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Steroid-resistant nephrotic syndrome (SRNS) is a highly heterogenic kidney disorder resulting from genetic abnormalities or
immune system dysfunction affecting the establishment and maintenance of the glomerular filtration barrier. The most
common cause of genetic SRNS is biallelic pathogenic variants in NPHS2 gene, especially in individuals with an infantile or
childhood onset. The type of the NPHS2 defect implies the course of the disease and the stage of its onset and differs across
populations. In a cohort of Polish patients with SRNS, a unique profile of the disease-related NPHS2 variants was identified in
patients from northern Poland inhabited by Kashubs, a minority West-Slavic ethnic group known for a local increase of the
frequency of several pathogenic variants. Among Kashubian families, the compound heterozygotes c.686G>A/c.1032delT and a
single ¢.1032delT homozygote were the only underlying cause of SRNS. The restricted, Kashubian-only pattern of ¢.1032delT
occurrence, suggesting the founder effect, prompted us to conduct a detailed analysis of its haplotype background to estimate
the age of the ¢.1032delT origin. Eight Kashubian SRNS families were genotyped using the Infinium Global Screening Array-
24. The haplotype background analysis was performed using an in-house pipeline designed to solve the phase of the
heterozygous genotype data. The age of the c.1032delT mutation was calculated using the gamma method based on the genetic
length of ancestral haplotypes shared between two or more individuals carrying this variant. The results of our study indicated
a very recent origin of the c.1032delT mutation (~240 years). Genetic screening performed in the general Polish population
control corroborates the assumption that the mutation occurred on the specific Kashubian haplotype background. The
identification of ancestry-specific Kashubian pathogenic variant can help to develop effective screening and diagnostic
strategies as a part of personalized medicine approach in the region.

1. Introduction

Nephrotic syndrome (NS) is a rare kidney disease clinically
characterized by severe proteinuria, resulting in complica-
tions such as hypoalbuminemia, hyperlipidemia, and edema.
Kidney biopsies typically show focal segmental glomerulo-
sclerosis. The first-line treatment is based on steroid admin-
istration; however, approximately 10-15% of patients do not

respond to immunosuppressive treatment and progress to
steroid-resistant nephrotic syndrome (SRNS) [1]. In a subset
of patients with SRNS (up to 30%), the genetic etiology of
the disease has been identified [2].

SRNS is a highly heterogenic genetic entity with more
than 60 genes identified so far. The disease may be caused
by pathogenic variants in different podocyte-specific genes,
involved in the structure and function of the slit diaphragm


https://orcid.org/0000-0003-3018-5942
https://orcid.org/0000-0003-1094-1333
https://orcid.org/0000-0003-0104-9028
https://orcid.org/0000-0002-9542-0029
https://orcid.org/0000-0002-3354-5344
https://orcid.org/0000-0002-4169-9685
https://orcid.org/0000-0003-2437-5088
https://creativecommons.org/licenses/by/4.0/

(e.g., NPHS1, NPHS2), the actin cytoskeleton (e.g., ACTN4,
INF2), or podocyte differentiation (WTI) (for details see
[3-5]). Biallelic pathogenic variants in the NPHS2 gene are
the most common causes of the genetic forms of SRNS,
especially in those with an infantile or childhood onset [1,
6, 7]. Steroid-resistant nephrotic syndrome due to NPHS2
variants is not associated with posttransplant recurrence [8].

The NPHS2 gene is located on chromosome 1q25.2, con-
sists of eight exons, and encodes podocin, a protein almost
exclusively expressed in the podocytes of fetal and mature
kidney glomeruli. Podocin is a cell-membrane protein with
a hairpin-like topology, with both N- and C-terminal
domains facing the cytoplasm, located at the insertion of
the slit diaphragm in the renal glomerulus. Podocin links
nephrin, the slit diaphragm protein, to the cytoskeleton,
and thus is crucial in the establishment of the glomerular fil-
tration barrier [9]. Half of over 670 NPHS2 variants reported
to date are classified as pathogenic (n = 285) or likely patho-
genic (n=53) (after Varsome [10]; accessed May 15th,
2023). Pathogenic NPHS2 variants, mainly missense, non-
sense, and frameshift mutations, are estimated to account
for 10-30% of SRNS cases, depending on the ethnicity, size
of the analyzed group, accuracy of the clinical diagnosis,
and the mean age at diagnosis [11]. They are a common
cause of SRNS in Europe, the Americas, Africa, and partly
in India [5, 11] but are very rare among SRNS patients in
Asia (especially in East Asia), where pathogenic variants in
the COQ8B gene predominate [12].

The spectrum of NPHS2 variants involved in SRNS path-
ogenesis differs across populations. The frequency of
c413G>A (p.Argl38Gln), the prevalent disease-causing
NPHS? variant in Europeans [11], ranges from 1.3 to 9.3%
of SRNS chromosomes in various Western and Central
European populations [13-20]. A common variant
c.686G>A (p.Arg229Gln), prevalent in European, Indian,
and South American populations, is considered a risk factor
only if in trans with certain pathogenic NPHS2 variants
located in exons 7 and 8 [21, 22]. Compound heterozygosity
for the c.686G>A is associated with the later onset of the dis-
ease [21, 23]; its frequency ranges from 2.3 to 11% of SRNS
chromosomes [13-17, 24]. Other pathogenic NPHS2 vari-
ants have varying, usually low frequencies among SRNS
chromosomes. However, a local increase in the occurrence
of some of the pathogenic NPHS2 variants in certain popu-
lations is observed, suggesting the presence of a number of
founder effects (summarized in Table 1).

In our earlier study performed in a cohort of 141 Polish
patients with SRNS [23], twenty patients (14% of the cohort)
have fulfilled the criteria of NPHS2-associated SRNS. The
analysis has revealed a specific profile of the disease-related
NPHS?2 variants. Five cases had homozygous mutations
(including four with the prevalent European c.413G>A var-
iant), and fifteen were compound heterozygotes. 11 of these
harbored the nonneutral polymorphism c.686G>A, transas-
sociated with ¢.1032delT. Interestingly, the rare c.1032delT
variant (not reported in the gnomAD Exomes 2.1.1 data-
base) has been found only in patients from the region of
Pomerania in northern Poland. This region is inhabited by
Kashubs, a minority West-Slavic ethnic group known for a
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local increase of the frequency of several pathogenic vari-
ants, currently making up to 10-30% of local population
[34, 35]. The restricted pattern of c.1032delT occurrence,
suggesting the founder effect underlying the local increase
of its frequency, prompted us to conduct a detailed analysis
of its haplotype background to estimate the age of the
¢.1032delT origin. For comparative purposes, the analysis
of the haplotype background of the c.686G>A variant trans-
associated with ¢.1032delT in SRNS patients was performed.

2. Material and Methods

2.1. Participants. The analysis was performed in eight
Kashubian SRNS families (Figure 1 and Table 2), earlier
identified to carry the c.1032delT NPHS2 variant (see [23]
for the clinical characteristics of the patients). All Kashu-
bian patients, except for one (patient 4) from the acknowl-
edged consanguineous union, with the ¢.1032delT present
on both alleles, were compound heterozygotes (in trans,
confirmed by testing available parents) for the c.1032delT
and ¢.686G>A variants. Among the families, two were trios
(patient, mother, and father), four consisted of a patient and
a single parent, and two were single patients (including
patient 4 for whom a single chromosome was counted).
Eight chromosomes with ¢.686G>A in compound heterozy-
gosity with ¢.1032delT (seven from probands and one from
the affected father of patient 2) were used to infer the back-
ground c.686G>A haplotype. Four non-Kashubian individ-
uals (with persistent proteinuria) homozygous for the
nonneutral ¢.686G>A NPHS2 polymorphism were also
included in this analysis: two were from Poland (coming
from adjacent regions in Western and Central Poland),
and two were from non-Polish populations (Turkish and
South American of Indian/Hispanic descent). A control
group with no pathogenic variants in NHPS2 consisted of
unrelated individuals originating from various parts of
Poland: 50 patients (including eight Kashubians) had other
hereditary kidney disease (12 caused by NUP93 biallelic
defect, 38 Alport disease); other 50 (including one Kashu-
bian) had no signs of a renal disease.

DNA from SRNS patients and families, and from control
nephrological patients (n=50), was obtained from the
repository of the Department of Biology and Medical Genet-
ics, Medical University of Gdansk; DNA from a nonnephro-
logical control group (n=50) was obtained from the
repository of the Department of Molecular and Clinical
Genetics, Institute of Human Genetics PAS.

Patients’/parents’ informed consent was obtained. The
study was approved by the Ethical Committee of the Medical
University of Gdansk, Poland (NKBBN/631/2018).

2.2. Genotyping. Genotyping of over 766 thousand SNPs was
performed using the Infinjum Global Screening Array-24 Kit
(Ilumina) and Ilumina iScan scanner. Normalized signal
intensity and genotype were computed using IlluminaBea-
dArrayFiles Python library and IlluminaBeadArrayFiles.

To extract the relevant information, microarray data on
chromosome 1 were filtered to exclude the following: SNPs
that were homozygous across the whole study group
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F1GURE 1: Geographical distribution of ¢.1032delT Kashubian families in the Pomeranian Region of Poland. (a) Localization of the region at
the southern coast of the Baltic Sea in Central-Eastern Europe. (b) Amplified view of the region; the scale of green intensity indicates
communities where Kashubs are presently the prevalent ethnic group (data from Central Statistical Office of Poland).

TABLE 2: Summary of analyzed SRNS families.

Patient Genotype Gender Paternal alleles Maternal alleles
1 c.1032delT/c.686G>A f c.1032delT c.686G>A

2 ¢.1032delT/c.686G>A m €.1032delT/c.686G>A c.686G>A

3 ¢.1032delT/c.686G>A f c.1032delT c.686G>A

4 c.1032delT/c.1032delT* f €.1032delT c.1032delT

5 c.1032delT/c.686G>A f c.686G>A c.1032delT

6 ¢.1032delT/c.686G>A f na na

7 ¢.1032delT/c.686G>A m €.1032delT c.686G>A

8 ¢.1032delT/c.686G>A f c.1032delT c.686G>A

Parental alleles with the available haplotype data are indicated in bold. The c.686G>A allele not transferred to the affected child is underlined. An asterisk
indicates the genotype from the consanguineous union, counted as a single allele. f: female; m: male.

(including controls); positions with incomplete genotyping
data; positions with very rare SNPs not present in SRNS
patients and found in less than 10% of the control group
chromosomes; positions with very rare SNPs not found in
any of the controls and present in a singular SRNS chromo-
some (presumably representing genotyping errors or recent
mutations, but not recombination events). The remaining
SNPs surrounding the NPHS2 gene were subjected to haplo-
type analysis.

2.3. Ancestral Haplotype Analysis. The ancestral haplotype
analysis primarily aimed at explaining the background on
which the ¢.1032delT mutation originated; the phase of the
¢.686G>A variant, transassociated with ¢.1032delT in SRNS
patients or present in homozygous state in four additional
individuals, was analyzed for comparative purposes. The
analysis was performed using an in-house pipeline designed
to solve the phase of the heterozygous genotype data, to
extract the single background haplotypes associated with



Human Mutation

each of the two analyzed pathogenic variants. The main
assumptions of the phase solving are presented below.

Solving the phase of the c.1032delT background haplo-
type was based on the available family data: the heterozygous
positions were solved according to the consistency with the
parental chromosome carrying the same mutation. When
no parental data were available or when all family members
were heterozygous for a given SNP position, identity by
descent was assumed, and the majority rule was applied
(SNP alleles were assumed to be consistent with the majority
of the solved haplotypes carrying c.1032delT). The haplo-
type observed in the homozygous c.1032delT from a consan-
guineous union (patient 4) was used as an additional
indicator for solving ¢.1032delT background haplotypes in
the vicinity of the mutation (up to the point where allele
sharing was higher among other individuals harboring
¢.1032delT). Heterozygous positions not solved by the fam-
ily data or by the majority rule were considered uninforma-
tive and were excluded from further haplotype analysis. Few
SNP positions, at which the shared haplotype was inter-
rupted by a single discordant allele followed by another large
run of continuous sharing, were assumed to represent
genotyping errors or recent mutations (see, e.g., [36]). Solv-
ing the c.686G>A background haplotype in heterozygous
NPHS2 patients was done by subtracting the c.1032delT
haplotype; in ¢.686G>A homozygotes, it was based on the
majority rule.

The presence of two alleles different from that found on
the majority of the mutation-carrying chromosomes, if
detected at several consecutive SNP positions, marked the
end of the shared background haplotype. This rule was also
used to infer the maximal range of the analyzed ancestral
haplotype in unrelated control samples (we acknowledge
that this could have led to the overestimation of haplotype
sharing, but it did not change the overall conclusion).

2.4. Estimation of the Age of a Founder Mutation. Ancestral
segments in sampled individuals were identified by continu-
ous haplotype sharing between two or more unrelated chro-
mosomes with ¢.1032delT (seen as allele sharing among
consecutive markers surrounding the mutation). The seg-
ment lengths were calculated from the genetic map positions
of the outermost shared markers (to avoid chance sharing,
the endmost concordant alleles present in the general Euro-
pean population at the frequency > 0.6 were considered
uninformative). The maximum-likelihood estimate of the
mutation age was calculated using the gamma method based
on the genetic length of ancestral haplotypes shared between
two or more individuals carrying the mutation [36]. The
gamma method, designed for small samples with dense
marker data, implemented in the online software (https://
shiny.wehi.edu.au/rafehi h/mutation-dating/), can be applied
to genealogies in which the data are either independent or
correlated. The correlated genealogy (where a subset of chro-
mosomes reaches common ancestry earlier than the most
recent common ancestor for the entire study group) was
assumed for the c.1032delT variant, in accordance with its
restricted geographic occurrence and historical distinctiveness
of the Kashubian population. The age of the c.686G>A variant

(frequent in many European populations) was analyzed in
frame of the independent genealogy.

3. Results

SNP variability in the studied cohort was analyzed in the
area of approx. 30Mb surrounding the NPHS2 gene
(Figure 2; also see Supplementary Table (available here)).
The core haplotype of ~4.0 Mb, shared by all chromosomes
carrying the ¢.1032delT variant, indicated a common origin
of the variant in all the examined patients. The length of the
haplotype shared by at least two of the chromosomes on any
side of the c.1032delT (~24.2 Mb) was assumed to represent
the ancestral background on which the mutation had
occurred.

The age of the ancestral haplotype carrying c.1032delT
mutation was estimated at 12.3 generations assuming both
correlated or independent genealogy of the analyzed chro-
mosomes. Assuming the mean time between generations of
20 years, this corresponded to the time of the mutation
origin between 240 (CI 140-400) years ago. Of note, the
c.1032delT ancestral haplotype of the comparable length
was not observed in any among 200 control chromosomes
(including those identified as Kashubian); the longest poten-
tially compatible segments observed in four chromosomes
(including one of eight Kashubian) were less than 2.5 Mb
long (data not shown).

The analysis of the haplotype background of c.686G>A
variant revealed a different story. The length of the core hap-
lotype shared by all the chromosomes carrying this variant
was very short (~0.51Mb, see Supplementary material).
The maximal length of the identical haplotype shared by at
least two of the Kashubian chromosomes, on any side of
the c.686G>A, was assumed to represent the common ances-
tral background on which the mutation entered this popula-
tion; it was estimated as ~3.3 Mb, which would result in the
estimated age of ~3.1 thousand years. Alternatively, the pres-
ence of independent mutations on different haplotype back-
grounds could be suggested; however, because of the
uncertainty of haplotype solving in homozygous individuals
from various populations, this was not pursued any further.

4. Discussion

Among Kashubian families, the compound heterozygotes
c.686G>A; 1032delT and a single c.1032delT homozygote
were the only underlying cause of SRNS identified in our
studies [23]. The estimated age of c.1032delT (~240 years)
indicated a very recent origin of this mutation. Kashubs
are a unique ethnic group, descended from West-Slavs
tribes, living in the region of Pomerania in northern Poland.
Due to various historical and demographical events,
Kashubs have developed and retained their separate identity,
language, and culture [35, 37, 38]. Kashubs’ singularity is
also evident in the genetic profile, which differs from that
in the neighboring regions of Poland. Studies on the neutral
genetic variation (e.g., mtDNA and Y chromosome) have
shown that the contemporary genetic profile of Kashubs in
eastern Pomerania differs from that in the neighboring
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NPHS?2 ¢.1032delT
Chrl (hgl9): 179520435

Patient 1 | 163399083 | 187524280
Patient 2 | 1649487745 | 183886016
Patient 3 | 163399083 | 179795505
Patient 4 [173164565 | 187524280
Patient 5 [175010010 | 187050762
Patient 6 [ 173164465 [ 181579231
Patient 7 [173674p87 [ [181579231
Patient 8 17556706 | | 18159657

Core haplotype

~4.0 Mb

The maximal length of the inferred ancestral haplotype (~24 Mb)

¢

FIGURE 2: Schematic presentation of the shared haplotypes in the analyzed chromosomes carrying the ¢.1032delT variant. The maximal
length of the inferred ancestral haplotype was ~24 Mb. Frame indicates the core segment of the ancestral haplotype, shared by all the

chromosomes carrying c.1032delT mutation.

regions [39, 40]. The genetic distinctiveness of Kashubs is
demonstrated by the increased or decreased frequency of cer-
tain variants in the region inhabited by Kashubs compared to
other parts of Poland and Europe. It is also seen in the preva-
lence of some rare genetic diseases (reviewed in [34]): familial
hypercholesterolemia, hereditary breast and ovarian cancer
syndrome, and long-chain 3-hydroxyacyl-CoA dehydroge-
nase deficiency; steroid-resistant nephrotic syndrome caused
by biallelic defect in the NPHS2 gene is another example.

The dissemination of ¢.1032delT only within the Kashu-
bian population may be associated with short-range migra-
tions within the region (from small settlements to larger
neighboring towns) at the turn of XVIII and XIX centuries.
Interestingly, the present-day geographical location of the
individuals carrying c.1032delT mutation and the informa-
tion on the family origins collected through the individual
interviews narrows the origins of the mutation to the region
of Kaszébskd Szwajcarid, a land of numerous glacial lakes
located in the middle of the Central European lowland
south-west of Gdansk.

Besides Kashubs, the c.1032del allele in the NPHS2 gene
has been reported in one Polish SRNS patient from the
southern region of the country (Cracow) (Lipska-Zietkie-
wicz, personal communication), in one Caucasian living in
Lubeck, Germany [6], and in two siblings living in the UK,
apparently related to one of the Kashubian families analyzed

here and described in our previous report [23, 41]. With
Germany and the UK being the most common destinations
for the recent migrations from Eastern European countries,
it is likely that these individuals are actually immigrants of
the Kashubian origin.

Genetic screening performed in almost 600 consecutive
neonates from Northern Poland [23] has revealed a single
carrier of ¢.1032delT. This variant has not been reported in
any of the databases where European population data can
be found, indicating that it had occurred in the Kashubian
population. Moreover, the lack of the c.1032delT ancestral
haplotype (even of its shortest core version) among 100 con-
trol Polish chromosomes corroborates the assumption that
the mutation occurred on the specific Kashubian haplotype
background. The longest segments potentially concordant
with the ancestral ¢.1032delT haplotype, inferred in four
control chromosomes, were much shorter (1.6-2.5 Mb) com-
pared to the 4.5Mb of the core segment shared by all the
chromosomes carrying c.1032delT. It should be emphasized
that, in the absence of family data in the control group, the
inference of the ancestral haplotype indicated the maximal
length of the potential concordance with the c.1032delT
background; in fact, the ancestral segment in controls could
have been much shorter, which would only strengthen our
conclusion that c.1032delT occurred very recently on a
unique Kashubian background.
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Unlike in the case of ¢.1032delT, a very short segment of
the haplotype shared by chromosomes carrying c.686G>A
suggested either the very old age of the ¢.686G>A mutation
(in the range of ~3 thousand years) or its recurrent origin.
Both scenarios are consistent with the pan-European spread
of that variant. In the study of c.686G>A (p.Arg229GIn)
[10], the analysis of several markers, three informative SNPs
(rs12406197; rs12401708; rs1410592) localized within the
NPHS2 gene and five nearby microsatellites (DS1S3758;
D183760; D1S215; D1S3759; D1S2883, spanning 1.1cM
and flanking NPHS2 [13]), revealed the same haplotype on
all the examined chromosomes with the c.686G>A allele.
This has been reported as indicating the shared origin of
the variant [10]. However, we performed the analysis of
the three aforementioned SNPs using the LDhap tool imple-
mented in LDlink [42], which indicated that the same mini-
haplotype (T-T-T on the sense strand) can be expected in
0.23% of control European chromosomes; we did not reex-
amine the microsatellite markers, but we assumed that the
same set of repeats might be present among healthy chromo-
somes. Sharing of the short haplotype that is relatively
frequent also in control chromosomes does not exclude the
possibility that the c.686G>A allele is the result of a recur-
rent mutation. In this context, it should be mentioned that
the c.686G>A substitution is located within the CpG dinu-
cleotide. C>T and G>A transitions within CpG dinucleo-
tides, characterized by several times faster mutation rates
(related to cytosine methylation), are long recognized as
mutation hotspots in a variety of human diseases [43]. This
is consistent with the scenario of a recurrent origin of the
€.686G>A variant and may explain its high frequency in var-
ious populations, with the average of 3.5% observed in most
European populations [21] and ~6.5% in Kashubs [23].

An increased homozygosity with respect to founder
mutations is usually observed in populations, in which a
single pathogenic variant predominates. It is worth noting
that the Kashubian-specific ¢.1032delT variant was not
associated with the increased frequency of homozygotes
among SRNS patients. The single c.1032delT homozygote
was identified in the family with the acknowledged con-
sanguinity, but otherwise, all the patients with c.1032delT
were compound heterozygotes with the relatively frequent
C.686A>G.

It has been shown that the pathogenicity of c.686G>A
depends on the transassociated mutation in NPHS2; it leads
to a disease phenotype only when associated with certain 3’
end variants because of an altered heterodimerization and
mislocalization of the encoded p.Arg229GIn podocin [22].
The fact that homozygotes of c.686G>A are not clinically
affected has an additional impact on SRNS diagnostics. This
interallelic interaction results in the incomplete penetrance
of c.686G>A [44]. The high frequency of the c.686G>A,
notorious for its translocus dependent pathogenicity, in a
population increases the risk of a pseudodominant inheri-
tance of rare pathogenic variants, like ¢.1032delT. This can
be exemplified by the segregation observed in one of the ana-
lyzed SRNS families (family 2), where unlike in the majority
of recessively inherited diseases, both father and son were
affected (Figure 3). They both were compound heterozygotes

SRNS

carrier

> —

c.686A>G/= c.686A>G/c.1032delT

SRNS

c.686A>G/c.1032delT

FIGURE 3: Pseudodominant inheritance of ¢.1032delT in the family
of patient 2, related to the high frequency of c.686G>A in a
population.

of ¢.1032delT and c.686G>A, but c.686G>A in the son was
inherited from the nonaffected mother. The same can be
expected in other populations and other disorders, e.g.,
Alport disease [45].

5. Conclusions

Identification of ancestry-specific pathogenic variants (foun-
der mutations) is important for diagnostic and prevention
strategies, e.g., development of effective screening methods
[46]. In addition, the estimation of the age and the origin
of pathogenic mutations, performed based on the analysis
of their background haplotype, sheds light on the historical
processes that affected populations.
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