
for overfitting the model to the training data or sampled
cohort. By validating the accuracy of CAVaLRi in a large
external validation cohort, we provide strong evidence of
generalizability outside of our institution. The DDD cohort
is unique in that 72% of cases without CNV findings are

undiagnosed. At the time of writing, no published germline
variant prioritization algorithms are trained or validated on
data that includes patients suspected of RGD with nondiag-
nostic ES/GS. CAVaLRi addresses this significant gap in the
literature, as enriched training sets of true positive cases are
not representative of cases in the clinical genetics setting,
where as many as two-thirds of ES/GS are nondiagnostic
[17–21]. Our training cohort has not been enriched other
than to include subjects suspected of RGD for which clinical
ES was ordered. This likely contributed to the robust perfor-
mance of CAVaLRi in the DDD external validation cohort.
CAVaLRi is optimized according to PR curves that are plot-
ted on a per-gene basis. Approaching a case as a collection of
candidate diagnostic genes allows clinical genomicists to
quickly determine if a case is likely to yield a diagnosis. Opti-
mizing on average diagnostic rank would not yield this
capacity, as negative predictive value is not considered.

Despite the widespread clinical adoption of ES/GS test-
ing, most cases of suspected RGD referred for ES/GS do
not receive a diagnosis. Interval reanalysis has been reported
to yield a diagnosis in 5-20% of reanalyzed patients depend-
ing on the time between initial analysis and reanalysis [10,
43–46]. In an undiagnosed cohort, an unprioritized reanaly-
sis would currently call for the review of hundreds of vari-
ants. This would require resources that no center possesses.
CAVaLRi offers an open-source method to prioritize candi-
date genes in reanalysis, limiting the effort required to iden-
tify new genetic diagnoses. With this functionality in mind,
CAVaLRi can accept a cohort of multiple patients as input
and return summary files that indicate the most likely diag-
nostic genes across all provided patients, as well as the
variants that led to the gene being prioritized.

While the observed gains in accuracy are promising, cer-
tain limitations exist. CAVaLRi does not currently consider
CNVs or SVs, which are also known to contribute to RGD
etiology. As SV callers and corresponding pathogenicity
predictors mature, the functionality to consider SVs will be
incorporated into the CAVaLRi framework. While CAVaLRi
recalled diagnostic variants 96-97% of the time, a perfect recall
was not achieved. CAVaLRi failed to recall variants not associ-
ated with a disease, heterozygous variants that caused recessive
RGDs, and variants that failed to reach configured pathogenic-
ity thresholds. While pathogenicity thresholds can be lowered
to achieve higher diagnostic variant recall, CAVaLRi will fail
to return variants that lack OMIM disease annotations or do
not agree with the corresponding disease’s annotated MOI.
In addition to recall limitations, CAVaLRi deviates from the
traditional LR framework, as LRs are scaled by hyperpara-
meters. To combat the potential loss of interpretability, we
compute a posterior probability of diagnosis that relies on
fitted probability distributions of diagnostic and nondiagnos-
tic variants in the clinical ES training cohort. While CAVaLRi
posterior probabilities closely aligned with observed diagnostic
rates in the clinical ES test cohort, probabilities were consis-
tently higher than observed in the DDD cohort at high prob-
ability values. As such, we would recommend that posterior
probabilities be calibrated to a local cohort before clinical
implementation. When defining heuristics, we assume that
background phenotype frequencies are equivalent to the
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average annotated frequencies across all OMIM diseases. The
validity of this assumption likely varies depending on the clin-
ical setting. If CAVaLRi is implemented in a care setting where
fewer patients are likely to yield a diagnosis or certain diagno-
ses are more frequent than others, the prior diagnostic proba-
bility should be adjusted accordingly.

5. Conclusion

As scalable solutions become necessary for augmented variant
interpretation, CAVaLRi may reduce the number of genetic
variants requiring detailed, manual review. Additionally, the
capacity of CAVaLRi to distill signals from computed pheno-
types minimizes the need for manual phenotype curation.
Overall, the diagnostic variant prioritization accuracy dis-
played across the test and validation cohorts supports using
CAVaLRi as a computational tool for diagnostic gene prioriti-
zation in patients suspected of RGD.

Abbreviations

ACMG: American College of Medical Genetics
AMP: Association for Molecular Pathology
AUC: Area under the curve
CAP: College of American Pathologists
CAVaLRi: Clinical Assessment of Variants by Likelihood

Ratios
CLIA: Clinical Laboratory Improvement Amendments
Clinical ES: Clinical exome sequencing
DDD: Deciphering Developmental Disorders study
EGA: European Genome-Phenome Archive
ES: Exome sequencing (formerly whole exome

sequencing (WES))
GS: Genome sequencing (formerly whole genome

sequencing (WGS))
HPO: Human phenotype ontology
IC: Information content
IGM: Institute for Genomic Medicine
indel: Short insertion or deletion
IRB: Institutional Review Board
LR: Likelihood ratio
MOI: Mode of inheritance
NCH: Nationwide Children’s Hospital
NLP: Natural language processing
OHRP: Office for Human Research Protections
OMIM: Online Mendelian Inheritance in Man
LRgeno: Genotype likelihood ratio
LRpheno: Phenotype likelihood ratio
LRseg: Variant segregation (mode of inheritance)

likelihood ratio
PR: Precision-recall
PR AUC: Area under the precision-recall curve
RGD: Rare genetic disease
ROC: Receiver operating characteristic
ROC AUC: Area under the receiver operating characteristic

curve
SD: Standard deviation
SNV: Single nucleotide variant
VCF: Variant call format.

Data Availability

CAVaLRi is published under an Open Source Initiative
approved 3-Clause BSD License to ensure that any interested
academic institution can perform optimization with their
own cohorts and implement their own version of the
algorithm in their respective diagnostic workflows. Code
for the CAVaLRi algorithm is available at our GitHub repos-
itory (https://github.com/nch-igm/CAVaLRi). Due to limi-
tations in informed consent, clinical notes, molecular data,
and diagnostic data are not made publically available for
subjects enrolled in NCH’s Clinical ES cohort. DDD data,
including sequencing, phenotype, and relevant metadata,
are available via the European Genome-Phenome Archive
(EGA) (https://ega-archive.org/studies/EGAS00001000775)
following Data Access Committee (DAC) approval.

Ethical Approval

This study was reviewed and approved by the Institutional
Review Board (IRB) of the Abigail Wexner Research Institute
at Nationwide Children’s Hospital (Office for Human Research
Protections (OHRP) IORG0000326; IRB00000568) as IRB18-
00662 (“Gene Discovery in Clinical Genomic Patients”) and
STUDY00000276 (“NLP for Genomic Medicine”).

Consent

Informed consent or waiver of informed consent was
obtained from the patients and/or parents for the above-
referenced research protocols.

Disclosure

These funding bodies had no role in the design of the study;
no role in the collection, analysis, and interpretation of data;
and no role in writing the manuscript.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

RS curated training and validation data, designed and imple-
mented LR framework improvements, wrote the CAVaLRi
software package, and wrote the first draft of the manuscript.
RS and PW prepared figures and tables. AA determined the
most appropriate IC metrics that support phenotype func-
tionality and generated the computed phenotype sets for
the clinical ES cohort. AA additionally contributed to exper-
imental design and manuscript writing. GL, DG, and HK
provided data analysis support, designed AWS serverless
workflow, and contributed to manuscript writing. BPC and
PW conceived, designed, and supervised the project, over-
saw and contributed to algorithm development, provided
support for the utilization of AWS and computational
resources, and contributed significantly to manuscript writ-
ing and revision. All authors read and approved the final
manuscript.

13Human Mutation

https://github.com/nch-igm/CAVaLRi
https://ega-archive.org/studies/EGAS00001000775


Acknowledgments

We thank the Nationwide Children’s Hospital Foundation
and the Abigail Wexner Research Institute at Nationwide
Children’s Hospital for generously supporting this body of
work. We thank the patients and their families for partici-
pating in our translational research protocol. We thank the
Nationwide Children’s Hospital Foundation Pediatric Inno-
vation Fund for generously supporting this project.

Supplementary Materials

Supplementary data includes the following figures and
tables. Supplemental Figure 1: three plots demonstrating
the optimization of phenotype set length (a and b) and min-
imum individual phenotype score (c). Supplemental Figure
2: illustrations of the CAVaLRi statistical learning procedure
(a and b) and a heat map visualizing optimal scalar selection
(c). Supplemental Figure 3: histogram (a) and a line plot (b)
showing the distribution of diagnostic and nondiagnostic
genes and the procedure for fitting probability distributions.
Supplemental Figure 4: line plot (a) and scatter plot (b) of
observed and expected diagnostic variant frequencies dem-
onstrating the accurate modeling of posterior probability.
Supplemental Figure 5: precision-recall (a) and top-N curves
(b) demonstrating increased gains in accuracy following
optimization of the relative importance of likelihood ratios.
Supplemental Figure 6: histogram demonstrating that sets
of phenotype terms are substantially larger when using com-
putational approaches than manual curation. Supplemental
Table 1: table of diagnostic DDD cases excluded due to
diagnostic variants occurring in nonsplicing, intronic
regions. Supplemental Table 2: table of diagnostic DDD
cases excluded due to incompatible modes of inheritance.
(Supplementary Materials)

References

[1] L. M. Almli, D. M. Ely, E. C. Ailes et al., “Infant mortality
attributable to birth defects — United States, 2003–2017,”
MMWR. Morbidity and Mortality Weekly Report, vol. 69,
no. 2, pp. 25–29, 2020.

[2] C. F. Wright, D. R. FitzPatrick, and H. V. Firth, “Paediatric
genomics: diagnosing rare disease in children,”Nature Reviews
Genetics, vol. 19, no. 5, pp. 253–268, 2018.

[3] S. Bavisetty, W. W. Grody, and S. Yazdani, “Emergence of
pediatric rare diseases: review of present policies and opportu-
nities for improvement,” Rare Diseases, vol. 1, no. 1, article
e23579, 2013.

[4] D. Schofield, L. Rynehart, R. Shresthra, S. M. White, and
Z. Stark, “Long-term economic impacts of exome sequencing
for suspected monogenic disorders: diagnosis, management,
and reproductive outcomes,” Genetics in Medicine, vol. 21,
no. 11, pp. 2586–2593, 2019.

[5] 1000 Genomes Project Consortium, “A global reference for
human genetic variation,” Nature, vol. 526, no. 7571, pp. 68–
74, 2015.

[6] K. A. Frazer, S. S. Murray, N. J. Schork, and E. J. Topol, “Human
genetic variation and its contribution to complex traits,” Nature
Reviews Genetics, vol. 10, no. 4, pp. 241–251, 2009.

[7] S. Rego, O. Dagan-Rosenfeld, W. Zhou et al., “High-frequency
actionable pathogenic exome variants in an average-risk
cohort,” Molecular Case Studies, vol. 4, no. 6, article a003178,
2018.

[8] S. Richards, N. Aziz, S. Bale et al., “Standards and guidelines
for the interpretation of sequence variants: a joint consensus
recommendation of the American College of Medical Genetics
and Genomics and the Association for Molecular Pathology,”
Genetics in Medicine, vol. 17, no. 5, pp. 405–424, 2015.

[9] H. L. Rehm, J. T. Alaimo, S. Aradhya et al., “The landscape of
reported VUS in multi-gene panel and genomic testing: Time
for a change,” Genetics in Medicine, vol. 25, no. 12, article
100947, 2023.

[10] J. Birgmeier, M. Haeussler, C. A. Deisseroth et al., “AMELIE
speeds Mendelian diagnosis by matching patient phenotype
and genotype to primary literature,” Science Translational
Medicine, vol. 12, no. 544, article eaau9113, 2020.

[11] J. S. Amberger, C. A. Bocchini, F. Schiettecatte, A. F. Scott, and
A. Hamosh, “OMIM.org: Online Mendelian Inheritance in
Man (OMIM®), an online catalog of human genes and genetic
disorders,” Nucleic Acids Research, vol. 43, no. D1, pp. D789–
D798, 2015.

[12] S. Köhler, M. Gargano, N. Matentzoglu et al., “The Human
Phenotype Ontology in 2021,” Nucleic Acids Research,
vol. 49, no. D1, pp. D1207–D1217, 2021.

[13] J. A. SoRelle, J. M. Pascual, G. Gotway, and J. Y. Park, “Assess-
ment of interlaboratory variation in the interpretation of geno-
mic test results in patients with epilepsy,” JAMA Network
Open, vol. 3, no. 4, article e203812, 2020.

[14] S. E. Lincoln, R. Truty, C.-F. Lin et al., “A rigorous interlabora-
tory examination of the need to confirm next-generation
sequencing-detected variants with an orthogonal method in
clinical genetic testing,” The Journal of Molecular Diagnostics,
vol. 21, no. 2, pp. 318–329, 2019.

[15] S. E. Lincoln, T. Hambuch, J. M. Zook et al., “One in seven
pathogenic variants can be challenging to detect by NGS: an
analysis of 450,000 patients with implications for clinical sen-
sitivity and genetic test implementation,”Genetics in Medicine,
vol. 23, no. 9, pp. 1673–1680, 2021.

[16] J. L. Deignan, W. K. Chung, H. M. Kearney et al., “Points to
consider in the reevaluation and reanalysis of genomic test
results: a statement of the American College of Medical Genet-
ics and Genomics (ACMG),” Genetics in Medicine, vol. 21,
no. 6, pp. 1267–1270, 2019.

[17] Y. Yang, D. M.Muzny, F. Xia et al., “Molecular findings among
patients referred for clinical whole-exome sequencing,” Jour-
nal of the American Medical Association, vol. 312, no. 18,
pp. 1870–1879, 2014.

[18] M. M. Clark, Z. Stark, L. Farnaes et al., “Meta-analysis of the
diagnostic and clinical utility of genome and exome sequenc-
ing and chromosomal microarray in children with suspected
genetic diseases,” npj Genomic Medicine, vol. 3, no. 1, p. 16,
2018.

[19] T. Y. Tan, S. Lunke, B. Chong et al., “A head-to-head evalua-
tion of the diagnostic efficacy and costs of trio versus singleton
exome sequencing analysis,” European Journal of Human
Genetics, vol. 27, no. 12, pp. 1791–1799, 2019.

[20] R. D. Kumar, L. F. Saba, H. Streff et al., “Clinical genome
sequencing: three years’ experience at a tertiary children’s hos-
pital,” Genetics in Medicine, vol. 25, no. 10, article 100916,
2023.

14 Human Mutation

https://downloads.hindawi.com/journals/humu/2024/6411444.f1.pdf


[21] A. McLean, M. Tchan, S. Devery et al., “Informing a value care
model: lessons from an integrated adult neurogenomics
clinic,” Internal Medicine Journal, vol. 53, no. 12, pp. 2198–
2207, 2023.

[22] X. Yuan, J. Wang, B. Dai et al., “Evaluation of phenotype-
driven gene prioritization methods for Mendelian diseases,”
Briefings in Bioinformatics, vol. 23, no. 2, article bbac019, 2022.

[23] C. A. Deisseroth, J. Birgmeier, E. E. Bodle et al., “ClinPhen
extracts and prioritizes patient phenotypes directly from med-
ical records to expedite genetic disease diagnosis,” Genetics in
Medicine, vol. 21, no. 7, pp. 1585–1593, 2019.

[24] Deciphering Developmental Disorders Study, “Large-scale dis-
covery of novel genetic causes of developmental disorders,”
Nature, vol. 519, no. 7542, pp. 223–228, 2015.

[25] C. F. Wright, P. Campbell, R. Y. Eberhardt et al., “Genomic
diagnosis of rare pediatric disease in the United Kingdom
and Ireland,” The New England Journal of Medicine, vol. 388,
no. 17, pp. 1559–1571, 2023.

[26] B. J. Kelly, J. R. Fitch, Y. Hu et al., “Churchill: an ultra-fast,
deterministic, highly scalable and balanced parallelization
strategy for the discovery of human genetic variation in clinical
and population-scale genomics,” Genome Biology, vol. 16,
no. 1, p. 6, 2015.

[27] P. N. Robinson, V. Ravanmehr, J. O. B. Jacobsen et al., “Inter-
pretable clinical genomics with a likelihood ratio paradigm,”
American Journal of Human Genetics, vol. 107, no. 3,
pp. 403–417, 2020.

[28] D. Smedley, J. O. B. Jacobsen, M. Jäger et al., “Next-generation
diagnostics and disease-gene discovery with the Exomiser,”
Nature Protocols, vol. 10, no. 12, pp. 2004–2015, 2015.

[29] K. A. Jagadeesh, J. Birgmeier, H. Guturu et al., “Phrank mea-
sures phenotype sets similarity to greatly improve Mendelian
diagnostic disease prioritization,” Genetics in Medicine,
vol. 21, no. 2, pp. 464–470, 2019.

[30] P. N. Robinson and M. A. Haendel, “Ontologies, knowledge
representation, and machine learning for translational
research: recent contributions,” Yearbook of Medical Informat-
ics, vol. 29, no. 1, pp. 159–162, 2020.

[31] R. Mishra, A. Burke, B. Gitman et al., “Data-driven method to
enhance craniofacial and oral phenotype vocabularies,” The
Journal of the American Dental Association, vol. 150, no. 11,
pp. 933–939.e2, 2019.

[32] M. Haimel, J. Pazmandi, R. J. Heredia et al., “Curation and
expansion of Human Phenotype Ontology for defined groups
of inborn errors of immunity,” The Journal of Allergy and Clin-
ical Immunology, vol. 149, no. 1, pp. 369–378, 2022.

[33] P. Danecek, J. K. Bonfield, J. Liddle et al., “Twelve years of
SAMtools and BCFtools,” Gigascience, vol. 10, no. 2, article
giab008, 2021.

[34] M. J. Landrum, J. M. Lee, M. Benson et al., “ClinVar: improv-
ing access to variant interpretations and supporting evidence,”
Nucleic Acids Research, vol. 46, no. D1, pp. D1062–D1067,
2018.

[35] K. J. Karczewski, L. C. Francioli, G. Tiao et al., “The mutational
constraint spectrum quantified from variation in 141,456
humans,” Nature, vol. 581, no. 7809, pp. 434–443, 2020.

[36] N. A. O'Leary, M. W. Wright, J. R. Brister et al., “Reference
sequence (RefSeq) database at NCBI: current status, taxo-
nomic expansion, and functional annotation,” Nucleic Acids
Research, vol. 44, no. D1, pp. D733–D745, 2016.

[37] K. Wang, M. Li, and H. Hakonarson, “ANNOVAR: functional
annotation of genetic variants from high-throughput sequenc-
ing data,” Nucleic Acids Research, vol. 38, no. 16, article e164,
2010.

[38] C. Li, D. Zhi, K. Wang, and X. Liu, “MetaRNN: differentiating
rare pathogenic and rare benign missense SNVs and InDels
using deep learning,” Genome Medicine, vol. 14, no. 1, p. 115,
2022.

[39] K. A. Pagel, D. Antaki, A. Lian et al., “Pathogenicity and func-
tional impact of non-frameshifting insertion/deletion varia-
tion in the human genome,” PLoS Computational Biology,
vol. 15, no. 6, article e1007112, 2019.

[40] K. Jaganathan, S. K. Panagiotopoulou, J. F. McRae et al., “Pre-
dicting splicing from primary sequence with deep learning,”
Cell, vol. 176, no. 3, pp. 535–548.e24, 2019.

[41] C. Kelly, A. Szabo, N. Pontikos et al., “Phenotype-aware prior-
itisation of rare Mendelian disease variants,” Trends in Genet-
ics, vol. 38, no. 12, pp. 1271–1283, 2022.

[42] C. M. Wilczewski, J. Obasohan, J. E. Paschall et al., “Genotype
first: clinical genomics research through a reverse phenotyping
approach,” American Journal of Human Genetics, vol. 110,
no. 1, pp. 3–12, 2023.

[43] L. J. Ewans, D. Schofield, R. Shrestha et al., “Whole-exome
sequencing reanalysis at 12 months boosts diagnosis and is
cost-effective when applied early in Mendelian disorders,”
Genetics in Medicine, vol. 20, no. 12, pp. 1564–1574, 2018.

[44] B. Xiao,W. Qiu, X. Ji et al., “Marked yield of re-evaluating phe-
notype and exome/target sequencing data in 33 individuals
with intellectual disabilities,” American Journal of Medical
Genetics. Part A, vol. 176, no. 1, pp. 107–115, 2018.

[45] C. F. Wright, J. F. McRae, S. Clayton et al., “Making new
genetic diagnoses with old data: iterative reanalysis and report-
ing from genome-wide data in 1,133 families with develop-
mental disorders,” Genetics in Medicine, vol. 20, no. 10,
pp. 1216–1223, 2018.

[46] G. Bergant, A. Maver, L. Lovrecic, G. Čuturilo, A. Hodzic, and
B. Peterlin, “Comprehensive use of extended exome analysis
improves diagnostic yield in rare disease: a retrospective sur-
vey in 1,059 cases,” Genetics in Medicine, vol. 20, no. 3,
pp. 303–312, 2018.

15Human Mutation


	CAVaLRi: An Algorithm for Rapid Identification of Diagnostic Germline Variation
	1. Introduction
	2. Materials and Methods
	2.1. Data Used for Model Training, Testing, and Validation
	2.1.1. Training and Testing Cohort: Local Suspected RGD Clinical ES Cohort
	2.1.2. External Validation Cohort: Deciphering Developmental Disorders RGD ES Cohort
	2.1.3. Variant Calling

	2.2. Clinical Assessment of Variants by Likelihood Ratios (CAVaLRi) Framework Overview
	2.3. Phenotype Likelihood Calculation
	2.3.1. Generation of a Given Patient’s Set of Phenotypes
	2.3.2. Estimation of LRpheno

	2.4. Genotype Likelihood Calculation
	2.4.1. Variant Preprocessing
	2.4.2. Estimation of LRgeno

	2.5. Segregation Likelihood Calculation
	2.6. Optimization of Relative LR Importance
	2.7. Accuracy Metric Selection
	2.8. Algorithmic Comparison

	3. Results
	4. Discussion
	5. Conclusion
	Abbreviations
	Data Availability
	Ethical Approval
	Consent
	Disclosure
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials



