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A morph is a combination of two separate facial images and contains the identity information of two different people. When used
in an identity document, both people can be authenticated by a biometric face recognition (FR) system. Morphs can be generated
using either a landmark-based approach or approaches based on deep learning, such as generative adversarial networks (GANs). In
a recent paper, we introduced a worst-case upper bound on how challenging morphing attacks can be for an FR system. The closer
morphs are to this upper bound, the bigger the challenge they pose to FR. We introduced an approach with which it was possible to
generate morphs that approximate this upper bound for a known FR system (white box) but not for unknown (black box) FR
systems. In this paper, we introduce a morph generation method that can approximate worst-case morphs even when the FR
system is not known. A key contribution is that we include the goal of generating difficult morphs during training. Our method is
based on adversarially learned inference (ALI) and uses concepts from Wasserstein GANs trained with gradient penalty, which
were introduced to stabilise the training of GANs. We include these concepts to achieve a similar improvement in training stability
and call the resulting method Wasserstein ALI (WALI). We finetune WALI using loss functions designed specifically to improve
the ability to manipulate identity information in facial images and show how it can generate morphs that are more challenging for
FR systems than landmark- or GAN-based morphs. We also show how our findings can be used to improve MIPGAN, an existing
StyleGAN-based morph generator.

1. Introduction

It has been shown that morphing attacks pose a significant
risk to both face recognition (FR) systems and humans, e.g.,
border guards [1, 2]. A morph is an image that is created by
combining two images of two different people. If it contains
sufficient identity information of each person, then FR sys-
tems and humans will accept the morph as a match both
when it is compared to a different image of the first person
and when it is compared with a different image of the second
person. This means that two people could share one passport
or other identity document and avoid travel restrictions or
border controls, e.g., a criminal could travel using the iden-
tity document of an accomplice. Some countries intend to
stop allowing people to bring their own printed photos for
passport applications, e.g., Germany [3]. At the same time,

there are still countries that allow applicants to provide their
own digital or printed passport photo, e.g., Ireland [4].
Morphed images also pose a challenge in other scenarios
since two people could, for example, share a driver’s licence,
health insurance, public transportation tickets, etc. There are
myriad ways to exploit systems, subscriptions, access rights,
and more using morphed images.

Generative adversarial networks (GANs) have been shown
to successfully generate fake data that matches a real data dis-
tribution [5]. Image characteristics such as expression or age (in
the case of facial images) can be manipulated by applying
changes to latent representations of images, which are vectors
in a GAN’s latent space. If an inversion were available that
maps images to the latent space of a GAN, then this would
allow an advantage to be taken of the benefits that GANs
provide and allow real data to be manipulated directly.
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Mapping two images onto two respective latent vectors and
finding an appropriate interpolation between those two vectors
would then lead to a GAN-generated morph. Both MorGAN
[6] and MIPGAN [7] are examples of this approach.

Morph generation can rely on landmark-based, GAN-
based, or manual methods. More recently, morphs generated
using diffusion models were introduced [8, 9]. How chal-
lenging morphs are varies depending on implementation
details such as the landmark detector used, the splicing
method used, postprocessing, whether images were printed
and scanned, which pairs of images were selected for morph-
ing, etc. A criminal could make a morph using hand-selected
landmarks and then iteratively apply changes and test the
morph using one or more FR systems to find a morph that is
most likely to be accepted by FR systems. They could also
apply changes that make it harder for morphing attack detec-
tion (MAD) methods to detect the morphs. This means that
the variation in morphing methods used in research may not
be representative of morphs that could exist in reality, since
criminals will not advertise which morphing methods they
are using. Therefore, the estimated vulnerability of FR and
MAD systems may be different on such morphs than on
datasets generated by researchers, where some trade-off
between quantity and quality may have to be made.

MAD methods have been proposed, targeted at detecting
landmark-based morphs, GAN-based morphs, or both. Devel-
oping an MAD approach that can detect both landmark- and
GAN-based morphs—especially if they are of a type not seen
during training—is still an open challenge [10]. GAN-based
morphing detection is very similar to the general detection of
GAN images (deepfakes) [11]. Increasing the variation in avail-
able morphing tools could be helpful in the development of
detection methods, since both in GAN-based morph detection
and deepfake detection, more generally, it has been shown that
methods struggle to detect images of a type not seen during the
training phase.

In a previous study [12], we showed that theoretically—and
if the FR system is known also in practice—morphs can be even
more challenging than either landmark- or GAN-morphs.
While landmark-based morphing combines images in the
image domain, GAN-based morphing combines them by map-
ping them to embeddings in the GAN latent space, interpolat-
ing in that latent space, and generating a morph from the
interpolated latent embedding. On the other hand, our
approach in Kelly et al. [12], was to directly reverse themapping
from images to latent embeddings in the FR latent space (dif-
ferent from the GAN latent space). This approach can be used
to exploit the vulnerabilities of the FR system it was trained with
but is less suited than GAN-based methods to generate morphs
that visually (to humans) look like both contributing identities
and struggles to fool unseen FR systems.

In this work, we continue this investigation to find out
whether it is possible to automatically generate morphs that
approximate the theoretical worst case for more than one FR
system simultaneously, even when the FR system is unknown
(“black box”), showing there are morphs that can be even
more challenging than landmark- or GAN-based morphs.
The variation of morphs used in existing MAD benchmarks,

such as [13–15], can be increased by including approxima-
tions of worst-case morphs.

Our contributions consist firstly of adapting the method
introduced in adversarially learned inference (ALI) [16] and
improving it to better enable manipulation of real data, e.g.,
generating interpolations of real images. We call the resulting
improved method Wasserstein ALI (WALI) and use it to
generate morphs. Like ALI, WALI jointly learns a generative
and an inverse mapping, enabling its use for morph genera-
tion. We improve training stability, which allows the gener-
ation of larger images: we generate images using WALI of up
to 512 × 512 pixels, compared to 64 × 64 pixels achieved by
ALI. It may be possible to generate images with even higher
resolutions using WALI, but we did not try this due to hard-
ware and time restraints. ALI’s aim is to generate images that
look as real as possible, which means it is not necessarily
optimal for generating challenging morphs. WALI is further
improved for this purpose by including loss functions designed
specifically to improve the ability to manipulate identity infor-
mation in facial images. The resulting model provides an easy
way to generate (large)morphing datasets intended for training
or evaluating FR and MAD systems.

Our second set of contributions lies in applying WALI
and our improved implementation of MIPGAN to approxi-
mate worst-case morphs, evaluating these approximations,
and comparing them to other morphs. Since morphs gener-
ated using an underlying StyleGAN Generator [17] are cur-
rently the SOTA when it comes to GAN-based morphing, we
include MIPGAN morphs in all our comparisons. Summar-
ising, our main contributions are as follows:

(i) Improving ALI to enable morph generation, result-
ing in WALI, which provides an easy way to gener-
ate (large) morphing datasets intended for training
or evaluating FR and MAD systems.

(ii) Showing that already considering the goal of gener-
ating difficult morphs during training instead of
only during optimisation (after training) leads to
more challenging morphs in both white-box and
black-box settings than if WALI is only trained to
generate real-looking images.

(iii) Showing that optimisation on our trained model leads
to morphs that are more challenging for FR systems
than landmark- or MIPGAN-morphs, even when
evaluating under black-box settings. This proves the
existence of morphs that lie closer (than landmark or
MIPGAN) to the theoretical worst-case morph for six
out of eight FR systems we evaluated.

(iv) Showing that optimising towards a worst-case embed-
ding is also possible when using existing generative
models. Since we see that WALI does not generalise
well to new datasets that are different from the data it
was trained on, we also apply some of our suggested
improvements to a StyleGANGenerator that is better at
generalising to new datasets, resulting in an improved
MIPGAN approach that also leads to more challenging
morphs than other GAN-based approaches.
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2. Related Work

2.1. Worst-Case Morphs. In the study of Kelly et al. [12], an
upper bound on the vulnerability of FR systems to morphing
attacks was introduced. Let φ be the function that describes
an FR system’s mapping from the image space X to the
embedding space Y , i.e., φ :X → Y . If d is the dissimilarity
score function that is used to calculate the dissimilarity score
for pairs of embeddings in Y , then the worst-case embedding
for two images x1 and x2 is

y∗ : ¼argminy2Y max d y;φ x1ð Þð Þ; d y;φ x2ð Þð Þ½ �ð Þ: ð1Þ

For example, if d returns the euclidean distance, denoted
as :k k2, between two embeddings y1 and y2, then the dissim-
ilarity score is d y1;ð y2Þ¼ y1 − y2k k2. In that case y∗ is that y
for which d y1;ð yÞ¼ d y;ð y2Þ¼ d y1;ð y2Þ=2, see the example
on the left in Figure 1.

If an FR system uses similarity scores, defined by a func-
tion S, then

y∗ : ¼argmaxy2Y min S y;φ x1ð Þð Þ; S y;φ x2ð Þð Þ½ �ð Þ: ð2Þ

For example, if S returns cosine similarity, then S y1;ð y2Þ¼
cos θð Þ, where θ is the angle between y1 and y2, see Figure 1. In
that case y∗ is any y for which S y1;ð yÞ¼ S y;ð y2Þ¼ cos θ=2ð Þ.

Since worst-case embeddings can be calculated using
only normal (bona fide) images, no morphs are needed to
compute the worst-case upper bound. This means that the
potential vulnerability of an FR system can be determined
without having to make or evaluate one single morph.

2.2. GANs for Morph Generation. MorGAN [6] uses ALI to
generate 64× 64 pixel morphs. ALI consists of training three
networks: an Encoder, a Decoder (similar to the generator in a
plain GAN), and a Discriminator. MorGAN generates morphs
by passing two images through the encoder, interpolating
between the two resulting latent embeddings, and then passing
this interpolation through the decoder. This approach results
in an image that shares similarities with both original images.
Resulting morphs have low resolution and compared to
landmark-based morphs are not nearly as successful at fooling
FR systems.

MIPGAN [7]makes use of a pretrained StyleGAN network
by training an encoder that encodes images into the StyleGAN
latent space. Optimisation is then used to approximate an opti-
mal embedding in the StyleGAN latent space, that when passed
through StyleGAN results in a morph. The morphs are visually
convincing, as confirmed by studies on the human ability to
distinguish betweenmorphs and real images. They are about as
successful at attacking FR systems as landmark-based morphs.
The MIPGAN method is improved on in RegenMorph [18].
The resulting images are visually more convincing but are
shown to be less successful than MIPGAN morphs at fooling
FR systems.

What these existing GAN-based images have in common is
that the underlying networks were all trained with the goal of
generating fake images that look like real images. While Mor-
GAN uses a pixel-based loss to preserve identity in images,
none of the networks were specifically trained to generate
morphs. This means that optimisation may be used together
with a trained and frozen network to find the optimal latent
embedding that leads to a successful morph, but we hypothe-
sise that already considering the goal of generating morphs
during instead of only after training might lead to more suc-
cessful morphs. Morphing attacks generated specifically to
exploit vulnerabilities of deep-learning-based FR can be con-
sidered as a type of adversarial attack on an FR system [19],
since images aremanipulated in a way similar to impersonation
attacks, where in the case of morphing, two identities are being
“impersonated” simultaneously.

An overview of research on GAN inversion is provided in
the study of Xia et al. [20], where new inverse networks are
trained to invert already existing GANs. On the other hand,
approaches such as in the study of Dumoulin et al. [16] and
Donahue et al. [21] attempt to jointly train an encoder, a
decoder (the GAN generator), and a discriminator network.
As mentioned in the study of Dumoulin et al. [16], it is possible
that there are interactions that can be better learned by training
these networks jointly, since the Encoder and Decoder can
interact during training, which is not possible when using a
frozen GAN. For this reason, we explore whether it is possible
to improve methods that use the second approach, such as
[16, 21], by addressing some disadvantages, such as unstable
training. We show that the resulting approach, WALI, is well-
suited to approximate worst-case morphs.
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FIGURE 1: The worst-case embedding y∗ when d denotes Euclidean distance (left) or angle (right). If it exists, an image that maps to y∗ is even
more challenging than a landmark- (ylm) or GAN-based morph (yGAN).
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2.3. MAD. Research on variation inmorphing generation algo-
rithms includes postprocessing landmark-based morphs to
mask effects caused by the morphing process [22], a model
to simulate the effects of printing and scanning [23], and con-
sidering the influence of ageing on morphing attacks [24]. The
lack of variation in morphing techniques is addressed in the
study of Scherhag et al. [25], which presents amethod forMAD
and evaluates it on morphs created using different algorithms,
which are all landmark-based. Printed-and-scanned morphs
are included in this evaluation, but GAN morphs or other
methods are not taken into consideration.

In this work, we evaluate morphs using two MAD meth-
ods to show that if they are trained with landmark-based
morphs only, then they struggle to detect WALI—as well
as (improved) MIPGAN-based morphs, emphasising the
need for varied datasets for training MAD.

3. Proposed System

3.1. ALI. In ALI [16], two probability distributions over x and
z are considered:

(i) the encoder joint distribution q x;ð zÞ¼ q xð Þq z∣xð Þ,
(ii) the decoder joint distribution p x;ð zÞ¼ p zð Þp x∣zð Þ.
The encoder marginal q xð Þ is the empirical data distri-

bution over the image space X¼ 0; 1½ �d1 , where d1 ¼w×
h× nc, the width by height of the image by the number of
colour channels nc. The decoder marginal p zð Þ over the
latent space Z is the distribution from which input noise
is sampled, e.g., a standard normal distribution p zð Þ¼N 0;ð
IÞ overZ¼ −1; 1ð Þd2 (this can be truncated to −R; R½ �d2 ;
R2R to ensure thatZ is compact, which is needed to prove
that ALI converges). Embeddings in the ALI latent space Z
are denoted z and should not be confused with embeddings y
in the FR latent space.

The objective of ALI is to match the two joint distribu-
tions. In order to achieve this, an adversarial game is played
using the following:

(i) Gz : an encoder that maps from image space to a
latent space,

(ii) Gx: a decoder that maps from the latent space to
image space,

(iii) D (orC): a discriminator (or critic) that tries to deter-
mine whether joint pairs x;ð zÞ are drawn either from
q x;ð zÞ or p x;ð zÞ.

See Figure 2 for a visualisation of these networks.
If the two joint distributions are successfullymatched, then

existing data points can be encoded into latent vectors that
follow the same distribution as the sampled input noise. Then,
if the latent vectors are passed through the decoder, the gener-
ated images, in turn, follow the same distribution as the real
images. These properties together allow us tomanipulate exist-
ing data and to interpolate between real data points.

ALI suffers from some limitations, such as training insta-
bility and limited ability to faithfully reconstruct images
[26, 27]. We find that to successfully train ALI to generate
facial images, some tweaks are needed, such as limiting
the updates of the discriminator and ending training before
mode collapse occurs. For this reason, we combine the
advantages of Wasserstein GANs [28, 29] with the ALI archi-
tecture to improve training stability.

First, we adapt ALI to include Wasserstein elements and
train until convergence, see Figure 3(a). Next, we finetune
using losses to encourage the system to generate difficult
morphs. We do this using losses on the image level that
encourage the system to faithfully reconstruct normal images,
but also use an FR system to ensure the reconstructed images
maintain identity information, see Figure 3(b). We use the
same FR system to nudge the system to generate morphs that
approximate worst-case morphs, see Figure 3(c).

3.2. Baseline Training. Wemainly follow the ALI training pro-
cedure but replace transposed convolutions with upsampling
and size-maintaining convolutions to avoid chequerboard arte-
facts [30]. We also remove the sigmoid output layer in the
discriminator so that it no longer outputs values between 0

Encoder (Gz) Decoder (Gx) Critic (C)

conv1

32 × 32 × 3

Convolutional + Leaky ReLU Fully connected + Leaky ReLU
Upsample + convolutional + Leaky ReLU Convolutional + Leaky ReLU + reparametrisation

32 × 32 × 3 32 × 32 × 3

16 × 16 × 256
8 × 8 × 512 8 × 8 × 512 8 × 8 × 5124 × 4 × 1,024

1 × 1 × 1,024 1 × 1 × 256

1 × 1 × 1,024 1 × 1 × 1,024

1 × 1 × 1,024 1 × 1 × 512 1 × 1 × 512

4 × 4 × 1,024 4 × 4 × 1,024

conv2
conv3 conv4

conv5
conv6

conv7 conv8

conv9
conv10

conv11 conv12fc1

fc2 fc3 fc4 

fc5 fc6
Score

16 × 16 × 25616 × 16 × 256

FIGURE 2: The networks and architecture used in Wasserstein ALI (WALI).
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and 1 (where 0 is fake and 1 is real) but instead outputs a score,
making the discriminator network a Critic (C). A higher critic
score indicates that an image looks more real, and a lower score
indicates that, according to the critic, the generated image looks
more fake.We follow the approach fromGulrajani et al. [29], i.e.,
we update Gz and Gx after every fifth update of the critic. The
critic, in turn, is trained to output larger scores for real images
and vice versa and to ensure Lipschitz continuity, a gradient
penalty is added to the critic loss. SinceWALI is trained tomatch
a joint distribution, we include a gradient penalty Rz w.r.t. latent

input and a gradient penalty Rx w.r.t. image input. Following
recommendations from Gulrajani et al. [29], we set the gradient
penalty weight to 10.

We start with a baseline architecture that generates 32×
32 pixel images. The architecture can be changed to generate
higher-resolution images by simply adding layers to the three
networks. For example, to generate 64-by-64 pixel images,
we add one more convolutional layer before the first layer in
Gz and C, and one more upsampling and convolution after
the last layer in Gx.

Gz
Gx

C

xreal xfake

μ 

σ 
zreal zfake

(xfake, zfake)

(xreal, zreal)

є from N (0, I) 

sfake

sreal

Rx, Rz : Gradient penalties of C w.r.t x and z, resp.

LC = sfake – sreal + λ(Rx + Rz) 

LG = |sreal – sfake| 

ðaÞ

Gz

Gz

Gx

Gx

xreal μ xrecon

Lpixel, Lffl

FR

LFR

xreal

xreal
(2)

(1) μ1

μ2

μmorph
Interpolate

xmorph

FR

LFR_Morph, LFR_Morph_ α  

ðbÞ

Interpolate xmorph

Lʹ Lʹʹ

Gx
Gz

μ1

μ2

μmorph

xreal
(1)

xreal
(2)

ðcÞ
FIGURE 3: The losses used inWALI: (a) baseline losses, see Section 3.2; (b) losses for finetuning, Section 3.3; (c) losses from Section 3.4 are used
to optimise the selection of latent embeddings.
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We train C to minimise:

LC ¼ sfake − sreal þ λ Rx þ Rzð Þ; ð3Þ

and Gz and Gx to minimise:

LG ¼ sreal − sfakej j; ð4Þ

where

sreal ¼ E
xreal;zrealð Þ∼q x;zð Þ

C xreal; zrealð Þ½ �; ð5Þ

sfake ¼ E
xfake;z fakeð Þ∼p x;zð Þ

C xfake; z fakeð Þ½ �; ð6Þ

Rx ¼ Eex ;ezð Þ∼ep x;zð Þ
rexC ex;ezð Þ 

2
− 1

� �
2

h i
; ð7Þ

Rz ¼ Eex;ezð Þ∼ep x;zð Þ
rezC ex;ezð Þ

 
2
− 1

� �
2

h i
: ð8Þ

3.3. Finetuning for Morph Generation. Once the three net-
worksGz;Gx, andC have converged, we fine-tune them using
losses that encourage the network to generate morphs that are
close to the worst case. We do this using five different losses.
The first two losses are a pixel lossLpixel and a focal frequency
loss (FFL) [31], both encourage the generator network to
reconstruct images on a pixel level. This second loss Lffl
has the advantage that it forces the generator to reconstruct
more challenging frequencies as well as easier frequencies.

Next, we define losses to manipulate identity information
in generated images using an FR system. Without loss of
generality (the only requirement is that d is known and
differentiable), we assume the FR system used compares
images using a dissimilarity score function d that calculates
the angle between two latent embedding vectors. We denote
the mapping used by the FR system to map images onto
latent embeddings by φ. We use three losses to encourage
WALI to generate morphs that contain as much as possible
relevant identity information. These are LFR, LFR Morph α,
and LFR Morph, which are defined as follows:

LFR ¼ E
xreal∼q xð Þ

d φ xreconð Þ;φ xrealð Þð Þ½ �; ð9Þ

where xrecon ¼Gx Gz xrealð Þð Þ.

LFR Morph α ¼ E
xreal;zrealð Þ∼q x;zð Þ

d φ xαmorph

� �
; y∗

� �h i
; ð10Þ

where

xαmorph ¼ Gx αz1 þ 1 − αð Þz2ð Þ ð11Þ

for z1 ¼Gz x1ð Þ and z2 ¼Gz x2ð Þ, and 0≤ α≤ 1. As defined in
Equation (1), y∗ is the worst-case embedding given y1 ¼
φ x1ð Þ and y2 ¼φ x2ð Þ. Finally

LFR Morph ¼LFR Morph α; α¼ 0:5: ð12Þ

In principle, LFR and LFR Morph are the same as
LFR Morph α, just for fixed α¼ 1 and α¼ 0:5, resp. We find
that including these losses specifically instead of simply
increasing the weight for LFR Morph α leads to the network
being able to generate more challenging morphs when eval-
uating with FR systems under black-box settings, see Table 1.

All five losses are combined in the following Loss:

L¼ γ1Lpixelþ γ2Lfflþ γ3LFR þ γ4LFR Morphþ γ5LFR Morph α:

ð13Þ

We use MobileFaceNet (MFN) [32] to estimate these
losses during training, where we intentionally choose a
light-weight network in order to reduce the GPU memory
needed. We evaluate our generated morphs with seven FR
systems that were not used during training: VGG16 [33],
ArcFace (AF) [34], the Inception ResNet-based FaceNet
(INC) [35], ElasticFace (EF) [36], CurricularFace (CF) [37],
PocketNetS-128 (PN) [38], Dlib [39], and a Commercial Off
The Shelf (COTS) system.

3.4. Optimisation. After training the three networks, we
freeze their weights and optimise the selection of latent
embeddings. For each pair of images for morphing, we apply
optimisation to select good initial embeddings and then opti-
mise again to find an embedding that when passed through
Gx leads to a morph that is close to the worst case. We use an
Adam optimiser [40] with hyperparameters α¼ 0:05, β1 ¼
0:9; β2 ¼ 0:999.

3.4.1. Optimisation Phase 1. Start with z1 ¼Gz xð Þ and opti-
mise z1 using the following Loss function:

L0 ¼ x1 − Gx z1ð Þk k2 þ φ x1ð Þ − φ Gx z1ð Þð Þk k2: ð14Þ

Do the same to optimise the selection of z2.

3.4.2. Optimisation Phase 2. Start with zmorph ¼ z1ð þ z2Þ=2
and optimise using the following Loss function:

L00 ¼ y∗ − φ Gx zmorph

À ÁÀ Á 2: ð15Þ

In both phases, a second FR system can be included to
improve the effects of optimisation. Let φ2 be the mapping
corresponding to the second FR system. Then Equations (14)
and (15) are extended by adding φ2 x1ð Þ − φ2 Gx z1ð Þð Þk k2 to
L0 and y∗∗ − φ2 Gx zmorph

À ÁÀ Á 2 to L00, where y∗∗ is the
worst-case embedding in the second FR system’s latent
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space. In both phases, the second FR system can be given
more or less weight by weighting the new summands.

3.5. Optimisation with Pretrained Generator. All three WALI
networks can be trained simultaneously and from scratch.
Alternatively, with very little adaptation, our two-phase opti-
misation approach also allows the use of an existing encoder
and generator. We apply optimisation guided by MFN and
EF in two phases, similar to optimisation Phases 1 and 2
when using an existing StyleGAN generator and an encoder
provided by Tov et al. [41]. This encoder was trained to

invert the StyleGAN generator mapping, but unlike WALI,
the generator and encoder were not trained simultaneously.
Since this approach is similar to MIPGAN [7], we call it
improved MIPGAN.

4. Experiments

We report results for experiments with WALI models that
generate 128× 128 images, since training time and GPU
memory requirements increase significantly when (1) includ-
ing FR losses during training and (2) increasing the size of the
model to generate higher-resolution images. We report our
results on 128× 128 images but have successfully managed to
generate visually convincing images up to dimensions of d1 ¼
512× 512× 3 (compared to d1 ¼ 64× 64× 3 for ALI images),
see Figure 4.

We train the three WALI networks without any losses
other than the Wasserstein and gradient penalty loss until
they converge, which takes about 400 epochs with a batch
size of 32. We then finetune the networks by adding the
losses in Equation (13) and training for another 85 epochs.
Our model was implemented with Pytorch [42], training and
testing experiments were conducted on a computer equipped
with two Nvidia GeForce Titan-X GPUs (12GB).

We use MobileFaceNet [43] to implement the loss func-
tions in Equation (13) during training. To guide optimisation
towards an embedding that is “close” to the worst case, we also
useMobileFaceNet. Additionally, we report results for experi-
ments in which we used two FR systems during optimisation.
We also apply our two-phase optimisation approach using a
StyleGAN Generator and an Encoder network from [41],
which we call “improved MIPGAN.”

4.1. Datasets. We use a dataset of 21,772 facial images from
the FRGC dataset [44] and separate them into 18,143 train-
ing and 3,629 validation images, with no overlap in identities.
We added 32,869 images with frontal pose from FFHQ [17]
to the training set. Training without including FFHQ images
in the training set was also successful, but including FFHQ
improves the results, especially when evaluating with FR (as
opposed to only by visual inspection).

We create four sets of morphs using the validation set:
landmark-based morphs, GAN-based morphs using MIPGAN-
I [7], approximations of worst-case morphs generated by our
WALImethod, and approximations of worst-casemorphs gener-
ated using our improvedMIPGAN implementation.We select 75
pairs of similar identities by calculating amean FR embedding for
each identity: z ¼ 1

n∑
n
i φ xið Þ, and then selecting those pairs for

which themean FR embeddings aremost similar. For each pair of
identities, we select all faces with neutral expressions, and from all
possible combinations, we randomly select 506 image pairs for
morphing.

For each pair x1;ð x2Þ, we create three landmark morphs,
one MIPGANmorph, one WALI worst-case approximation for
each FR system used for optimisation (seven in total), and one
improved MIPGAN worst-case approximation, see Figure 5.
The three landmarkmorphs comprise one full morph - the faces
and also the background of both original images are morphed—
and two spliced morphs—full morphs spliced into the

θD; θGz
; θGx

← initialise network parameters

repeat

x 1ð Þ
real;…; x Nð Þ

real ▹ Draw N samples from the dataset

z 1ð Þ
fake;…; z Nð Þ

fake ▹ Draw N random latent emb.

z ið Þ
real ¼Gz x ið ÞÀ Á

; i¼ 1; ::;N ▹Get real embeddings

x ið Þ
fake ¼Gx z ið Þ

fake

� �
; i¼ 1; ::;N ▹ Generate fake images

sreal ¼ 1
N ∑

N
i¼0C x ið Þ

real;
�

z ið Þ
realÞ ▹ Critic output for real data

sfake ¼ 1
N∑

N
i¼0C x ið Þ

fake;
�

z ið Þ
fakeÞ ▹ Critic output for fake data

x ið Þ
recon ¼Gx z ið Þ

real

� �
; i¼ 1; ::;N ▹ Reconstruct real images

z ið Þ
α;morph ¼ αz ið Þ

real þ 1−ð αÞz jð Þ
real; j¼ 2; ::;N; 1

z ið Þ
morph ¼ 1

2 z
ið Þ
real þ 1

2 z
jð Þ
real; j¼ 2; ::;N; 1 ▹ Translate batch to

get pairs for morphing

x ið Þ
α;morph ¼Gx z ið Þ

α;morph

� �
; i¼ 1; ::;N

x ið Þ
morph ¼Gx z ið Þ

morph

� �
; i¼ 1; ::;N ▹ Generate morphs

y ið Þ ¼φ x ið ÞÀ Á
; i¼ 1; ::;N ▹ Get FR embeddings

y∗ ið Þ
α ¼ αy ið Þþ 1−αð Þy jð Þ

jjαy ið Þþ 1−αð Þy jð Þjj ; j¼ 2; ::;N; 1

y∗ ið Þ ¼ y ið Þþy jð Þ

jjy ið Þþy jð Þjj ; j¼ 2; ::;N; 1 ▹ Get worst-case emb.

Lpixel ¼ 1
N ∑

N
i¼0MSE x ið Þ;

À
x ið Þ
reconÞ ▹ Compute pixel loss

Lffl ¼ 1
N ∑

N
i¼0FFL x ið Þ;

À
x ið Þ
reconÞ ▹ Compute FFL loss

LFR ¼ 1
N ∑

N
i¼0 y ið Þ;

À
y ið Þ
reconÞ

LFR Morph α ¼ 1
N ∑

N
i¼0 y ið Þ

α;morph;
�

y∗ ið Þ
α Þ

LFR Morph ¼ 1
N ∑

N
i¼0 y ið Þ

morph;
�

y∗ ið ÞÞ
▹ Compute FR-based losses

LC ¼ sfake − sreal þ λ Rxð þRzÞ ▹ Compute critic loss

LG ¼ sfake −j srealj þ γ1Lpixel þ γ2Lffl þ γ3LFR

þ γ4LFR Morph α þ γ5LFR Morph α

▹ Compute generator loss

θC ← θC −rθCLC ▹ Gradient update on critic

θGz
← θGz

−rθGz
LG ▹ Gradient update on encoder

θGx
← θGx

−rθGx
LG ▹ Gradient update on decoder

until convergence

ALGORITHM 1: Our training procedure.
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background of each of the original images, respectively, to
remove ghosting artefacts. After freezing WALI’s weights, a
worst-case approximation is generated by applying 150 optimi-
sation steps in Phase 1 and 150 steps in Phase 2 (Section 3.4). For
our improvedMIPGANmorphs, we also apply 150 optimisation
steps in two phases, this time using a StyleGAN Generator and
Encoder. We notice that there is a difference in behaviour
between the newer FR systems ElasticFace and CurricularFace
compared to the other FR systems we use for optimisation,
which we describe in Section 6. For this reason, whenever we

optimise with MobileFaceNet and one of these two FR systems,
we weight the losses corresponding to the latter with 2. In all
other cases, the optimisation losses, as defined in Section 3.4, are
weighted equally. We did not extensively analyse the effect of
weighting losses differently, so in other applications, this may
need to be examined further in order to select weights that
suitably balance the different losses. For image generation tools
and/or MAD methods, we are aware that it would be better to
use datasets that are more balanced and include more variation
in terms of gender, age, and ethnicity, and we encourage the

WALI 128 × 128 finetuned

WALI 128 × 128 baseline

WALI 512 × 512 baseline

FIGURE 4: Comparison of morphs generated by a 128 × 128 WALI model trained with FR losses (top row), a 128 × 128 WALI model trained
without FR losses (second row) and a 512 × 512WALI model without FR losses (bottom row). Comparing the top two rows shows that there
seems to be a trade-off between image quality and morphing performance. Comparing the two bottom rows shows that blurriness can be
corrected by simply generating higher-resolution images.

WALI (Ours) optimised using:Improved
MIPGAN

(Ours)MIPGAN
Landmark

(full)
Landmark

(in 1)
Landmark

(in 2)
MFN and
Curr.Face

MFN and
El.FaceMFN Identity 2Identity 1

FIGURE 5: Examples of landmark-based and different GAN-based morphs based on FRGC images.
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research community to take this into consideration for future
research.

We also compare different GAN- and landmark-based
morphs [45, 46] created using images from the FRLL [47]
dataset. The FRLL dataset consists of 102 identities and two
images per identity. For each identity, one image with a
neutral expression is provided that is suitable for morph
generation. Five morph datasets are provided: WebMorph,
OpenCV, FaceMorpher, and AMSL are landmark-based
morphs, StyleGAN morphs are GAN-based morphs. AMSL
consists of 2175 landmark-based morphs. When using a
landmark-based morphing tool, a morph based on two
images can be spliced into the background of either the first
or the second image. Since in the AMSL dataset, both options
are not always provided; we only evaluate with identity pairs
for which both spliced morphs are provided. We do this
to enable a fair comparison of all morphing methods. Web-
Morph, OpenCV, and FaceMorpher consist of full morphs
only, i.e., they contain obvious morphing artefacts.

5. Evaluation Metrics

To measure and compare the performance of our model, we
calculate the morphing attack potential (MAP) [48] for r¼ 1
verification attempt and c¼ 1 FR system, which is the same
as the mated morph presentation match rate (MMPMR(t)).
We consider morphs based on two identities, in which case
the MMPMR(t) [1] is the proportion of (morphing) attacks
for which both contributing identities are considered a
match by the FR system when using a threshold t.

MMPMR tð Þ ¼ 1
M

∑
M

m¼1
max d1; d2ð Þ<tf g; ð16Þ

where d1 and d2 are the dissimilarity scores between the
morph and a probe image of the first and second identity,
respectively. M is the number of morphed images.

We report MMPMR values for nine different FR systems.
For each FR system, we set t such that the false nonmatch
rate is minimal while the false match rate <0.1%. Higher
MMPMR values indicate higher vulnerability to morphing
attacks. It would be possible to compute MAP values for
c>1, but for WALI morphs, we always treat one or two FR
systems as white-box systems, so this might lead to unfair
comparisons. Instead, we would have to compute different
MAP matrices for all morphing techniques, excluding one or
two FR systems at a time, which would become very messy.
For this reason, we choose to only report the MMPMR.

5.1. MAD. We evaluate morphs generated using WALI with
two MAD methods. The first is a single image-based morph-
ing (S-MAD) approach, based on a support vector machine
(SVM) trained with local binary pattern (LBP) features, that
learns to detect morphed images based on image texture
described using LBP features [49, 50]. The second is a differ-
ential image-based (D-MAD) method that is based on deep
learning features [51].

We train both MADmethods using the FRGC images we
also used to train WALI. While the LBP-based approach can
successfully detect WALI morphs, this may simply be due to

the similarity of WALI morphs to the FRGC training data.
To show that this is the case and that it is insufficient to train
with landmark-based morphs only, we also train the LBP
approach using FRLL and AMSL. We include 20% of the
landmark-based morphs (selected randomly) in the training
set due to the class imbalance. Because of the low number of
genuine pairs (only one pair per identity), we do not train the
D-MAD approach with this dataset.

We report the performance of these two MAD methods
using the Bona fide presentation classification error rate
(BPCER): the proportion of bona fide images that are incor-
rectly labelled as morphs, and the attack presentation classi-
fication error rate (APCER): the proportion of (morphing)
attacks that are misidentified as bona fides. Higher values of
BPCER and APCER indicate higher vulnerability of an MAD
system to morphing attacks.

6. Results

In Figure 5, we show examples of morphs generated using
WALI and compare them with landmark, MIPGAN, and
improved MIPGAN morphs. WALI morphs are more blurry
compared to MIPGAN morphs, which to a large extent is
due to MIPGAN relying on a StyleGANmodel that generates
1024× 1024 images while the WALI morphs are 128×
128-pixel images. In Figure 4, we show that the visual quality
(from a human perspective) can be improved simply by
increasing the WALI model size.

We report MMPMR values for one FR system at a time for
the case where optimisation was guided by MFN only and for
the case where optimisation was guided by two FR systems
(MFN+EF, MFN+CF, MFN+AF, MFN+ INC, MFN
+PN, MFN+VGG), see Table 2. Dlib is not available as a
Pytorch implementation, so we did not optimise using this
FR system. When WALI is optimised with two FR systems,
the resulting morphs are more challenging than either land-
mark or MIPGAN morphs for both FR systems used for opti-
misation. There is an interesting difference in behaviour that
sets apart ElasticFace and CurricularFace from other FR sys-
tems. Comparing WALI morphs optimised with MFN+AF,
MFN+ INC, MFN+PN, MFN+VGG to landmark- and
MIPGAN-morphs, we see that the MMPMR is closer to the
worst case for all black-box tested FR systems except Elastic-
Face, CurricularFace, Dlib, and COTS. At first glance, this
could be interpreted to mean that ElasticFace and Curricular-
Face are generally less vulnerable to GAN-based morphing
attacks. However, when WALI morphs are optimised using
ElasticFace, the resulting morphs are also closer to the worst
case when evaluating with CurricularFace and vice versa.
When either of the two is used for optimisation, they are no
less vulnerable to GAN-based morphing attacks than other FR
systems. Interestingly, Dlib—and to a lesser extent also the
COTS FR system—is less vulnerable to MIPGAN and WALI
morphs than to landmark morphs. It is also interesting to
highlight the inverse relationship between performance on nor-
mal images and vulnerability to morphing attacks. Comparing
the last two columns illustrates this in theory: the two FR
systems with the lowest FNMR also have the highest worst-
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case MMPMR. In practice, the same pattern is shown: the FR
systems with lower FNMR are indeed more vulnerable to land-
mark, MIPGAN, and WALI morphs.

Table 1 reports the MMPMR and confirms our hypothe-
sis that explicitly considering the goal of morphing during
training leads to more challenging morphs. There may be
some amount of trade-off between the two goals when using
WALI: generating visually convincing images versus success-
fully manipulating identity information.

The following four aspects lead to more challenging
morphs:

(1) defining a worst-case embedding that we can use to
define losses during training and optimisation,

(2) explicitly training the model to generate morphs,
(3) improving optimisation by splitting it into two phases:

before we generate morphs, we select good initial
embeddings for each input image,

(4) optimising with more than one FR system.

WALI does not seem to generalise well to other datasets.
This can be seen in Table 3 and Figure 6. This is to a large
extent due to our WALI Generator (7.8 million parameters)
not being able to compete with a more powerful generator

such as StyleGAN (28.3 million parameters). When applying
a colour correction to FRLL images so that they more closely
resemble FRGC images, the MMPMR of WALI morphs sig-
nificantly increases, for example, from 30.0% to 11.0% for
CurricularFace or 14.1%–44.5% for PocketNet, indicating
that the lower performance of WALI is to a large extent due
to the different type of data. In order to illustrate the effect of
approximating a worst-case when considering FRLL data, we
can apply three of the four improvements listed above to
existing generative methods. We show that combining a
more powerful StyleGAN Generator with the improved opti-
misation approach in two phases, as well as optimising with
two FR systems, still leads to closer approximations of worst-
casemorphs. Morphs generated with our improvedMIPGAN
implementation have higher MMPMR values than all other
GAN-based morphs and also higher MMPMR than AMSL
morphs. While the MMPMR for the other three landmark-
based methods is higher, those morphs contain very obvious
artefacts. Since the MIPGAN optimisation process includes a
perception-style loss that encourages visual similarity to both
contributing identities, the MIPGAN morphs contain some
ghosting artefacts. Because we do not include such a loss
during optimisation Phase 2, the improvedMIPGANmorphs
are visually more convincing than MIPGAN morphs and

TABLE 2: MMPMR values for landmark- and GAN-based morphs.

Land-
mark

MIPGAN
Improved
MIPGAN
(Ours)

WALI (Ours) with optimisation using
Worst
Case

FNMR
MFN

MFN &
El.Face

MFN &
Curr.Face

MFN &
ArcFace

MFN &
Inception

MFN &
PocketNet

MFN &
VGG16

MobileFaceNet 65.7 71.9 91.8 96.8 96.6 96.6 96.8 97.0 97.0 96.6 97.5 0.5
ElasticFace 56.9 18.9 83.0 14.0 81.8 60.4 25.7 20.8 18.7 18.1 98.8 0.0
CurricularFace 45.9 11.1 60.9 8.6 46.6 68.3 14.8 12.2 10.5 13.2 99.0 0.0
ArcFace 70.7 62.9 84.5 64.6 76.2 75.6 90.4 71.7 70.2 70.2 97.9 0.2
Inception 36.8 37.0 51.1 37.6 47.2 46.4 43.7 58.0 41.2 42.5 71.8 3.4
PocketNet 34.1 34.2 49.0 48.0 49.3 48.7 51.4 51.3 63.5 50.3 84.2 3.8
VGG16 36.4 32.7 42.1 35.4 39.4 40.1 40.1 41.1 38.5 56.2 92.0 7.6
Dlib 45.1 37.2 42.4 27.3 32.6 31.4 32.5 32.9 30.0 32.2 72.3 5.8
COTS 99.8 93.4 98.6 71.4 94.6 95.5 79.6 80.4 76.3 75.0 n/a 0.0

Note. The second-to-last column shows the theoretical worst case for each respective FR system. Underlined numbers indicate evaluation was under white-box
assumptions, i.e., this FR system was used during optimisation. The more challenging the morphs, the higher the MMPMR. To show that there is a trade-off
between FR performance and vulnerability to morphing attacks, we report the false non-match rate (FNMR) (%) at which the false match rate <0:1% in the last
column. The morphing methods highlighted in bold are closest to the worst case for almost all FR systems.

TABLE 1: MMPMR for WALI morphs without any optimisation steps.

MIPGAN
WALI (Ours)

with all FR losses
WALI without

FR losses
WALI w/o
LFR Morph α

WALI w/o
LFR Morph

WALI w/o
LFR

MobileFaceNet 0.9 19.2 0.3 19.6 19.3 14.4
ElasticFace (black box) 0.0 0.0 0.0 0.0 0.0 0.0
Curricularface (black box) 0.0 0.0 0.0 0.0 0.0 0.0
ArcFace (black box) 0.7 13.0 0.1 12.0 6.9 6.6
Inception (black box) 0.5 13.2 0.6 7.9 9.5 9.0
PocketNet (black box) 1.5 18.0 1.1 16.8 17.7 14.0
VGG16 (black box) 2.0 10.7 0.4 9.5 8.0 6.0
Dlib (black box) 5.6 10.1 0.3 8.1 3.7 7.5
COTS (black box) 0.0 0.1 0.0 1.5 1.5 1.4

Note. The more challenging the morphs, the higher the MMPMR. The highest value in each row is shown in bold.
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landmark morphs that contain visible ghosting artefacts.
Some of the other three landmark-based approaches outper-
form improved MIPGAN but contain significant ghosting
artefacts that would not fool visual inspection by humans. If
a large network such as StyleGAN were explicitly trained to
generate morphs, they might become even more challenging.

6.1. S-MAD Using LBP. We implement an S-MAD approach
based on LBP followed by an SVM. We compare the ability of
thismodel to detectmorphs: oncewhen it was trained using the
same training data as WALI and once when using a separate
training set. LBP features may be appropriate for detecting
WALI-based morphs when the underlying training data are
known, but performance decreases significantly when the data-
base is unknown and contains only landmark-based morphs,
see Table 4 and Figure 7. LBP features are not at all suitable for
detecting (improved)MIPGANmorphs, which is probably due
to the ability of StyleGAN to generate images with texture that
is similar to that of real images. The APCER for images
generated by a 512 × 512 WALI model trained without FR
losses, see the bottom row in Figure 4 and the last column in
Table 4, ranges from 78.8% to 99.8%, showing a similar effect.

6.2. D-MADUsing Deep-Learning-Based FR Feature Differences.
While this approach seems to be very successful at detecting
morphed images that were created using the same algorithm
that was used to create the training set, its performance
decreases significantly when evaluating (improved) MIPGAN
or WALI morphs, see Table 4 and Figure 7. Note that this D-
MAD approach can detect images generated by a 512 × 512
WALI model trained without FR losses much more easily than
other GAN-based morphs, which makes sense, since these
morphs were not optimised using FR systems. If this
approach were trained with a separate training set other than
FRGC, wewould expect its performance onMIPGANorWALI
morphs to decrease further.

6.3. Discussion. For all FR systemswe evaluated, exceptDlib, our
approach outperforms MIPGAN morphs based on FRGC. For
three out of six FR systems tested under black-box assumptions,
WALI morph outperform landmark morphs. This shows that it
is possible to approximate the theoretical worst case for more
than one FR system. As we already mentioned, this does not
mean that ElasticFace and CurricularFace are generally less
vulnerable to GAN-based morphing attacks. These two FR

Landmark-based GAN-based

WALI (Ours)
MFN and El.Face

Improved
MIPGAN

(Ours)
Style-
GAN

Web-
Morph
(full)

Face-
Morpher

(full) MIPGAN
OpenCV

(full)
AMSL
(in 2)

AMSL
(in 1)Identity 1 Identity 2w colourcorr.w/o colourcorr.

FIGURE 6: Examples of morphs based on FRLL images. WALI (and other morph methods) are trained on another dataset and applied to FRLL
images, which have different lighting and colour balance. WALI may not generalise well to unseen data, mainly because of the simple WALI
generator, which cannot compete with more powerful GANs. Incorporating StyleGAN in our WALI pipeline results in “Improved MIP-
GAN,” giving visually convincing results.

TABLE 3: MMPMR for FRLL morphs.

Landmark-based morphing GAN-based morphing
Worst-
caseAMSL

Face-
Morpher

OpenCV WebMorph
Style-
GAN

MIPGAN
Improved
MIPGAN
(Ours)

WALI (Ours)
MFN&EF

w/o colourcorr.

WALI (Ours)
MFN&EF

w colourcorr.

MobileFaceNet 64.7 89.2 86.0 90.3 22.1 74.4 96.2 96.7 96.8 99.5
ElasticFace 38.8 58.8 60.4 60.0 0.0 4.7 74.4 26.1 44.0 99.8
Curricularface 32.7 53.4 55.6 54.3 0.0 2.6 44.3 3.0 11.0 99.6
ArcFace 58.8 67.2 64.4 65.3 1.2 20.3 64.6 7.8 17.0 99.4
Inception 9.6 14.2 14.2 17.3 0.3 5.0 11.2 1.2 2.4 49.3
PocketNet 51.7 78.0 80.3 84.7 20.0 55.9 75.8 14.1 44.5 98.8
VGG16 12.1 12.8 14.2 25.2 0.4 6.8 20.5 2.3 4.7 100.0
Dlib 0.9 1.0 1.0 0.9 0.0 0.0 0.6 0.1 0.1 16.5
COTS 97.6 100.0 100.0 100.0 0.8 70.4 96.6 46.6 64.7 n/a

Note. The more challenging the morphs, the higher the MMPMR. Underlined numbers indicate the FR system was used for optimisation. Of all GAN-based
approaches the improved MIPGAN approach (highlighted in bold) is closest to the worst case for almost all FR systems.
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FIGURE 7: DET curves. Top: LBP-based SMAD trained with FRGC data. Middle= LBP-based SMAD trained with FRLL data. Bottom=
DMAD based on FR feature difference trained with FRGC data.

TABLE 4: Detection performance in BPCER (%) at APCER ≤ 5% and ≤ 10% (Section 5.1).

Trained with
Land-
mark

MIPGAN
Improved MIPGAN

(Ours)

WALI (Ours) with optimisation using: WALI (Ours)
512 × 512
baselineMFN

MFN &
El.Face

MFN &
Curr.Face

MFN &
ArcFace

MFN &
Inception

MFN &
PocketNet

MFN &
VGG16

S-MAD BPCER@APCER ≤ 5%

FRGC 3.2 100.0 99.4 71.5 66.2 67.0 69.2 70.9 71.2 63.9 81.3
AMSL 38.7 100.0 95.2 54.2 62.4 48.8 45.9 48.4 48.0 42.6 99.8

BPCER@APCER ≤ 10%

FRGC 1.4 100.0 98.6 56.0 52.2 50.7 55.9 49.8 45.5 47.9 78.8
AMSL 26.2 100.0 89.0 29.5 38.1 31.4 26.5 26.9 26.7 26.9 99.4

D-MAD BPCER@APCER 5%

FRGC 0.3 19.4 18.5 7.2 9.8 10.2 12.8 8.3 6.7 8.4 0.5

BPCER@APCER ≤ 10%

FRGC 0.2 12.4 12.0 3.5 5.1 5.6 7.3 4.8 3.7 4.2 0.2

Note. Top= LBP-based S-MAD. Bottom=D-MAD based on FR-difference features.
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systems are newer and seem to show different behaviour from
the other FR systems we tested.

Using WALI to generate morphs is computationally
expensive, since optimisation needs to be performed for
every morph that is generated. Due to hardware limitations,
we report results for 128× 128 images. While we did success-
fully generate larger images—up to 512× 512, compared to
MIPGAN morphs that rely on a StyleGAN model that gen-
erates 1024× 1024 images—this takes significantly longer
and requires more GPU memory, especially during training.
However, our results do show that morphs exist that are
extremely successful at exploiting the vulnerabilities of (mul-
tiple) FR systems. Therefore, the idea of a criminal tweaking
their morph in ways to make it more likely to be accepted by
multiple FR systems is very possible, illustrating the need to
focus on quality as well as quantity when generating morph-
ing datasets. We evaluated five different FR systems and
showed that in the (theoretical) worst case up to 72%–98%
of FRGCmorphs can trick the FR system. For four out of five
FR systems we evaluated, our WALI morphs, when opti-
mised with two FR systems, are closer to this upper bound
than either landmark or MIPGAN morphs. As has been
reported before [11], there seems to be an inverse relation-
ship between the performance of FR systems on normal data
and vulnerability to morphing attacks.

WALI’s improvements are due to having a worst-case
embedding as a goal to approximate improved optimisation in
two phases (finding a good initial embedding for each bona fide
image before generating morphs), optimising with more than
one FR system simultaneously and including the goal of morph-
ing during training. The first three goals can be applied to other
existing generative methods; we used StyleGAN as an example,
leading to an improved MIPGAN approach that led to morphs
that are more challenging than other GAN-based morphs.

WALI morphs were generated in an adversarial manner
and probably exploited the fact that deep-learning-based FR
systems are sensitive to certain patterns in images.While such
patterns might be imperceptible to humans, they can make
the FR systems vulnerable to WALI morphs. These patterns
may not survive post-processing, such as printing and scan-
ning, resizing, etc. Furthermore, there are still artefacts visible
to the human eye, as can be seen in Figures 4 and 5, for
example, around the mouth or eyes. Visual inspection would
probably allow, e.g., border guards to detect that the generated
morph is not a real image. Our findings, therefore, show room
for improvement for FR systems. We hope that our proposed
method WALI can contribute to such an improvement by
generating more challenging training data for FR systems.

7. Conclusion and Future Work

In this work, we showed that generating challenging morphs is
possible and necessary to evaluate the robustness of FR systems.
Our newly proposed WALI method outperformed existing
morphing techniques on FRGC data, and since it provides a
way to generate large quantities of difficult morphs, it could
contribute to improving FR and MAD systems’ performance.
We also introduced an improvedMIPGAN approach that, due

to the powerful underlying StyleGAN Generator, generated
challenging morphs on FRLL as well as on FRGC. We showed
that if the goal of generating challenging morphs is not explic-
itly considered during the training of a GAN, then the resulting
morphs will be significantly less challenging than when that
goal is included during training.

Challenges for future research include generating such
datasets while also making sure to cover the possible range
of morphs by focussing on (visual) quality as well as quantity,
for example, by investigating the effect of time-consuming
manual postprocessing. It would be interesting to explore
whether GAN networks that can produce images with as
high quality as, e.g., StyleGAN can also be adapted to explic-
itly include the goal of generating difficult morphs during
training. We showed that optimising towards a worst-case
leads to more challenging morphs; similar adaptations could
be made to diffusion-based approaches as well. Additionally,
further investigation could be carried out on the effect of
post-processing techniques on the robustness of FR systems
to morphs. Moreover, the effects of training FR systems or
MAD methods with large datasets generated with WALI or
improved MIPGAN could be further explored in future
research.

8. Ethics, Broader Impact, and Reproducibility

This paper introduces methods to generate morphs, which
could potentially be used to apply for passports or other
documents that could be shared by two people, for example,
allowing them to avoid travel restrictions. As long as coun-
tries allow applicants to provide their own digital or printed
passport photo, this will continue to pose a risk. On the other
hand, sharing our morphing generation method will allow
researchers to be more aware of potential vulnerabilities and
support the development of countermeasures. Our method
can be used to generate large datasets of advanced morphs
that can, for example, be used to train FR systems or to teach
human border control staff to better spot morph-related
artefacts. We aim to raise awareness for risks posed by
morphing, and without sharing our method, such vulnerabil-
ities might remain unknown. We also intend to share our
code for research purposes only. To aid reproducibility, we
have included important information, such as hyperpara-
meters, in this paper. All data we used is already available
to researchers, and we plan to release our code for research
purposes after publication.

Data Availability

The data used in this study are available at FRGC: https://
www.nist.gov/programs-projects/face-recognition-grand-
challenge-frgc FFHQ: https://github.com/NVlabs/ffhq-data
set FRLL: https://omen.cs.uni-magdeburg.de/disclaimer/
index.php; https://www.idiap.ch/en/dataset/frll-morphs.
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