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Traditional heatmap regression methods have some problems such as the lower limit of theoretical error and the lack of global
constraints, which may lead to the collapse of the results in practical application. In this paper, we develop a facial landmark
detection model aided by offset prediction to constrain the global shape. First, the hybrid detection model is used to roughly locate
the initial coordinates predicted by the backbone network. At the same time, the head rotation attitude prediction module is added
to the backbone network, and the Euler angle is used as the adaptive weight to modify the loss function so that the model has better
robustness to the large pose image. Then, we introduce an offset prediction network. It uses the heatmap corresponding to the
initial coordinates as an attention mask to fuze with the features, so the network can focus on the area around landmarks. This
model shares the global features and regresses the offset relative to the real coordinates based on the initial coordinates to further
enhance the continuity. In addition, we also add a multi-scale feature pre-extraction module to preprocess features so that we can
increase feature scales and receptive fields. Experiments on several challenging public datasets show that our method gets better
performance than the existing detection methods, confirming the effectiveness of our method.

1. Introduction

Facial landmark detection, also known as face alignment, is
an important part of face correlation research in computer
vision. In contrast to the landmarks on a human body, a rigid
body such as a face has constant relative positions of land-
marks that must be calibrated, such as eyebrows, eyes, noses,
lips, etc., based on prior knowledge. Many works in face
correlation research rely on the facial landmark detection
technology, such as face recognition [1], face animation syn-
thesis [2], frontal face reconstruction [3], etc.

In recent years, the mainstream methods for the facial
landmark detection have been divided into two categories:
coordinate regression-based and heatmap regression-based.
Both methods have achieved good results in the detection
effect. However, due to the different prediction principles,
the advantages and disadvantages of these two regression
methods are also obvious. For the fully connected direct
coordinate regression method, image features are extracted
through various convolution structures first, the extracted
features are integrated, and the coordinates of landmarks

are directly regressed through the fully connected layer.
The advantages of this method are fast training speed and
end-to-end regression. However, the fully connected regres-
sion method is extremely dependent on the spatial distribu-
tion of the input image, so it is very short of spatial
generalization ability, and the accuracy is not high compared
with the heatmap regression methods.

The method of heatmap regression, and its prediction
principle is completely different from the coordinate regres-
sion methods. First, image features are extracted by up–down
sampling to generate a probabilistic heatmap. The pixel
index corresponding to the probability peak is obtained by
the Argmax method, which is the position coordinate of the
predicted landmarks. The advantages of this method are
relatively higher accuracy and accurate local position predic-
tion. A defect of this model is slow training speed and it is not
end-to-end. To take into account factors such as memory
consumption, the number, and the training speed, heatmap
regression-based methods usually take a quarter of the size of
the input size as the dimensions of the output probability
heatmaps. The coordinates are integers, and the precision of
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the ground truth does not match, resulting in the lower
bound theory of error and inevitable.

In general, the current commonly used methods of face
alignment have poor performance in complex environments
such as large poses, exaggerated expressions, occlusion, dif-
ferent lighting, makeup, etc. Figure 1 shows the comparison
of the effects of various detection methods under several
different interference conditions. As shown in Figure 1,
each row from top to bottom is the model detection results
under large poses, occlusion, and blur. From left to right,
each column is the ground truth, CFSS [4], LBF [5], and
the results of our method. Based on the principles and char-
acteristics of the two commonly used methods mentioned
above, we summarize the following defects: (1) heatmap
regression pays more attention to the local features and lacks
spatial relationship constraints between adjacent landmarks,
which will destroy the continuity and global structure of face
shape when doing feature matching. (2) There is an uneven
distribution of samples in the dataset. A large number of
frontal images will affect the network’s feature learning of
large pose images, leading to the problem of data imbalance.
(3) The feature scale and receptive field range obtained dur-
ing the feature extraction by simple convolution operation
are limited, which may lead to a decrease in detection
accuracy.

Considering the above problems and defects, we propose
an adaptive weighted face alignment model based on multi-
scale feature and offset prediction (AWMOP). Considering
the accuracy of the traditional coordinate regression method
is poor and the theoretical error lower bound problem will
inevitably occur in heatmap regression, this paper adopts the
hybrid detection model [6] combining heatmap regression
and coordinate regression as the backbone network. Then,
add an offset prediction network (OPN) by regression to
achieve the global shape constraint. Specifically, at the early
stage of the model, a multi-scale feature pre-extraction
(MFP) module is embedded to increase the receptive field
and integrate more features of the different levels.

Meanwhile, we also add the three-dimensional Euler angle
prediction module (HPP) to the initial coordinate prediction
to obtain face rotation information, which is used to adjust
the loss function. An image with a large change of pose is
punished with a heavier weight, while an image with a smal-
ler change is penalized. After obtaining the initial coordi-
nates of the landmarks of the face through the first stage,
the corresponding two-dimensional Gaussian heatmap is
regenerated as a mask. Then, put the heatmap mask into
the attention module of the offset prediction network in
the second stage. The coordinate offsets are generated by
regression, and the spatial constraints between the coordi-
nates of adjacent blocks are optimized to achieve the purpose
of global constraints. As shown in Figure 1, our method still
performs well in unconstrained field environments.

In general, the specific contributions of our work are
summarized as follows:

(1) We introduce an offset prediction network to opti-
mize the global spatial constraints, refine the location
of landmarks, and add an attention module to focus
on the features around landmarks, which improves
our understanding of the spatial context relationship
between landmarks and allows us to further optimize
their coordinates.

(2) In the hybrid detection model combining heatmap
regression and coordinate regression, we embedded
the head rotation attitude prediction module as the
adaptive weight of the loss function to solve the prob-
lem of data imbalance.

(3) We develop a feature pre-extractionmodule to increase
the receptive field, increase the number of feature maps
to obtain more features, and integrate features of dif-
ferent levels to obtain more accurate effects.

(4) Our method has achieved good results on popular
universal facial landmark detection datasets, includ-
ing 300W [7], COFW [8], and WFLW [9], demon-
strating its effectiveness and robustness.

(a) (b) (c) (d)

FIGURE 1: The test results of our method which compared with those of other methods in an unrestricted field environment. From left to right,
each column is the (a) ground truth, (b) CFSS [4], (c) LBF [5], and (d) the results of our method.
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2. Related Work

In recent years, computer vision has developed rapidly and has
been widely used, such as image processing, image segmenta-
tion, and other general directions. In the field of image proces-
sing, facial image research has also experienced a series of
development and improvements. Facial landmark detection
is a very important basic work in the field of facial image
research.Due to its fundamental importance, it has been inten-
sively studied in the recent years. There are currently twomain
categories of mainstream methods: coordinate-based regres-
sion methods and heatmap-based regression methods.

Coordinate-based regression method: this methodmainly
learns the facial features of the face directly, and regresses the
coordinate information of the landmarks directly through the
full connection mode. For example, a coarse to fine facial
landmark detection algorithm proposed by Zhou et al. [10],
which divided facial landmarks into internal landmarks and
boundary landmarks. The final coordinates of the face were
obtained by overlaying the outputs of two cascaded CNN for
two parts landmarks. Zhang et al. [11] first used multitask
learning combined with CNN to detect facial landmarks.
Multiple auxiliary tasks such as smile detection, posture
detection to assist the main task, making the convergence
faster and higher accurate. Wu et al. [12] used Vanilla CNN
to cluster K categories based on the features obtained from the
fully connected layer, and divided the training images into
different categories. The author used images with similar fea-
tures to train the corresponding regressors, and ultimately
achieved good results. Li et al. [13] proposed a new topological
adaptive deep map learning method to obtain accurate facial
landmarks. Guo et al. [14] used a lightweight network model
to regress the parameters of 3DMMand dynamically combine
WPDC and VDC loss functions, thus accelerating the speed
of fitting. Zhang et al. [15] proposed a two-stage cascade
regression alignment model, which generated rough initial
shapes from aligned salient pole shapes.

Heatmap-based regression method: this method mainly
obtains the likelihood heatmap for each key point and then
obtains the coordinates of the landmarks in the heatmap by
Argmax. For example, Valle et al. [16] first calculated the
probability map of each feature point through the CNNmodel
to get the feature point position, and then calculated the pose
matrix to further improve the detection accuracy. Ullah et al.
[17] proposed a facial alignment algorithm called Double
Attention Spatial Perception Capsule Network (DSCN). The
authors utilized the hourglass capsule network and adaptive
local constraint dynamic routing algorithm to capture the spa-
tial positional relationships of features, and obtained a facial
boundary heatmap to improve accuracy. Wan et al. [18]
proposed an implicit multi order correlation model and
an explicit probability based boundary adaptive regression
(EPBR) method to enhance global shape constraints. Huang
et al. [19] learned the problem of error deviation in the face of
alignment. This method used an hourglass network as the
backbone, combined with anisotropic directional loss and ani-
sotropic attention module. Bulat and Tzimiropoulos [20]
introduced a method divided into two parts. First, providing

a confidence score for the position of each facial marker by
convolution. Then, combining the confidence heatmap and
high-resolution features to regress the coordinates. Yang et al.
[21] enhanced the representation ability of local features and
global context features by mixing the dual attention mecha-
nism. Xie et al. [22] mapped the boundary heatmap to the
landmark heatmap to improve the conversion efficiency,
instead of directly using the boundary heatmap to return the
coordinates of facial landmarks.

At the same time, in addition to these two conventional
detection methods, there are also many other detection mod-
els based on the above two methods. For example, Park and
Kim [23] combined a coordinate regression network and
heatmap regression network with spatial attention to com-
plement the defects of heatmap regression and coordinate
regression to deal with the occlusion problem. Meanwhile, in
recent years, transformer has also shown good results in
facial alignment work. Xia et al. [24] used transformer to
learn the internal relationships between coordinate points,
and used a coarse-to-fine iterative framework to optimize
coordinate positions until convergence. Li et al. [25] learned
the structured relationships between landmarks through the
self-attention of the transformer. It adopted a cascade refine-
ment process for coordinate optimization, extracting rele-
vant image features around the target point for coordinate
prediction. Additionally, it refined landmark positions and
image features using a new decoder.

Considering the advantages and disadvantages of the
above detection methods, we propose a hybrid landmark
detection model assisted by offset prediction. The method
combines heatmap regression and coordinate regression and
incorporates a feature pre-extraction module and 3D head
pose prediction module to improve the accuracy of initial
coordinates. At the same time, an offset prediction module is
introduced, which combines the attention mechanism to
predict the offset and further refines the coordinates of
landmarks.

3. Main Work

In this section, we detail our AWMOP, whose flowchart is
shown in Figure 2. The network consists of two stages. The
first stage is a hybrid detection model for predicting initial
coordinates, and the second stage is an offset prediction
network for predicting coordinate offsets. First, the input
images get the face features through the MFP module; the
feature map enters the initial coordinate prediction module
to get the initial coordinates, and then gets the final results
through the offset prediction network. The MFP module in
the first stage is shown in Section 3.1, the initial prediction
network of our model in the first stage is detailed in Section
3.2, and the structure of the offset prediction network in the
second stage is finally introduced in Section 3.3.

3.1. Multi-Scale Feature Pre-Extraction Model. Due to the
characteristics of the face, the extraction of local features of
the landmark location region of the face is particularly
important, especially when dealing with the face samples
with large expression changes or makeup interference. In
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recent years, several works have shown that multi-scale fea-
ture extraction operations are necessary before the network
can convolve the original image to extract features. The bidi-
rectional residual correction network for processing multi-
scale feature information extracted from different feature
layers proposed by Tang et al. [26] can effectively learn shal-
low and deep features, supplement semantic and detail infor-
mation, and better complete fuzzy image detection tasks.
DeFusionNet [27] propagates the fuzed shallow features to
the deep layers to refine the details of the detected defocused
blurry areas, and propagates the fuzed semantic features to
the shallow layers to help better locate the blurry areas. It
repeatedly fuzes and refines multi-scale deep features to
improve the effectiveness of defocused blurry detection.
Therefore, we design a MFP module to complete the feature
preprocessing before network detection.

In order to obtain larger receptive fields and more local
features, we want more multi-scale facial features. Therefore,
we introduce the feature pre-extraction module which is
divided into four branches. As shown in Figure 3, H ×
W×CI=CO represents the height, width, and corresponding
channel number of the input and output feature maps,
respectively, and the channel number of each branch is 1/4
of the output channel number. These four branches run in
parallel, and then feature join. In the first branch, we use
convolution with a convolution kernel of 1× 1 for feature
extraction. In the second branch, convolution operations
with kernels of 1× 1 and 3× 3 are adopted, respectively,
where the number of channels corresponding to the first
convolution is 1/8 of the total number of output channels.
In the third branch, first, the maximum pooling layer with a

pooling window of 2× 2 and a step size of 2 is used to realize
downsampling, and then the upsampling operation is carried
out to adjust the feature map to the original size. The advan-
tages of this method are that the number of feature maps can
be increased, and the sample features of more levels can be
extracted and fuzed. So, we can get accurate effects in local
details. In the last branch, we employ cavity convolution with
a kernel of 3× 3 to further expand the receptive field. By
connecting the output feature maps of the four branches,
we can obtain the multi-scale features of the input image.
Feature pre-extraction before the whole network can effec-
tively extract local face information, and it has a better learn-
ing effect for sample features with exaggerated expressions
and makeup interference.

3.2. Initial Prediction Networks. The traditional coordinate
regression has many unaligned points, making it insensitive
to facial expression changes, such as blinking and crooked
mouths. Heatmap regression, however, has a poor effect on
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FIGURE 3: Multi-scale feature pre-extraction module architecture.
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FIGURE 2: The overall architecture of the network. The network consists of two stages. The first stage is a hybrid detection model for predicting
initial coordinates, and the second stage is an offset prediction network for predicting coordinate offsets.
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the continuity and relative position stability of landmarks, which
is easily affected by occlusions or large posture movements.

Considering the advantages and disadvantages of the two
methods mentioned above, we adopt the detection model
combining heatmap regression and coordinate regression
[6], as shown in Figure 4, to combine the advantages of
heatmap regression and coordinate regression and comple-
ment each other. As shown in Figure 4, facial features are
extracted through a series of convolution operations through
the residual network, and the size of the feature map is
reduced to 8× 8. Then, we use three convolution operations
instead of upsampling to get the inclusion graph and the X
and Y-offset graph. Therefore, the output of this mixed
regression model is three, which are the inclusion graph
(N × H × W) and the X and Y-offset graph (2N × H × W),
respectively, as shown in Figure 4 below.

More specifically, the image with the input size of 256×
256 is downsampled into a feature map with the size of 8× 8,
which is divided into 64 blocks. Among them, the block on
which the key point is located is assigned a value of 1, and the
rest are 0. At this time, the feature map obtained predicts
the inclusion of the key point. Alternatively, we may denote
the left or upward extension of the block as the positive
direction of the X axis or the positive direction of the Y axis,
respectively, as the origin of the coordinate axis. If the key
point is offset by 40% in the X-axis direction relative to the
origin, then its X-offset is denoted as 0.4. Then its Y-offset is
equal to 0.4, as shown in Figure 5 below.

At the same time, most of the training dataset is com-
posed of frontal face images, so the samples with large poses
on the side account for a small proportion, which leads to the
problem of data imbalance. Training will focus on the fea-
tures of frontal samples and ignore the features of the large
pose. Inspired by the paper of Guo et al. [28], we add a head
attitude prediction module into the backbone network, as
shown in Figure 6, to predict the Euler angles of head

three-dimensional attitude rotation, namely pitch angle, yaw
angle, and roll angle, and obtain the angle information of face
rotation. As shown in Figure 6, three Euler angles are obtained
through several convolutions and full connection layer regres-
sion. Then, the obtained Euler angle is used to add an adaptive
weight module to the loss function. When the angle is larger,
the penalty will be larger, which makes the model pay more
attention to large pose samples with fewer numbers and
enhances its robustness. On the contrary, when the angle is
smaller, the penalty will be smaller. The head pose prediction
module can be completed by several simple convolution
operations.

3.3. Offset Prediction Networks. In the previous initial pre-
diction network, we obtained the initial coordinates of the
landmarks. However, the coordinates obtained by the mixed
detection model based on the block of coordinates predicted
by heatmap regression and then the offset prediction are not
accurate enough. Our backbone network uses a mixed detec-
tion model is based on the heatmap regression. Actually this
is a feature matching process, so it still pays more attention to
local characteristics. In the initial inclusive classification of
key points, key points belonging to a certain block can share
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FIGURE 4: Structure of hybrid detection model.
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the same characteristics, so as to achieve partial continuity.
However, for key points belonging to two different blocks,
the prediction is based on the different feature blocks, so they
are independent of each other. To some extent, this still
destroys the continuity of the landmarks of the face, without
further considering the spatial relationship between the
points. Since, coordinate regression is based on the same
features, global continuity is preferred. Therefore, based on
the coordinate regression and attention mechanism, we
regress a series of offsets of initial coordinates relative to
ground truth to further refine the coordinates of landmarks.

We take the generated heatmap corresponding to the fea-
tures pre-extracted from the network and the initial coordi-
nates of the first stage as input to this offset prediction
network. As shown in Figure 2, this network is based on
coordinate regression, takes VGG16 [29] as the network base-
line, and the generated heatmap as the attention mask to
guide the offset prediction network to pay more attention to
the area around the key point and apply weights to the
extracted features. Figure 7 shows the generation and fusion
process of the attention mask. As shown in the figure, the
input heatmap generates the attention mask after downsam-
pling and several convolution and softmax operations, and
readds the weight for the pre-extracted features, which is
conducive to modeling the context relationship between the
facial regions. The process of attention mask generation and
fusion can be expressed by amathematical formula as follows:

f ¼ S g C∗D Hð Þ þ bð Þð Þ⊗ F; ð1Þ

where C stands for the downsampling operation, g for the
nonlinear function, S for the softmax operation, F for the
feature extracted in the previous step, and⊗ for the element-
by-element dot product operation. This is helpful for the
network to more accurately capture the spatial relationship
between the segmented regions of the face. To optimize the
offset results predicted by the network, we calculate the pre-
dicted offset and the mean square error of the offset between
the initial coordinates and the ground truth. The objective
function of the network can be defined as follows:

F ¼ argmin
1
N

∑
N

i¼1
Si − S0i − Oik k2; ð2Þ

where N represents the total number of facial landmarks, Si
donates the ground truth, S0i represents the predicted initial

coordinates, and Oi represents the predicted offset. This
objective function will force the network to learn the offset
between the initial coordinates and the ground truth, effec-
tively combine the facial space relationship, further refine the
coordinates of the landmarks, and combine the two-stage
network output to obtain the final coordinates.

3.4. Loss Function. Since the regression output of our net-
work is divided into two parts, namely, inclusion map and
offset, the loss function consists of the following two parts, as
shown in Equation:

L¼ Linclusion þ αLoffset; ð3Þ

where L represents the total loss, Linclusion contains the graph
loss, Loffsetðx;yÞ represents the x and y offset loss, and α is the
equilibrium coefficient.

For the inclusion map loss, it can be expressed as the
follows:

Linclusion ¼
1

NHW
∑
N

n¼1
∑
H

i¼1
∑
W

j¼1
γn E nð Þ

i j − bE nð Þ
i j

� �
2
; ð4Þ

where N is the number of landmarks, H and W are the
height and width of the inclusion map. γn is the adaptive
weight, EðnÞ

i j , and bEðnÞ
i j are the true and predicted inclusion

graphs, respectively. The EðnÞ
i j equals 0 or 1.

For offset map loss, it can be expressed as the following
equation:

Loffset ¼
1
2N

∑
E nð Þ
i j ¼1

∑
2

l¼1
γn O n;lð Þ

i j − bO n;lð Þ
i j

��� ���; ð5Þ

where Oðn;lÞ
i j and bOðn;lÞ

i j are the true and predicted offset,
respectively. l represents the x and y directions. The Oðn;lÞ

i j
is between 0 and 1.

γn in Equations (4) and (5) above is the adaptive weight
composed of Euler angles obtained from the head pose pre-
diction module, which is defined as follows:

γn ¼ ∑
K

k¼1
1 − cosθkn
À Á

;K ¼ 3; ð6Þ

here θkn stands for the difference angle between the predicted
Euler angles corresponding to each point and the ground
truth, respectively. K stands for the number of Euler angles.
Obviously, with the increase of Euler angle, the penalty of
this term for the whole loss will be larger, which makes the
model pay more attention to the large pose face with fewer
samples and increases the robustness of the model.

4. Experiments

In this section, we introduce the datasets used in this paper,
including WFLW [9], COFW [8], 300W [7], implementation
details, and experimental results analysis.
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FIGURE 7: Structure of attention fusion module.
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4.1. Datasets. We selected three challenging datasets to test
the performance of AWMOP, namely WFLW, COFW,
and 300W.

WFLW: the WFLW dataset is annotated with 98 land-
marks and contains 10,000 images, of which 7,500 are used
for training and 2,500 are used for testing. At the same time,
the dataset also annotates the categories of the samples, and
there are six categories, which are: pose, expression, light-
ing, makeup, occlusion, and blur. Therefore, the test set is
also divided into six subsets corresponding to the above six
categories, and each subset is merged into the complete
test set.

COFW: the COFW dataset presents the face state in the
real world with a total of 29 landmarks, which is more chal-
lenging in the case of occlusion and large poses. We use
COFW color images for training and testing. There are
1,345 images in the training set and 507 images in the test set.

300W: 300W dataset is a very general dataset with 68
landmarks. This dataset is divided into four subsets, which
are AFW, HELEN, IBUG, and LFPW. A total of 3,148 sample
images in IBUG and training subsets of HELEN and LFPW
were used as the training set, and 689 sample images in IBUG
and testing subsets of HELEN and LFPW were used as the
test set. The whole test set is divided into a challenging subset
and a common subset. At present, there are two normaliza-
tion standards for this dataset, namely, inter-pupil normali-
zation and eye spacing normalization.

4.2. Implementation Details. Before training, in order to
retain more features and context information, sample images
of the 300W dataset were expanded outward by 10% and
then trimmed according to the bounding box given by anno-
tation, the WFLW dataset was expanded outward by 20%
and then trimmed, and COFW dataset was trimmed directly
according to the bounding box given. Resize the cropped
image to 256× 256 and input it into the network. We per-
formed the random translation of the X-axis and Y-axis with
Æ30 pixels, random occlusion of a rectangle with a maxi-
mum length of 100 pixels, and horizontal flip operation with
probability P¼ 0:5 for the sample data. We used the pre-
trained network on ImageNet [29] as the backbone network
and Adam as the optimizer. The initial learning rate was
set to 0.0001. The backbone network was trained with
60 epochs and decayed by 10 each at the 30-th and 50-th
epochs. The balance coefficient in the loss function is set to
0.1. The baseline network uses pretrained VGG16 on Ima-
geNet, the initial learning rate is set to 0.00005 and decayed
by 5 after 100 epochs. To prevent the overfitting of the
backbone network in the first stage, different training sub-
sets are randomly used to train the backbone network and
the offset prediction network, respectively, and then trained
jointly.

4.3. Metrics. To test the performance of the model, the widely
used normalized mean error (NME) and cumulative error
distribution (CED) curves were used as the evaluation indexes
of the model performance. The mathematical formula of
NME is defined as follows:

NME¼ 1
M

∑
M

m¼1

1
N ∑

N

n¼1
bpmn − pmnk k2
dm

;
ð7Þ

whereM is the total number of test images, N is the number
of landmarks, bpmn and pmn represent the predicted and true
coordinates of the n-th key point of the m-th image, respec-
tively. dm represents the normalized distance. For the 300W
dataset, we used two normalization criteria, namely, inter-
pupil distance normalization (IPN) and inter-ocular distance
normalization (ION). However, for COFW and WFLW
datasets, we used the normalization standard of inter-ocular
distance.

The mathematical formula of CED is defined as follows:

CED¼ Ne≤l

N
; ð8Þ

where Ne≤l is the number of images which error l no less
than e.

4.4. Experiment Results on WFLW. To evaluate the perfor-
mance of AWMOP under various interference situations, we
tested themodel using theWFLWdataset. We show the NME
results of the model in various situations and compare them
with other advanced methods, including LBF [5], ESR [30],
CFSS [4], DVLN [31], LAB [9], Wing [32], FCDN [33],
PIPNet [6], MAttHG [21], and SD-HRNet [34].

Figure 8 shows the subjective results of our model on the
WFLW dataset. Each column from left to right contains six
subsets of images: pose, expression, lighting, makeup, occlu-
sion, and blur. It is apparent from the test results that the six
subsets produced good results. In addition, one picture may
belong to several different subsets. For example, the fifth
picture in the first row belongs to both the blur subset and
the occlusion subset. Figure 8 shows that when several dif-
ferent interference situations occur at the same time, we can
also achieve good results.

In Table 1, we show the NME results of the model on the
full test set of WFLW and the other six subsets. We displayed
the optimal results in bold. As can be seen from the table,
AWMOP has the largest effect and ranks first in the test set.
Meanwhile, in the other six subsets, AWMOP also performed
best in the expression and makeup subsets. And the perfor-
mance of the large pose, illumination, and blur subsets ranked
second, indicating that the model has high robustness to the
interference of large pose, exaggerated expression, andmakeup.
However, by comparing the test results of each subset, it can be
found that the test results of the pose, occlusion, and blur
subsets are significantly worse than those of the other subsets,
which indicates that there is still a lot of room for improvement
for the extreme pose, extreme occlusion, and blur.

4.5. Experiment Results on COFW. In order to evaluate the
robustness of AWMOP against occlusion and large attitude,
we use COFW to test the model and write the test results in
Table 2. As shown in Table 2, we compared the NME and
failure rate with other existing advanced methods using eye
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spacing as the normalization standard, including RCPR [8],
LBF [5], OSRD [35], TCDCN [11], CFSS [4], LBA [9], Wing
[32], FCDN [33], MAttHG [21], and SD-HRNet [34]. We
have bolded the best result.

From the results in the Table 2, we can see that we have
achieved better results in terms of both NME and failure rate.
Its predictive effect is only inferior to SD-HRNet’s. Due to
the more challenging occluded images in the COFW dataset,
they contain varying degrees of occlusion in different parts.
As shown in the results on the WFLW dataset, our method
has a good effect on occluded images to some extent, but it
still cannot handle cases of partial or complete occlusion
well. So our prediction performance will be slightly worse
than SD-HRNet [34], which can maintain high resolution
throughout the entire process. Figure 9 shows the cumulative
error distribution curves of RCPR, TCDCN, CFSS, 2-SCRM,
and SHN-GCN of the proposed method on the COFW

TABLE 1: Comparison of results with the state-of-the-art method on the WFLW dataset, error (NME) normalized by the inter-ocular distance.

Method Test Pose Expression Illumination Makeup Occlusion Blur

LBF [5] 10.29 24.10 11.45 9.32 9.38 13.03 11.28
ESR [30] 11.13 25.88 11.47 10.49 11.05 13.75 12.20
CFSS [4] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
DVLN [31] 6.08 11.54 6.78 5.73 5.98 7.33 6.88
LAB [9] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing [32] 5.11 8.75 5.36 4.93 5.41 6.37 5.81
FCDN [33] 4.86 7.81 5.13 4.77 4.77 5.78 5.34
PIPNet [6] 4.79 8.76 4.86 4.56 4.60 6.04 5.49
MAttHG [21] 4.68 8.18 4.83 4.48 4.71 5.26 5.72
SD-HRNet [34] 4.93 8.63 5.31 4.81 4.76 5.73 5.56
AWMOP 4.68 8.18 4.81 4.54 4.41 5.79 5.38

Bold values represent the best results.

TABLE 2: Comparison of results with the state-of-the-art methods on
the COFW dataset, with mean error (NME) normalized by inter-
pupil distance.

Method Mean error Failure rate

RCPR [8] 8.76 20.12
LBF [5] 8.77 –

OSRD [35] 9.27 –

TCDCN [11] 7.66 16.17
CFSS [4] 6.28 9.07
LAB [9] 5.58 2.76
Wing [32] 5.44 3.75
FCDN [33] 5.32 2.17
MAttHG [21] 5.08 1.26
SD-HRNet [34] 3.69 0.2
AWMOP 4.83 0.98

Bold values represent the best results.

FIGURE 8: Subjective results of the model on WFLW. Each column from left to right contains six subsets of images: pose, expression, lighting,
makeup, occlusion, and blur.
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test set. As we all know, the higher the trend of the CED curve,
the better the positioning effect. As shown in the figure, the
CED curve of our method is higher than that of other meth-
ods, which further illustrates the advantages of our method.

Figure 10 shows the excellent performance of AWMOP
on occlusion and different poses. The first line in Figure 10
shows the testing effect of the image with slight occlusion,

which shows that the positioning effect is accurate. The sec-
ond line shows the test results of the pictures with the most
occlusions. It can be seen that if the occlusions are only
partially occluded, the test results are more accurate, such
as the eyes in the upper right corner of the second line that is
partially occluded by the hair, and the nose and mouth parts
in the middle and lower part of the third line that is occluded
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FIGURE 9: CED curve for testing the proposed method on the COFW dataset.

FIGURE 10: Detection effect of the model on COFW dataset. The first row is the case of slight occlusion, the second row is the case of heavy
occlusion, and the third row is the case of both occlusion and large pose or exaggerated expression.
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by transparent bubbles, etc. However, if local features are all
occluded, the results will be offset, resulting in inaccurate
positioning, such as the second line of the sixth left corner
of the eye part. The third row shows the test results of images
with occlusion and attitude transformation or exaggerated
expression. It can be seen that although the same situation
exists in the severely occluded parts, the accuracy of the overall
shape and local positioning is maintained. Our model works
well for detecting large and occluded pose images, while it
needs to be refined for localizing fully occluded features.

4.6. Experiment Results on 300W. In order to evaluate the
performance of the model on the 300W dataset, we summa-
rized the NME on the full test set and the common and
challenge subsets as the test results in Table 3. The other
method data in the table comes from their original paper,
including RCPR [8], ESR [30], LBF [5], TCDCN [11], CFSS
[4], LAB [9], 2 - SCRM [15], SLPT [24], MAttHG [21], DSNR
[16], DSCN [17], and SD-HRNet [34]. The best results have
been bolded.

As you can see, our method outperforms the vast major-
ity of the current methods in Table 3. It can be seen that our
method’s objective performance on the common subset of
300W is slightly inferior to the top-ranked MAttHG. When
using the distance between pupils as the normalization stan-
dard (IPN), our method ranks second. When using the dis-
tance between eyes as the normalization standard (ION), our
method ranks second alongside SD-HRNet, only slightly lags
in the challenge subset. This may be because SD-HRNet can
learn the advantages of the original HRNet [36] through
knowledge distillation, maintaining high resolution through-
out the network and obtaining richer information. Among
the results under two normalization criteria, the difference
between our method’s results on the common subset and
MAttHG is smaller than that on the challenge subset. The
overall experimental performance is not as good as that of

the WFLW dataset. It may be that learning offset requires
more sample support. In the case of limited training samples,
the position attention module and channel attention module
used in the MAttHG method are more able to learn the
changes in local detail features caused by large poses and
large expressions. Figure 11 shows the visualization results
on the 300W dataset, which are, respectively, the public sub-
set and challenging subset. It can be seen that our detection
accuracy is good whether it is a frontal face in the public
subset or challenge subset or face image with occlusion, large
pose, and exaggerated expression. For example, the irregular
contours of the first, sixth, and eighth pictures in the first row
all fit well, and for the faces with local exaggerated expres-
sions such as the sixth, seventh and eighth pictures in the first
and second rows, our detection effect is also good.

Figure 12 shows the comparison between the results of
our method on 300W and those of other methods. From left
to right, each column is (a) ground truth, (b) 2-SCRM [15],
(c) CFSS [4], (d) LBF [5], and (e) the results of our method.
From the results of the third, fourth and fifth lines in the
figure, we can see that our method has a good positioning
effect for these large poses and partially occluded images, and
is more accurate in facial contour.

4.7. Ablation Test. Our proposed model consists of three
parts, namely, the MFP module, head attitude prediction
module, and offset prediction network module. In this sec-
tion, we will verify their effectiveness on 300W, COFW, and
WFLW datasets, respectively. We have bolded the best
results in each table.

(1) Analysis of the MFP module. Before the start of the
network, we add the MFP module, which can extract
multi-scale local feature information, which is very
helpful for the subsequent learning of our model. To
verify the effectiveness of this component, the results
of the model without the pre-extraction module and
the model with the pre-extraction module are com-
pared, and the test results are shown in Table 4. From
the table, we can see that the NME of each dataset has
decreased to a certain extent. It is worth mentioning
that, as shown in Table 5, after adding the pre-
extraction module, the makeup and occlusion subsets
are greatly improved, and the expression subset is
also improved to a certain extent, which indicates
that the MFP module is effective for the extraction
of local features, and it is beneficial for makeup, exag-
gerated expression, occlusion, and other situations.

(2) Analysis of the head pose prediction module. We add
the head pose prediction module to the backbone
network to predict the rotation angle information
of the head and give more weight to the large pose
images in the dataset so that the network can learn
features better. In order to verify its effectiveness, we
conducted experiments based on the original back-
bone network and compared the results with the head
pose prediction module. The experimental results are
shown in Table 6. Compared to the original backbone

TABLE 3: Comparison of results with state-of-the-art methods on the
300W dataset.

Method Common Challenging Full

Inter-pupil normalization (IPN)
RCPR [8] 6.18 17.26 8.35
ESR [30] 5.28 17.00 7.58
LBF [5] 5.57 15.40 7.50
TCDCN [11] 4.80 8.60 5.54
CFSS [4] 4.73 9.98 5.76
2-SCRM [15] 4.58 10.94 5.82
MAttHG [21] 3.83 7.12 4.49
AWMOP 4.09 7.63 4.79

Inter-ocular normalization (ION)
DSRN [16] 4.12 9.68 5.21
DSCN [17] 3.58 5.36 3.85
LAB [9] 2.98 5.19 3.49
MAttHG [21] 2.81 4.94 3.23
SD-HRNet [34] 2.94 5.33 3.41
AWMOP 2.95 5.28 3.41

Bold values represent the best results.
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network, our addition of head pose prediction pro-
vides better results. At the same time, we can see in
Table 5 that the NME of the model with this compo-
nent on the large pose subset decreases by 0.18%,
which indicates that the addition of the head pose
prediction module is indeed very beneficial to the
large pose sample and also improves the overall effect.

(3) Analysis of the offset prediction network module. As
different blocks depend on the different features dur-
ing heatmap regression, some adjacent feature points
are discontinuous, so in order to compensate for the
global loss caused by heatmap regression, we add an
offset prediction network. In order to explore the
effectiveness of this network, we compared the test
results of the original network and the added offset
prediction network. As shown in Table 7, the NME
on the three datasets has been improved to some
extent. In Table 5, the NME of the pose subset
decreases by 0.06%, indicating that the stability of
the pose is improved by this module.

(4) Model complexity analysis of components: Themodel
complexity of our components is shown in Table 8.

(a) (b) (c) (d) (e)

FIGURE 12: The comparison between the results of our method on 300W and those of other methods. From left to right, each column is
(a) ground truth, (b) 2-SCRM, (c) CFSS, (d) LBF, and (e) the results of our method.

TABLE 4: Comparison of mean errors with or without multi-scale
feature pre-extraction (MFP) modules on the 300W test complete
set, COFW, and WFLW datasets.

Settings 300W COFW WFLW

Without MFP 4.83 4.85 4.70
With MFP 4.79 4.83 4.68

Bold values represent the best results.

FIGURE 11: 300W dataset subjective visualization display. The first row is the common subset, and the second row is the challenge subset.
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From the table, we can see that the MFP and HPP
modules have little impact on the overall model com-
plexity. The fluctuations in the number of model
parameters and inference speed per image are accept-
able when compared with the improvements inmodel
detection performance. However, the OPN module
uses amore complex framework, VGG16, to implement
the auxiliary network and therefore increases inference
speed. How to lighten the model is still a problem that
requires continued research.

In summary, we can see the effectiveness of our various
components in processing facial images in different situa-
tions. We add a MFP module at the early stage of the net-
work to enable the subsequent network to obtain features
that integrate information from various scales. The parallel
connection of high-resolution and low-resolution feature
maps preserves much richer local information, thereby reduc-
ing the NME of the network inmakeup and occlusion test sets
by 0.07% and 0.06%. The head pose prediction module bal-
ances the data by applying greater weights to the large pose
images in the training set, enhancing the model’s prediction
effect on large pose images. As shown in Table 5, the addition

of this module reduces the NME of the large pose test subset
by 0.18%. Finally, the offset prediction network further opti-
mized the coordinates, and the overall model’s performance
in the large pose test subset was further improved, with NME
decreasing by 0.06% again. Overall, due to the addition of
MFP and head pose prediction components in our model, it
is more suitable for dealing with the impact of large poses,
occlusion, and heavy makeup on images in natural environ-
ments, improving the robustness of the model to such com-
plex situations. At the same time, with the assistance of the
offset prediction module, the model is enhanced to constrain
the overall shape, further improving the prediction accuracy
of large pose faces.

5. Conclusion

In this paper, an adaptive weighted face AWMOP is pro-
posed to solve the problems of a large pose, exaggerated
expression, and excessive makeup in the unconstrained field
environment. First, a MFP module is added to obtain multi-
scale features and focus on local features. Then, the head
poses prediction module is introduced into the backbone
network to increase the weight of large pose images to solve
the problem of data imbalance. Meanwhile, an offset predic-
tion network is added to improve the spatial relationship
between landmarks and optimize the global shape by relying
on global features. Good results are obtained on common
public challenge sets: 300W, COFW, and WFLW, which
shows the superiority of our model.
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