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Finger vein recognition is a promising biometric technology that has received significant research attention. However, most of the
existing works often relied on a single feature, which failed to fully exploit the discriminative information in finger vein images, and
therefore led to a limited recognition performance. To overcome this limitation, this paper proposes an encoding coefficient
similarity-based multifeature sparse representation method for finger vein recognition. The proposed method not only uses
multiple features to extract comprehensive information from finger vein images, but also obtains more discriminative information
through constraints in the objective function. The sparsity constraint retains the key information of each feature, and the similarity
constraint explores the shared information among the features. Furthermore, the proposed method is capable of fusing all kinds of
features, not limited to specific ones. The optimization problem of the proposed method is efficiently solved using the alternating
direction multiplier method algorithm. Experimental results on two public finger vein databases HKPU-FV and SDU-FV show
that the proposed method achieves good recognition performance.

1. Introduction

Finger vein recognition is a promising biometric technology
that captures the unique pattern of blood vessels beneath the
skin surface using near-infrared light in a noninvasive way.
Unlike other biometric technologies, finger vein patterns are
difficult to replicate or forge, which makes finger vein recog-
nition reliable and secure [1, 2]. Recently, finger vein recog-
nition has drawn great attention from researchers.

Researchers have developed numerousmethods to enhance
the performance of finger vein recognition [3]. However, many
existing methods relied on a single feature, which failed to fully
capture discriminative information in finger vein images, thus
limiting their recognition performance. To address these lim-
itations, researchers have proposed multifeature methods
[4–7]. These methods utilized multiple features to represent
images and provided more comprehensive information for
recognition. However, traditional multifeature methods paid

little attention to the similarity between features. In reality,
when multiple features describe one image, they inherently
share consistent or similar information, which has significant
discriminative capability. Furthermore, this shared similarity
information can enhance the robustness of recognition. In
cases where a feature is disturbed by noises, the similarity
information can reduce the negative effect of noises, which
brings the robustness of the recognition method.

In order to make full use of multiple features, this paper
proposes an encoding coefficient similarity-based multifea-
ture sparse representation (SMSR) method for finger vein
recognition. The proposed method introduces an objective
function consisting of three components: the reconstruction
error, the sparsity constraint on each feature, and the simi-
larity constraint between features. The reconstruction error
measures the error between the original data and the recon-
struction based on the encoding coefficient and dictionary.
The sparsity constraint causes most encoding coefficients to
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be zeros, while the nonzero coefficients represent the key
information of each feature. This helps to reduce the redun-
dancy of feature representation. The similarity constraint
encourages the similarity between the encoding coefficients
of different features, which effectively captures the common
information among features. In the matching stage, the
reconstruction errors of multiple features are weighted and
fused to further improve the recognition performance.

The SMSR method provides several advantages. First, it
considers multiple features simultaneously, to enrich the fea-
ture representation. Second, the method obtains more discrim-
inative information for recognition by employing sparsity
constraint and similarity constraint. Finally, the SMSR method
exhibits strong applicability since it is not limited to specific
features.

The paper is organized as follows: Section 2 presents an
overview of related work. Section 3 introduces the proposed
method. Section 4 reports the experimental results, and
Section 5 provides the conclusions.

2. Related Works

2.1. Single-Feature Finger Vein Recognition. In single-feature
finger vein recognition, a single feature is extracted to represent
an image. Frequently used single-feature extraction methods
include the vein pattern method, local descriptor method, deep
learning method, and sparse representation method.

(1) Vein pattern method: the vein pattern method is
widely used in finger vein recognition, which cap-
tures and utilizes vein patterns for recognition. There
are several commonly used vein pattern extraction
methods, that is, mean curvature (MeanC) [8], anat-
omy structure analysis-based vein extraction [9], and
Gabor [10].

(2) Local descriptor method: the local descriptor method
focuses on capturing the texture of local regions of
finger vein image. This kind of method utilizes vari-
ous popular local descriptors, including local binary
pattern (LBP) [11], multiscale uniform local binary
pattern [12], local line binary pattern [13], and scale-
invariant feature transform (SIFT) [14].

(3) Deep learning method: in recent years, deep learning
techniques have been widely used to extract finger vein
features. In one research, a convolutional neural net-
work [15] was employed to perform feature extraction.
Another research introduced a pretrained Xception
architecture [16] for both feature extraction and classi-
fication. In addition, a convolutional autoencoder [17]
was utilized to learn features from finger vein images.

(4) Sparse representation method: there are several fin-
ger vein recognition methods based on sparse repre-
sentation. These methods include nearest centroid
neighbor-based sparse representation classification
[18], mutual sparse representation classification
[19], and sparse reconstruction error constrained
low-rank representation (SRLRR) [20]. In particular,
SRLRR achieved excellent recognition performance.

2.2. Multifeature Finger Vein Recognition. In multifeature
methods, multiple features are extracted to enhance recogni-
tion performance. Several researches have explored the use of
multiple-feature methods for finger vein recognition. For
instance, one method integrated the enhanced maximum cur-
vature method with a histogram of oriented gradient (HOG)
descriptor for finger vein recognition [4]. Another method
focused on finger vein recognition using local phase quantiza-
tion and local derivative pattern [5]. In addition, one method
employed SIFT and speeded-up robust features as features [7].

Furthermore, there are many multimodal recognition
methods that improve performance by fusing features from
different modalities [2]. These include fusion of finger vein
and fingerprint features [21], fusion of finger vein and
knuckle pattern features [22], fusion of finger vein and face
features [23], and fusion of finger vein and electrocardio-
gram features [24].

3. The Proposed Method

We propose an encoding coefficient SMSR method to obtain
more discriminative information from finger vein images.
Figure 1 illustrates the flowchart of the proposed method.
Subsequently, we will provide the detailed descriptions of the
proposed method.

3.1. Feature Extraction. In this step, various features are
extracted from the finger vein image. Specifically, this study
employs two features, that is, Grayvalue and LBP. The Gray-
value utilizes the gray values of an image as a feature. By
collecting the gray values of all pixels, a Grayvalue feature
vector can be obtained, to represent the gray information of
the image. In addition, LBP is used to capture the texture
information of an image. The computation of the LBP fea-
ture is based on comparing the gray value of each pixel with
its neighboring pixels. The binary codes are generated based
on the comparison results. These binary codes are then con-
verted into decimal values, which are used as the second
feature. By utilizing both the Grayvalue feature and the
LBP feature, the proposed method obtains the gray and tex-
ture information of the finger vein image.

3.2. Encoding Coefficient Similarity-Based Multifeature
Sparse Representation. The encoding coefficient SMSR
defines an objective function that integrates the sparsity con-
straint for each feature and the similarity constraint between
features. The defined objective function is given as follows:

min
Ci

⁡

1
2
∑
M

i¼1
Xi − DiCik k2F þ α∑

M

i¼1
Cik k1 þ

β

2
∑
M

i¼1

∑
M

j¼1;j≠i
Ci − Cj



 

2
F :

ð1Þ

In this formula, M represents the number of features. Xi
denotes the feature matrix of the testing images, where i is
the feature index. Each column of Xi corresponds to a feature
vector of a testing image. Ci represents the encoding coeffi-
cient matrix, and Di denotes the dictionary consisting of
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training image features. ⋅k k2F denotes the squared Frobenius
norm of a matrix, and ⋅k k1 represents the L1 norm.

The objective function consists of three components:

(1) Reconstruction error: 1
2∑

M
i¼1 Xi − DiCik k2F measures

the difference between the original data Xi and its
reconstruction using the corresponding dictionary
Di and encoding coefficient matrix Ci. By minimizing
the reconstruction error, the objective is to obtain a
sparse encoding coefficient matrix for reconstructing
the original data.

(2) Sparsity constraint: α∑M
i¼1 Cik k1 promotes the spar-

sity of the coefficient matrix Ci. By minimizing the
sparsity constraint, the objective function encourages
most of the elements in the coefficient matrix Ci to be
zero, thus selecting the most important information.

(3) Similarity constraint: β2∑
M
i¼1∑

M
j¼1; j≠i Ci − Cj



 

2
F encourages

the similarity between coefficient matrices Ci and Cj.
By minimizing the similarity constraint, the coeffi-
cients between different features tend to be similar,
and the shared information between different features
of an image is explored.

The optimization problem aims to find the coefficient
matrix Ci that minimizes the reconstruction error and keeps
the sparsity and similarity constraints.

3.3. Optimization Process. The alternating direction method
of multipliers (ADMM) [25, 26] is a powerful optimization
technique that has gained significant attention due to its
ability to decompose complex optimization problems into
simpler subproblems. Therefore, we use ADMM to solve
the objective function Equation (1).

By introducing the auxiliary variable Li, the objective
function can be transformed into:

min
Ci ;Li

⁡

1
2
∑
M

i¼1
Xi − DiCik k2F þ α∑

M

i¼1
Lik k1 þ

β

2
∑
M

i¼1
∑
M

j¼1;j≠i

Ci − Cj



 

2
F s:t: Li ¼ Ci; i¼ 1; 2;…;M:

ð2Þ

The augmented Lagrange function is obtained by introduc-
ing the Lagrange multiplier matrix Yi:

L Ci; Li;Yið Þ ¼ 1
2
∑
M

i¼1
Xi − DiCik k2F þ α∑

M

i¼1
Lik k1 þ

β

2
∑
M

i¼1

∑
M

j¼1;j≠i
Ci − Cj



 

2
F

þ∑
M

i¼1
Yi;Ci − Lih i þ μ

2
∑
M

i¼1
Ci − Lik k2F ;

ð3Þ

where ⋅;h ⋅i represents the inner product of twomatrices and μ
is a penalty factor. The function of Equation (3) can be solved
using an iterative update method.When a variable is updated,
other variables are fixed. The update steps are given as follows:

(1) Update Ci: fix other variables, Ci can be updated by
solving the following problems:

Ckþ1
i ¼ argmin

Ci

⁡

1
2

Xi − DiCik k2F þ
β

2
∑
M

j¼1;j≠i
Ci − Ck

j




 


2
F

þ Yk
i ;Ci − Lki


 �þ μk

2
Ci − Lki


 

2

F :

ð4Þ

By taking the derivative of Ci and setting it to zero, we obtain

Ckþ1
i ¼ DT

i Di þ β M − 1ð ÞI þ μkI
Â Ã

−1

DT
i Xi þ β ∑

M

j¼1; j≠i
Ck
j þ μkLki − Yk

i

 !
;

ð5Þ

where I is the identity matrix.
(2) Update Li: fix other variables, Li can be updated by

solving the following problems:

∗

∗

Testing images

LBP

=

=

Grayvalue

Feature matrix Coefcient matrix

Sparsity
constraint

Similarity
constraint

Sparsity
constraint

Reconstruction error

Weighted fusion of
reconstruction error

Labels

Dictionary

FIGURE 1: Recognition flowchart of testing images.
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Lkþ1
i ¼ argmin

Li
⁡α Lik k1 þ Yk

i ;C
kþ1
i − Li


 �
þ μk

2
Ckþ1
i − Li



 

2
F :

ð6Þ

By taking the derivative of Li and setting it to zero, the
following formula can be obtained.

αsign Lið Þ − Yi
k þ μk Ci

kþ1
− Li

À Á¼ 0; ð7Þ

where sign Lið Þ is defined as follows:

sign Lið Þ ¼
1; if Li>0

−1; if Li<0

0; if Li ¼ 0

8><
>: : ð8Þ

Using the soft threshold method, the update formula of Li is
obtained.

Lkþ1
i ¼ max 0;Ckþ1

i þ Yk
i

μk
−

α

μk

� �

þmin 0;Ckþ1
i þ Yk

i

μk
þ α

μk

� �
:

ð9Þ

(3) Update Yi and μ: the Lagrange multiplier Yi and μ are
updated.

Ykþ1
i ¼ Yk

i þ μ Ckþ1
i − Lkþ1

i

À Á
; ð10Þ

μkþ1 ¼min ρμk; μmax

À Á
; ð11Þ

in which the parameter ρ is used to control the update speed
of the penalty parameter μ. We set ρ to 1.6, and the maxi-
mum value of μ is μmax ¼ 108.

In each iteration, we compute the difference between
Ci

kþ1 and Likþ1 as ri. The norms of ri are then calculated
and compared to the threshold value. If the maximum norm
of ri is less than the threshold or the iteration reaches the
maximum value, the algorithm terminates. Otherwise, the
value of μ is updated, and the algorithm continues with
the next iteration.

The optimization process is given in Algorithm 1.

3.4. Classification. In this section, we present the classifica-
tion of a testing image. For the feature matrix Xi of all the
testing images, the coefficient matrix Ci is obtained by solv-
ing function Equation (1), which represents the linear com-
bination of Xi using the dictionary Di, that is, Xi ≈ DiCi.
Specifically, for a testing image x, its ith feature vector is
denoted as xi, and the ith coefficient vector is denoted
as ci. The reconstruction error of xi on Di can be calculated:

sxi ¼ xi − Dicik k 2: ð12Þ

Subsequently, the reconstruction errors of different
features are fused, denoted by sx .

sx ¼ ∑
M

i¼1
wisxi ; ð13Þ

where wi is the weight, which represents the contribution of
the ith feature to the final reconstruction error sx.

Finally, the testing image x is assigned to the category
with the smallest reconstruction error, so x is assigned to the
category labeled label xð Þ according to the following formula:

label xð Þ ¼ argmin sxð Þ: ð14Þ

4. Results and Discussion

4.1. Experiment Settings. In order to ensure the reliability of
the experimental results, we conduct experiments on two
public finger vein databases: HKPU-FV database from
Hong Kong Polytechnic University [27] and SDU-FV data-
base from Shandong University [28]. Some finger vein
images from two databases are shown in Figure 2.

(1) HKPU-FV database contains finger vein images from
156 volunteers. The acquisition process consists of
two stages. In each stage, the volunteers provided
two fingers for image acquisition, and six images
were obtained for each finger. Since only 105 volun-
teers participated in the second stage, the number of
finger vein images per person in the database varies.
Therefore, we only use the finger vein images col-
lected in the first stage, totaling 1,872 (312× 6) finger
vein images from 312 fingers.

(2) SDU-FV database involves 106 volunteers. Each vol-
unteer provided finger vein images from six fingers,
and six images were obtained for each finger. There-
fore, the database has a total of 3,816 (636× 6) finger
vein images from 636 fingers.

Input: Feature matrix Xi of testing images, feature matrix Di

of training images

Output: Coefficient matrix Ci

1. Initialize:Ci ¼ 0, Li ¼ 0,Yi ¼ 0, ρ¼ 1:6, μ0 ¼ 0:1, μmax ¼ 108

2. For K ¼ 1 to 200 do

3. Fix other variables and update Ci as Equation (5)

4. Fix other variables and update Li as Equation (9)

5. Fix other variables and update Yi as Equation (10)

6. If max rik kð Þ<10−6 or k> ¼ 200 break

7. Else update μ

8. Endfor

ALGORITHM 1: SMSR optimization process.
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For the experiments, the first half images of each finger
are used as training data, and the remaining images are used
as testing data. Therefore, HKPU-FV database and SDU-FV
database have 936 (312× 3) training images and 1,908
(636× 3) training images.

To reduce interference from the image background, fea-
tures are extracted from the region of interest (ROI) image.
The ROI is obtained using the method in Yang et al. [29].
Initially, the Sobel operator is used to detect the finger
boundaries, and then the midpoints of the boundaries are
identified. These midpoints are utilized to correct the skew
angle in the image. Next, a sliding window technique is
employed to determine the height of the ROI, while the
width is determined by using the internal tangents of the

finger edges. Once both the height and width of the ROI
are determined, the ROI of the finger vein image is obtained.
For the convenience of processing, the size of the ROI is
normalized into 96× 64 pixels using bilinear interpolation.

In our experiments, we test the performance of our
method in both identification and verification modes. In
the identification mode, we use the recognition rate as a
benchmark, which measures the rate of correctly recognized
images overall testing images. In the verification mode, we
utilize the equal error rate (EER) as a performance evaluation
metric.

4.2. Comparison with Single-Feature Sparse Representation.
This experiment aims to compare the proposed SMSR

ðaÞ

ðbÞ
FIGURE 2: Finger vein images from two public databases. (a) Images from HKUP-FV and (b) images from SDU-FV.
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method with the single-feature sparse representation (SFSR)
method. The experiment utilizes Grayvalue, Gabor, LBP, and
HOG features, and the recognition results are presented in
Table 1. These results clearly demonstrate that, compared to
the SFSR method, the SMSR method achieves significantly
higher recognition rates and lower EERs on two databases.
For example, on HKPU-FV database, the recognition rates
for Grayscale and Gabor based on SFSR are 91.67% and
91.88%, and EER values are 2.24% and 3.11%, respectively.
When our Grayscale and Gabor-based SMSR method is
used, the recognition rate increases to 98.08% and the EER
reduces to 0.73%. Similar trends can be observed from other
features. The SMSR method outperforms the SFSR method
in recognition performance, which is attributed to a more
comprehensive representation of finger vein images by mul-
tiple features. In addition, this experiment shows that SMSR
methods can fuse different features, rather than specific ones.

Furthermore, on HKPU-FV database, the SMSR method,
utilizing the combination of Grayvalue and LBP features,
achieves the highest recognition rate of 99.89% with a lower
EER of 0.12%. Similarly, on SDU-FV database, the same
combination also yields the highest recognition rate of
93.87%, and the lowest EER of 2.61%. Considering the out-
standing performance of the combination of Grayvalue and
LBP features on two databases, subsequent experiments will
utilize the Grayscale and Gabor-based SMSR method.

4.3. Effectiveness of Similarity Constraint. This experiment is
conducted to evaluate the impact of the similarity constraint
on the objective function of the SMSR method. To assess the
contribution of this constraint, we remove it from the objec-
tive function to obtain the nonconsistent multifeature sparse
representation (NC-MFSR) method. The objective function
of the NC-MFSR method is given as follows:

min
Ci

⁡

1
2
∑
M

i¼1
Xi − DiCik k2F þ α∑

M

i¼1
Cik k1: ð15Þ

The experimental results are presented in Table 2, which
clearly demonstrates the performance difference between the
SMSR and NC-MFSR methods. On HKPU-FV database, the

SMSR method achieves a recognition rate of 99.89% and an
EER of 0.12%, outperforming the NC-MFSR method, which
has a lower recognition rate of 98.93% and a higher EER of
0.56%. Similarly, on SDU-FV database, the SMSR method
achieves a recognition rate of 93.87% and an EER of 2.61%,
which also surpasses the NC-MFSR method. These results
show the effectiveness of the similarity constraint in the
SMSR method. The similarity constraint in the SMSR
method captures the shared information between different
features, which enhances the discriminative ability of the
method. Furthermore, when a feature is affected by noise,
the similarity constraint is able to compensate for the
affected feature by exploiting the stable information. This
mutual compensation can also improve the overall recogni-
tion performance.

4.4. Comparison of Different Fusion Methods. The proposed
SMSR method is compared with several commonly used
multifeature fusion methods [30] to demonstrate its superior
ability. The compared methods are also based on sparse
representation. Detailed descriptions of the compared multi-
feature fusion methods are given as follows:

(1) Parallel feature fusion: this method requires that the
feature vectors of an image have the same
dimensionality. Therefore, PCA is applied to reduce
the dimensionality of two feature vectors, and the
two vectors are weighted and fused to obtain a com-
bined feature vector. Sparse representation is subse-
quently employed to obtain encoding coefficients,
and the reconstruction error is used for classification.

(2) Serial feature fusion: in this method, the two feature
vectors of an image are concatenated to form a larger
feature vector. Similarly, sparse representation is
used to obtain encoding coefficients, and the recon-
struction error is utilized for classification.

(3) Score fusion: this method uses a SFSR method to
obtain the encoding coefficients of each feature.
Each feature is individually reconstructed, and the
reconstruction errors of two features are weighted
and fused for classification.

TABLE 1: Performance comparison between SFSR and SMSR methods.

HKPU-FV SDU-FV

Method Feature Recognition (%) EER (%) Recognition (%) EER (%)

SFSR

Grayvalue 91.67 2.24 72.38 7.72
Gabor 91.88 3.11 60.06 18.99
LBP 98.93 0.22 84.07 5.35
HOG 98.82 0.63 77.94 8.68

Proposed SMSR

Grayvalue+Gabor 98.08 0.73 78.67 9.95
Grayvalue+HOG 99.68 0.33 90.15 4.25

Gabor+ LBP 99.68 0.32 91.72 3.44
Gabor+HOG 99.25 0.44 87.74 5.50
LBP+HOG 99.79 0.11 91.82 3.41

Grayvalue+ LBP 99.89 0.12 93.87 2.61

Bold values represent the best results.
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The results presented in Table 3 clearly demonstrate that
the recognition performance of the SMSR method is superior
to other multifeature fusion methods. Among these com-
pared methods, the score fusion method achieves better rec-
ognition performance. However, it still cannot catch up with
the SMSR method, as it fails to fully use the discriminative
information from multiple features.

The objective function of the SMSR method simulta-
neously considers the sparsity constraint of each feature
and the similarity constraint between features. In this way,
it not only fully exploits key information from each feature
but also extracts common information between features.
The obtained information is jointly employed for recogni-
tion, enhancing the overall discriminative capability of the
method. Therefore, for the multifeature fusion task, the
SMSR method can obtain more discriminative information
from multiple features and achieves good recognition
performance.

4.5. Parameter Discussion. This experiment involves several
parameters: the sparsity constraint parameter α, the similar-
ity constraint parameter β, and the weight parameter wi.

The parameter α controls the degree of sparsity in the
representation. By setting α to a larger value, the optimiza-
tion process is more inclined to generate a sparser encoding
coefficient matrix Ci. The parameter β determines the
strength of the similarity constraint. A higher value of β
promotes greater similarity between coefficient matrices Ci

and Cj. The weight parameter wi is used to fuse the recon-
struction errors. As two features are used, and w2 ¼ 1−w1,
the experiment only needs to focus on the value of w1.

Initially, we set α to 0.001 and β to 0.01 in order to adjust
the parameter w1. According to the results in Table 4, w1 ¼
0:5 yields the best recognition rate on HKPU-FV database,
and w1 ¼ 0:3 achieves the highest recognition rate on SDU-
FV database. Therefore, in the experiments of adjusting α
and β, we set w1 ¼ 0:5 on HKPU-FV database, and w1 ¼ 0:3
on SDU-FV database.

Next, α is fixed at 0.001, and the value of β is adjusted.
Based on the results shown in Table 5, the highest

recognition rate is achieved when β is set to 0.1 on both
HKPU-FV and SDU-FV databases.

Finally, with β fixed at 0.1, the value of α is varied. The
results in Table 6 indicate that the optimal recognition rate

TABLE 2: Performance under different constraints.

HKPU-FV SDU-FV

Method Recognition rate (%) EER (%) Recognition rate (%) EER (%)

NC-MFSR 98.93 0.56 92.35 3.07
Proposed SMSR 99.89 0.12 93.87 2.61

Bold values represent the best results.

TABLE 3: Performance of different fusion methods.

HKPU-FV SDU-FV

Method Recognition rate (%) EER (%) Recognition rate (%) EER (%)

Parallel feature fusion 98.82 0.23 84.28 5.18
Serial feature fusion 99.36 0.21 83.91 5.29
Score fusion 99.47 0.32 84.54 5.23
Proposed SMSR 99.89 0.12 93.87 2.61

Bold values represent the best results.

TABLE 4: Recognition rates for different w1 values.

HKPU-FV SDU-FV
Value of w1 Recognition rate (%) Recognition rate (%)

0.1 97.76 90.99
0.2 98.18 91.72
0.3 98.72 92.87
0.4 99.47 92.66
0.5 99.79 92.40
0.6 99.68 91.40

Bold values represent the best results.

TABLE 5: Recognition rates for different β values.

HKPU-FV SDU-FV
Fix α¼ 0:001, vary β Recognition rate (%) Recognition rate (%)

0.3 99.79 93.71
0.2 99.79 93.71
0.1 99.89 93.87
0.01 99.79 92.87
0.001 99.57 92.14
0.0001 99.57 92.09

Bold values represent the best results.

TABLE 6: Recognition rates for different α values.

HKPU-FV SDU-FV
Fix β¼ 0:1, vary α Recognition rate (%) Recognition rate (%)

0.1 97.65 90.04
0.01 99.89 93.50
0.001 99.89 93.87
0.0001 99.89 93.55
0.00001 99.79 93.29
0.000001 99.79 93.24

Bold values represent the best results.
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on HKPU-FV database is achieved with α¼ 0:01, and the
highest recognition rate on SDU-FV database is obtained
with α¼ 0:001. Consequently, on HKPU-FV database, we
use α¼ 0:01 and β¼ 0:1, and on SDU-FV database, we use
α¼ 0:001 and β¼ 0:1.

In summary, on HKPU-FV database, the highest recog-
nition rate is achieved with α¼ 0:01, β¼ 0:1, and w1 ¼ 0:5.
And on SDU-FV database, the highest recognition rate is
achieved with α¼ 0:001, β¼ 0:1, and w1 ¼ 0:3.

4.6. Comparison with State-of-the-Art Methods. The purpose
of this experiment is to compare the performance of the
SMSR method with the state-of-the-art finger vein recogni-
tion methods on two databases. The results are summarized
in Table 7.

The experimental results indicate that the SMSR method
achieves better recognition performance on both the HKPU-
FV and SDU-FV databases. On HKPU-FV database, it
achieves the highest recognition rate of 99.89% and the lowest
EER of 0.12%. Similarly, on SDU-FV database, it achieves a
recognition rate of 93.87% with an EER of 2.61%. By contrast,
the classical methods such as ASAVE, weighted vein code
indexing, and SRLRR exhibit relatively good performance
but do not catch up with the SMSR method. The promising
performance of our SMSR is mainly attributed to its effective-
ness in extraction of discriminative information.

4.7. Time Performance. This experiment aims to assess the
time cost of the SMSR method on HKPU-FV database. It
runs on a PC equipped with a 3.80GHz processor and
32.00GB of memory, using MATLAB 2018 software.

Table 8 presents the time spent by the SMSR method to
classify 936 testing images. The SMSR classification involves
both offline and online steps. The most time-consuming step
is the reconstruction error calculation, which takes approxi-
mately 11.47 s, and the classification step only requires 0.03 s.
In total, the SMSR method takes about 18.22 s for online
recognition of 936 testing images, averaging about 0.02 s
per image. This demonstrates the high efficiency of the pro-
posed SMSR method.

In addition, Table 9 presents the time costs of our pro-
posed SMSR method and two classical methods, that is, LDC
[32] and MeanC [8]. In Table 9, for the SMSR method, the
feature extraction step includes all online steps except classi-
fication. The SMSR method spends more time in the feature

extraction step, approximately 18.19 s. This is mainly due to
the cost of the sparse representation and reconstruction error
calculation of all testing images. In the classification step,
LDC and MeanC methods spend more time, that is, 43.10
and 80.39 s, respectively. This is because they need to match
each testing image with all 936 registered images. In sum-
mary, the SMSR method is superior to the LDC and MeanC
methods in this time cost test.

5. Conclusion

In this paper, we propose an encoding coefficient SMSR
method for finger vein recognition. This method uses multi-
ple features to comprehensively represent finger vein images.
To extract more discriminative information, we introduce
the sparsity and similarity constraints into the objective
function. The sparsity constraint retains the unique infor-
mation of each feature, and the similarity constraint
explores the common information among the features. In
the matching stage, we weight and fuse the reconstruction
errors of multiple features to further enhance recognition
performance. Our experimental results on two public finger
vein datasets, HKPU-FV and SDU-FV, demonstrate the
advantages of our proposed method in recognition perfor-
mance and efficiency.

TABLE 7: Performance of different methods.

HKPU-FV SDU-FV

Method Recognition rate (%) EER (%) Recognition rate (%) EER (%)

LLBP [31] 93.58 5.33 68.08 15.47
LDC [32] 98.08 3.07 76.57 10.77
MeanC [8] 86.97 6.75 67.09 18.26
Weighted vein code indexinga [33] 98.82 1.11 86.90 7.92
ASAVEa [9] 99.47 0.60 85.27 7.29
SRLRRa [20] 99.79 0.33 90.41 3.75
Proposed SMSR 99.89 0.12 93.87 2.61

Note: aRecognition rates and EER are cited from literature [20]. Bold values represent the best results.

TABLE 8: Time cost(s) of SMSR.

Substeps Time cost

Offline Dictionary construction 2.02

Online

Grayscale feature extraction 0.84
LBP feature extraction 1.18
Sparse representation 4.70

Reconstruction error calculation 11.47
Classification 0.03

TABLE 9: Computational time(s) comparison in identification mode.

Method Feature extraction Classification Total

LDC 3.65 39.45 43.10
MeanC 1.39 79.00 80.39
Proposed SMSR 18.19 0.03 18.22
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