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With the rise of deep neural networks, the performance of biometric systems has increased tremendously. Biometric systems for
face recognition are now used in everyday life, e.g., border control, crime prevention, or personal device access control. Although
the accuracy of face recognition systems is generally high, they are not without flaws. Many biometric systems have been found to
exhibit demographic bias, resulting in different demographic groups being not recognized with the same accuracy. This is
especially true for facial recognition due to demographic factors, e.g., gender and skin color. While many previous works already
reported demographic bias, this work aims to reduce demographic bias for biometric face recognition applications. In this regard,
12 face recognition systems are benchmarked regarding biometric recognition performance as well as demographic differentials,
i.e., fairness. Subsequently, multiple fusion techniques are applied with the goal to improve the fairness in contrast to single
systems. The experimental results show that it is possible to improve the fairness regarding single demographics, e.g., skin color or
gender, while improving fairness for demographic subgroups turns out to be more challenging.

1. Introduction

Biometrics are already employed in many areas of life as
automated algorithms. According to recent market value
analyses, the biometrics market is expected to grow even
more in the next years [1]. Automated algorithms, such as
face recognition, have already outperformed human capabil-
ities [2]. Therefore, these algorithms are also used in areas
that can immediately and strongly impact an individual’s life.
For example, automated algorithms are used in the judiciary
[3], healthcare [4], credit scoring [5], and other fields [6].
However, face recognition technologies are also error prone.
For example, in the U.S., there are known cases where mis-
identifying a person as a wanted criminal has led to a wrong-
ful arrest, accompanied by at least temporary imprisonment
and inappropriate treatment from the police [7–9]. In this
context, Garvie and Bedoya [10] documented a disproportional
higher arrest and search rate of African-Americans based on
face recognition software decisions. In addition to these indi-
vidual cases, researchers have reported a difference in the per-
formance of face recognition algorithms based on the
demographic characteristics (skin color/ethnicity, gender,

age) of the individual being identified or verified. Demographic
bias in face recognition is already known in the field of human
expert analysis: The so-called other-race effect describes the
fact that people can recognize faces within their own demo-
graphic group better than faces of another demographic group
[11]. Many researchers even refer to algorithmic bias as one of
the most critical challenges in the field of biometrics [12–14].

In response to said issues, organizations, such as the
Association of Computing Machinery, call for an immediate
suspension of face recognition software [15]. Both in the U.S.
[16] and in the EU [17], standards have been created to
regulate automated algorithms with respect to demographic
bias. There are now several proposed measurements to eval-
uate the fairness and demographic differentials of biometric
algorithms [18–21]. Also, a vast number of techniques and
algorithms have been put forward to mitigate demographic
bias, mainly focused on face recognition [22]. Many different
approaches are published trying to mitigate demographic
bias [23], which include methods during the training process
[24], the removal of sensitive attributes [25], and domain
adaptation [26]. Most approaches focus on the verification
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scenario, while only a few approaches consider the identifi-
cation scenario [22].

In contrast to previously published works, this work inves-
tigates whether fusing multiple face recognition systems can
mitigate demographic bias and make biometric systems fairer,
as shown in Figure 1. Algorithm fusion has been successfully
applied in the field of biometrics in order to achieve more
robust recognition system. However, to the best of the authors’
knowledge algorithm fusion has not yet been applied for the
purpose of improving the fairness of face recognition. To do so,
12 different face recognition models are evaluated in verifica-
tion mode with respect to accuracy and demographic fairness.
The metrics used are general and demographic-specific false
non-match rates (FNMRs) and false match rates (FMRs), as
well as the resulting fairness metrics inequity rate (IR), fairness
discrepancy rate (FDR), andGini Aggregation Rate for Biomet-
ric Equitability (GARBE). In a case study, 33 different fusions
are evaluated: These are composed of three selection criteria,
three demographic attributes, and three to four types of fusions.
The fusions applied are decision-level and score-level fusions.
The decision-level fusions use the AND-, OR-, and Majority-
Vote-operators. Score-level fusion is an equally weighted
min–max normalized average fusion. The fusions are evaluated
based on the selection criteria and the covariate under consid-
eration. Fairness is evaluated within the three covariates of
gender, skin color, and subgroups of gender and skin color.

In summary, this study presents a way to improve the
fairness of biometric systems through carefully selected fusions.
This gives providers of face recognition systems new opportu-
nities to improve the fairness of their systems and helps to
establish the equal treatment of individuals from different
demographic groups. The key contribution of this paper can
be summarized as follows:

(1) Twelve face recognition systems are benchmarked on
the composite University of North Carolina at Wil-
mington (UNCW) dataset [27] to report their demo-
graphic bias toward the gender, skin color, and
combined subgroups. The results are presented in
terms of biometric performance in a verification

scenario as well as a fairness score. Generally, it is
observed that error rates are lower for males compared
to females. Further, lower error rates are obtained for
dark-skinned subjects compared to light-skinned sub-
jects, while this different is less pronounced than the
aforementioned gender accuracy gap.

(2) Multiple fusion schemes are implemented to com-
bine the strengths of different face recognition sys-
tems. In this context, different fusion techniques are
applied as well as different selection methods for
possible fusion candidates.

(3) The fusion results are evaluated to understand whether
the fairness score could be improved and how this fusion
affects the biometric recognition performance. It is
observed that biometric performance as well es fairness
scores can be improved for distinct fusion approaches.

The rest of this paper is structured as follows: related
work is reviewed in Section 2 and relevant metrics are
defined in Section 3. Section 4 introduces terminology and
concepts of our approach. The experimental evaluation is
discussed in Section 5, and Section 6 concludes our findings.

2. Related Work

There are multiple works reporting the existence of demo-
graphic bias in face recognition. The following works estimate
the demographic bias concerning different biometric applica-
tions, e.g., verification, identification, soft-biometric classifi-
cation, and sample quality assessment. Most studies look at
the verification scenario. Here, gender is the most commonly
studied demographic attribute, followed by skin color, which
is frequently referred to as ethnicity. A trend can be identified
from the results of the different studies: The biometric per-
formance is mostly better for male individuals [28–44], while
only Lui et al. [45] found no difference in the performance of
algorithms with respect to gender. Lower performance for
females was also observed in classification tasks [46–48].

The analysis of bias in face recognition performance of
different ethnicities is more challenging to assess due to a
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FIGURE 1: Overview of the proposed concept on different demographic (sub-) groups face recognition systems may exhibit performance
differentials, whereas a fusion of multiple algorithms is expected to improve the overall fairness.
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broader definition of ethnicity. The vast majority of studies
only focus on the ethnicities East Asian, Caucasian, and
Black. A common observation is that East Asians are the
best-performing ethnicity, followed by Caucasians and
dark-skinned people, who perform the worst in various stud-
ies [26, 28, 30–32, 38, 40, 42, 44, 46, 47, 49, 50]. However,
other studies [11, 34, 41, 45, 51, 52] indicate that the per-
formance differentials are not inherent to the different
ethnicities and are a result of the own-race-effect and/or
algorithm-specific training or implementation. The own-
race effect causes algorithms to work best with ethnicities
that originate from the same region as the algorithm train-
ing data.

For the identification scenario, the so-called watchlist imbal-
ance effect has been examined [53, 54]. The effect describes the
influence of the gallery composition on the performance of face
recognition. Looking at the distribution of the gallery in terms of
gender and skin color, the FMR is increasing for demographic
groups with the proportion of the same demographic group in
the watchlist.

Fairness measurement metrics have been introduced by dif-
ferent researchers. de Freitas Pereira and Marcel [55] proposed
the FDR. The FDR is a fairness measurement that determines
the fairness by the maximum absolute distance of the FMR
and/or FNMR between two demographic groups at a certain
decision threshold. Grother et al. [41] proposed the IR as a
fairness measurement. In contrast to the FDR, the IR calculates
the ratio between the worst and best FMR and/or FMR observed
across demographic groups. Howard et al. [21] introduced a set
of interpretable criteria referred to as the functional fairness
measure criteria (FFMC). This measure was applied to identify
shortcomings of the aforementioned fairness measurements
based on which the same authors propose the Gini Aggregation
Rate for Biometric Equitability (GARBE). When Grother [56]
later published the “Face Recognition Vendor Test Part 3: Sum-
marizing Demographic Differentials,” he added the FFMCs
defined in Howard et al.’s [21] study and added two additional
FFMCs. Thementioned FFMCs and fairness measurements will
be detailed in the subsequent section.

In addition to the estimation of demographic bias, there
are also numerous approaches that attempt to mitigate the
bias. The approaches can be roughly divided into three cate-
gories. In the first category, there are approaches that focus
on training [24, 30, 39, 57–63]. Some approaches focus on a
training dataset that is as balanced as possible for the demo-
graphic covariates to be mitigated. Other approaches use
specialized loss functions. For example, some algorithms
are trained with more or fewer data from a particular covari-
ate, depending on what results in the fairest outcome.

Another category of approaches dynamically selects the
most appropriate recognition algorithm, decision threshold,
or score normalization depending on the individual under
consideration [42, 64–67].

Furthermore, some approaches try to obfuscate or remove
an individual’s demographic information. Thus, the demo-
graphic covariate should not have any influence on the per-
formance of the face recognition algorithms [68–71].

3. Fairness Metrics

Despite the biometric standardization community being work-
ing on standardizing fairness metrics [72], no final definitions
are available for now. However, as mentioned before several
metrics have been proposed by different researchers that will
be described in detail as follows. Said metrics should fulfill five
FFMCs [21, 56]:

(1) FFMC.1. The net contributions of FMR and FNMR
differentials to the overall fairness measure should be
intuitive when using a normal range of risk parame-
ter weights and operationally relevant error rates.

(2) FFMC.2. There should be recognizable points of refer-
ence in the domain of the fairness measure, e.g., one
bounded by known minimum and maximum possible
values.

(3) FFMC.3. The fairness measure should be calculable
when no recognition errors are observed for a demo-
graphic group. Given a finite image dataset partitioned
into intersectional demographic groups, the likelihood
that one group has zero FNMR rises with the number of
groups.

(4) FFMC.4. The measure should reward more accurate
algorithms if they distribute errors uniformly or in
the same way as less accurate ones.

(5) FFMC.5. The measure should rank algorithms intui-
tively, correctly penalizing algorithms with the most
nonuniform error rates.

Published fairness metrics, i.e., FDR, IR, and GARBE,
have in common that they are composed of FNMR and
FMR, as suggested in FFMC.1. In this regard, the formula is
split into two terms each. An AðτÞ: term calculates the fairness
concerning FMR, and a BðτÞ: term calculates the fairness with
respect to FNMR. To flexibly and intuitively weigh the com-
position of the terms, a weighting parameter α (in the range
½0; 1�:) is used. A high α value means that FMR is strongly
considered, and a low α value means that FNMR is more
strongly considered. More specifically, for α¼ 0 only the fair-
ness concerning FNMR is computed, for α¼ 1 only the FMR
is considered, and for α¼ 0:5 both rates are equally weighted.

3.1. Fairness Discrepancy Rate. The calculation of the FDR is
shown in Equation (1) for two demographic groups di and dj
and a given decision threshold τ. The two fairness terms are
determined by the largest difference in the FMRs and
FNMRs of each demographic group. This means that fair-
ness is generally lower when the system is more accurate,
which partially contradicts FFMC.4. On the other hand, FDR
can be computed, in case one error rate is 0, which fulfills
FFMC.3. The main drawback of FDR is that while its theo-
retical range of values is between 0 and 1, as in FFMC.2
required, it uses only a small portion of that range in practice.
In fact, the range is mostly narrowed between 0:9 and 1, as
shown in Howard et al.’s [73] study. Since 1 means fair and 0
means unfair, this fact could lead to the impression that all
systems are fair, even if it is not the case.
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FDR τð Þ ¼ 1 − αA τð Þ þ 1 − αð ÞB τð Þð Þ:
ð1Þ

3.1.1. Inequity Rate. The IR is calculated based on ratio dif-
ferences of max and min for FMR and FNMR separately.
This is done for all demographic groups di and dj as can
be seen in Equation (2). A system with an IR close to 0 is
considered fair and the higher the IR, the more unfair the
system. The IR is not upper bounded, so it does not satisfy
FFMC.2 and is difficult to classify alone without a reference
system. In addition, the IR does not satisfy FFMC.3; if the
error rate of a demographic group is 0, the metric is not
defined since this leads to a division by 0:

A τð Þ ¼maxdiFMRdi τð Þ
mindiFMRdi τð Þ ; 8di; dj 2 D

B τð Þ ¼maxdiFNMRdi τð Þ
mindiFNMRdi τð Þ ; 8di; dj 2 D

IR τð Þ¼ A τð ÞαB τð Þ1−α:

ð2Þ

3.1.2. Gini Aggregation Rate for Biometric Equitability. The
GARBE is inspired by the Gini coefficient and satisfies FFMC.1,
FFMC.2, and FFMC.3. The GARBE can be calculated using
Equation (3). The variable n represents the number of
observations of the variable x, i.e., the number of demographic
groups. xi represents one observation from x, i.e., the
FMR/FNMR of a demographic group, and x represents the
mean of all observations x. The GARBE has a range of values
of ½0; 1� :, where 0 is the fairest, and 1 is the most unfair system.
Unlike the previous two fairness metrics, the GARBE considers
the difference or ratio of the highest and lowest error rates of
the demographic groups and includes all values in between.
This matters when the fairness between more than two
demographic groups is calculated, which is the case when
combining, e.g., skin color and gender information:

Gx ¼
n

n − 1

∑n
i¼1∑

n
j¼1 xi − xj

�� ��
2n2x

; 8di; dj 2 D

A τð Þ ¼ GFMRτ

B τð Þ ¼ GFNMRτ

GARBE τð Þ ¼ αA τð Þ þ 1 − αð ÞB τð Þ:

ð3Þ

4. Proposed System

While further discussion is required to standardize final
definitions of fairness metrics, for this study, we follow
the argumentation of Howard et al. [73] and use GARBE
to compare the fairness of different systems since it satisfies
the most FFMCs. Additionally, GARBE can differentiate very

well between fair and unfair compared to FDR and its fixed
range is easier to interpret than the unbound IR.

First, the facial images are processed by multiple face
recognition systems and the biometric performance is
reported. In addition, a fairness score is computed for each
system. Finally, different fusion schemes are evaluated in
terms of biometric performance as well as demographic fair-
ness. The whole procedure is executed on the full database as
well as on subsets for different demographic groups. More
details for each step are provided in the following.

4.1. Face Recognition and Demographics. For our work, we
want to use multiple face recognition systems. Each system is
then evaluated in terms of biometric performance as defined
in ISO/IEC 19795-1 [19] regarding FMR and FNMR. In this
context, the FMR is fixed to 0.1%, as recommended, e.g., for
border control [74], to benchmark the different systems
regarding their FNMRs. Additionally, the biometric perfor-
mance is monitored for separate demographic groups. With
this, we can see how biased the different face recognition
systems are toward specific demographics.

4.2. Pareto Efficiency. Pareto efficiency is an optimization
method mainly used in economics. The idea of using Pareto
efficiency for biometric systems originated from [75]. In this
work, we can make use of Pareto efficiency to preselect bio-
metric systems that lie on the Pareto curve. The Pareto-
efficient systems are identified using FNMR and the
GARBE with respect to FMR (α¼ 1). With this setup, we
combine all three inputs into a 2D Pareto curve. A system is
Pareto efficient if no parameter (FNMR or GARBE) can be
improved without worsening the other parameter.

4.3. Fusion Techniques. In general, there are many ways to
fuse information in biometric systems [76]. In our approach,
the two relevant fusion techniques are on decision level and
on comparison score level. For the decision level fusion, the
face recognition systems each compare their computed com-
parison score to the decision threshold. Subsequently, the
decisions are fused using either AND/OR combinations or
a majority voting. Especially the latter one requires an odd
number of fused systems or a fallback strategy. For the score
level fusion, each face recognition system computes one
comparison score. Now, these scores need to be normalized
to the same value range before fusing them. In our case, we
use the min–max normalization to map all scores in the
range of ½0; 1�:. The single comparison scores can then be
weighted equally or a specific system can influence the final
score to a larger amount. In any case, a new decision thresh-
old is required for the fused system. This also implies a new
calibration when different systems are fused or the weights
are adjusted.

This leaves us with the question how to select the corre-
sponding systems for the fusion. In this regard, we test three
different approaches and evaluate how those improve the
fairness metric as well as how they affect the biometric rec-
ognition performance:
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(1) We select fusion candidates based on complementary
FMRs. More specifically, focusing on one demo-
graphic characteristic (e.g., gender), we select the
face recognition model with the lowest FMR for
one group (e.g., female) and another model with
the lowest FMR for the other group (e.g., male). By
fusing both models, we hope that the strengths of
both models combined can improve the fairness
regarding this demographic characteristic (e.g., gen-
der). The same selection process is applied for all
demographic groups.

(2) The GARBE values are used to choose fusion candi-
dates. Here, the idea is that the face recognition mod-
els with the best fairness scores are fused to hopefully
complement each other, resulting in an even better
fairness score.

(3) The Pareto efficiency for all models is computed. By
visually inspecting the graph, the Pareto-efficient sys-
tems are identified and selected for the fusion. The
computation of the Pareto efficiency relies on bio-
metric performance as well as the fairness score, thus
somehow combining both previous approaches.

5. Experimental Evaluation

This section provides information about the experimental
setup including database preparation and selected face rec-
ognition models. Subsequently, the results for all selected
demographic groups are presented and discussed.

5.1. Experimental Setup. The face image database used in this
study is the UNCW-MORPH dataset [27], see Figure 2. More
specifically, UNCW offers a free academic dataset (https://
uncw.edu/oic/tech/morph_academic.html) and a commercial
dataset (https://uncw.edu/oic/tech/morph.html), which
comes in two parts and licensing options (we did only license
the first part). We combined the first half of the commercial
dataset with the free academic dataset to obtain a larger face
database for our study. Both subsets do not contain identical
images or subjects, which was checked using cryptographic
hash functions on file side and face recognition systems for
biometric comparisons.

For the experiments, we split the UNCW database into
smaller sets according to demographic attributes such as

gender and skin color. It should be noted that we did not
assign gender and ethnicity to the data subjects but used the
available labels, coming with the database, as ground truth.
In terms of gender, the database labels were binary, thus only
distinguishing between female and male. In order to evaluate
the influence of the skin color, we focused on the ethnicity
labels African and European to have a clear separation in skin
tones in these experiments. We are aware that these limita-
tions do not represent all people, but we selected this setting
to analyze bias reduction capabilities on clearly separable
demographic subgroups. The idea is that those subgroups
consist of a combination of two demographic attributes
namely gender and skin color. In the following, the ethnic
labels are discarded and the terms dark and light are used to
separate the skin tones. The resulting demographic sub-
groups are therefore: dark female, dark male, light female,
and light male. The resulting database comprises more than
246,000 images from 35,633 subjects, as can be seen in
Table 1. This makes it one of the largest annotated databases
providing demographic labels, which is captured in a con-
trolled environment. When focusing on evaluating demo-
graphic fairness and bias, we do not want additional
factors from unconstrained capture processes to influence
the experimental results.

For the analysis of the demographic bias reduction capa-
bilities, we need multiple face recognition systems in order to
have a pool of possible fusion candidates to choose from. The
selected face recognition systems should have state-of-the-art

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 2: Example images from the used dataset: (a) dark female (df ), (b) dark male (dm), (c) light female (lf ), and (d) light male (lm).

TABLE 1: Number of subjects and images for the different overlap-
ping demographic groups.

(a) Number of subjects

Dark Light Total

Female 1,492 19,929 21,421
Male 10,085 4,127 14,212
Total 11,577 24,056 35,633

(b) Number of images
Dark Light Total

Female 5,757 98,308 104,065
Male 70,875 71,084 141,959
Total 76,632 169,392 246,024
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performance in terms of biometric recognition rates, thus
only the leading open source models are used in this study.

The original ArcFace [77] is constantly updated [78] and
retrained on new datasets. When looking at the different mod-
els (https://github.com/deepinsight/insightface/tree/master/
model_zoo), that are made available by the authors, the
reported performance increases for larger backbones (e.g.,
R100) compared to smaller ones (e.g., R50, R34, R18). Hence,
we selected all available R100-models to be included in this
study. However, for some of the pretrained models only R50
versions are available. Here, the WebFace600K model stands
out since its reported performance is better than some of the
previously selected R100 ones. Thus, this model is also
included. The naming here mirrors the dataset, where the cor-
respondingmodel was trained on, except formxnet, which was
trained on MS1MV2 but builds upon a different backbone
structure compared to the remaining models. From now on
all ArcFacemodels are marked with the prefix af_ followed by
their original model name.

For the following open source face recognition systems,
the selection process is more simple. The authors of Curri-
cularFace [79] provide only one model (https://github.com/
HuangYG123/CurricularFace) and MagFace [80] comes in
multiple versions (https://github.com/IrvingMeng/Mag-
Face), where again the R100-model is selected. Finally, Elas-
ticFace [81] offers four pretrained models (https://github.
com/fdbtrs/ElasticFace), which are all included. In the style
of ArcFace, the ElasticFace models also get a prefix ef_ to be
discernible in the following. In addition to the 12 open
source systems summarized in Table 2, one commercial off
the shelf (COTS) face recognition system is also included
in the benchmark. However, this system is not considered
for the fusion approaches in order to grant full reproducibility
of our results.

For more details on the specific pretrained face recogni-
tion models, the reader is referred to the descriptions of the
original authors. For this study, we now focus on the demo-
graphic bias of each model and how to fuse them to improve
the fairness.

To retrieve comparable results of the different face rec-
ognition systems, RetinaFace [82] was used for face detection
and alignment of the cropped face regions. Hence, all differ-
ent face recognition models receive the same preprocessed
face images as inputs.

5.2. Benchmark Results. Figure 3 shows biometric perfor-
mance on the full database for all selected models.

5.2.1. False Non-Match Rate. Table 3 summarizes the
FNMRs for all models and each demographic group. Since
FMRs and FNMRs have a trade-off character, i.e., the higher
the FMR is, the lower the FNMR is, we need to look at
FNMRs in addition to FMRs. Magface is the best open-
source model, and COTS is the best of all evaluated systems
in terms of FNMR at a fixed FMR of 0:1%. The worst model
with the highest FNMR is Casia. The statement that Magface
is the best model and Casia the worst is feasible in this case,
the comparison of all subjects with all subjects since the FMR
is uniformly 0:1%. In the following observations regarding
the FMRs of individual demographic groups, it must be
noted that the FMR is not 0:1% for each individual group
but varies. Thus, a statement regarding the improved accu-
racy or performance of the models cannot be made directly.
However, it is still possible to say that a FNMR for certain
groups is better or worse than others for a fixed FMR of 0:1%
across all groups.

COTS performs best for each demographic group, but
due to the smaller amount of comparison made with COTS

TABLE 2: List of open source face recognition systems included in
this study.

System Model name Backbone

ArcFace

af_casia iResNet R100
af_glint360k iResNet R100
af_ms1mv2 iResNet R100
af_ms1mv3 iResNet R100
af_mxnet MXNet R100

af_webface600k iResNet R50

CurricularFace curricularface iResNet R101

ElasticFace

ef_arc iResNet R100
ef_arcplus iResNet R100
ef_cos iResNet R100

ef_cosplus iResNet R100

MagFace Magface iResNet R100

For ArcFace (af ) and ElasticFace (ef ), multiple models were selected.
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FIGURE 3: DET plot showing the FMRs and FNMRs for all selected
models on the full database.

6 IET Biometrics



and since it is not considered for fusion, only the FNMR
values of the open-source models are described. First, we
look at the gender-related columns. The highest FNMR
among females has Casia with 5:539%; followed by the sec-
ond worst model Curricularface with an FNMR of 2:504%.
The best FNMR among females has Magface, with 1:077%.
In the comparison among males, Casia is again the worst-
performing model ðFNMR¼ 4:093%Þ:. Again, Magface is the
model with the lowest FNMR of 0:247%. These observations
are the same as when looking at the comparisons of all sub-
jects. In the direct comparison between the FNMR among
males and females, it is clear that the FNMR among males is
better than the FNMR among females for each model.

The lowest and thus best FNMR within dark-skinned
individuals could be achieved with the Mxnet model and
an FNMR of 0:207%; many of the other models have a
only slightly higher FNMR. Casia has the highest and,
thus, worst FNMR. Casia also has the highest FNMR for
light-skinned individuals. This time, however, Magface has
the lowest FNMR with an FNMR of 0:452%. If we again
compare the values of all models concerning dark-skinned
and light-skinned people, the FNMR for dark people always
turns out to be significantly better than for light people. In all
models, the FNMR is lower for dark-skinned people than for
light-skinned people. This is the opposite pattern of the
FMRs. The obtained results could be caused by a difference
in quality of facial images of certain subgroups. It has been
observed that especially for light-skinned female subjects
parts of the facial region may be occluded by hair. On the
contrary, male subjects may have more distinct facial hair
covering some of their facial region. This could be one
hypothesis for the observed results. However, a more detailed
investigation of causes of bias is out of scope for this work.

For the dark female subgroup, Webface600k provides the
best FNMR with only 0:007%, and the FNMRs are quite close
for all models except Casia, with an FNMR of 2:874%.
Within the dark males subgroup, Mxnet has the lowest
FNMR at 0:211%. Again, the values of all models are close

to each other, except Casia. Magface has the best FNMR in
the light females category, with an FNMR of 1:413%. In the
light male subgroup, Magface also has 0:26%. Casia has the
highest and, therefore, worst FNMR in each group. Compar-
ing all subgroups with each other, for each model the FNMR
is lowest or best for dark females, followed by dark males and
light males. Light females have the worst FNMR in each
model evaluated with an FMR across all groups of 0:1%.
This observation is opposite to the behavior of FMRs. How-
ever, it is conclusive with the trade-off effect between FNMR
and FMR: if FMR is higher, FNMR is lower, and conversely,
if FMR is lower, FNMR is higher.

Figure 4 shows the biometric performance of the best
open source model for each analyzed demographic group.

5.2.2. FMR Within Demographic Groups. Table 4 shows that
the FMRs for all demographic groups are split into compar-
isons within each group and across different groups. Looking
first at the FMR values within demographic groups in
Table 4a, it is shown that with a global FMR of 0:1% across
all demographic groups, the female group performs worse
than 0:1% in most models. Only in Cosplus and Arcplus, the
FMRs are below 0:1%. Also, in the male group, the FMR is
higher than 0:1% in most models; only in Magface is the
FMR significantly lower than 0:1% with 0:048%.

If we compare the male and female FMR values within
their own demographic group, it is clear that in most models,
the FMR of females is lower than the FMR of males. In 10 out
of 13 models, females have a lower FMR than males, which
means that a false match between females is less likely with
these models than a false match between males. The two
models that have a lower FMR among males are Webfa-
ce600k and Magface.

Looking at the demographic groups dark and light, we
notice that dark-skinned individuals have a higher FMR in
most cases, as expected when comparing these individuals
only among themselves. The FMR when comparing dark-
skinned individuals is above 0:1% in all cases except in the

TABLE 3: FNMRs in percent for a fixed FMR of 0.1%.

Model
Demographic group

All Female Male Dark Light df dm lf lm

af_casia 4.341 5.539 4.093 2.525 4.987 2.874 2.517 5.632 4.799
af_glint360k 0.601 1.492 0.416 0.214 0.738 0.014 0.219 1.544 0.505
af_ms1mv2 0.561 1.449 0.377 0.211 0.686 0.014 0.216 1.499 0.450
af_ms1mv3 0.656 1.570 0.467 0.231 0.808 0.141 0.233 1.620 0.572
af_mxnet 0.568 1.523 0.369 0.207 0.696 0.014 0.211 1.576 0.440
af_webface600k 0.527 1.366 0.353 0.213 0.638 0.007 0.218 1.413 0.414
Curricularface 1.101 2.504 0.810 0.250 1.404 0.066 0.255 2.590 1.060
ef_arc 0.625 1.667 0.409 0.219 0.769 0.014 0.224 1.725 0.492
ef_arcplus 0.753 1.923 0.511 0.233 0.938 0.022 0.237 1.990 0.633
ef_cos 0.626 1.600 0.425 0.216 0.772 0.014 0.221 1.656 0.516
ef_cosplus 0.774 1.953 0.530 0.244 0.963 0.037 0.249 2.021 0.656
Magface 0.389 1.077 0.247 0.212 0.452 0.014 0.216 1.114 0.260
COTS 0.359 0.971 0.232 0.205 0.415 0.007 0.210 1.004 0.242

The lowest error rates are marked in bold.
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TABLE 4: FMRs in percent when using the global system threshold on demographic subsets.

(a) Comparisons only within the same demographic group

Model
Demographic group

All Female Male Dark Light df dm lf lm

af_casia 0.1 0.117 0.287 0.521 0.087 1.353 0.562 0.122 0.017
af_glint360k 0.1 0.101 0.307 0.450 0.086 0.748 0.531 0.108 0.155
af_ms1mv2 0.1 0.139 0.227 0.337 0.116 1.194 0.373 0.147 0.212
af_ms1mv3 0.1 0.162 0.167 0.267 0.129 0.890 0.296 0.174 0.069
af_mxnet 0.1 0.121 0.240 0.278 0.121 0.696 0.324 0.130 0.401
af_webface600k 0.1 0.184 0.138 0.215 0.153 0.673 0.239 0.203 0.114
Curricularface 0.1 0.123 0.191 0.319 0.093 1.630 0.315 0.115 0.080
ef_arc 0.1 0.103 0.300 0.471 0.081 1.161 0.538 0.105 0.111
ef_arcplus 0.1 0.086 0.327 0.519 0.066 1.360 0.578 0.083 0.108
ef_cos 0.1 0.116 0.255 0.386 0.096 1.177 0.421 0.118 0.183
ef_cosplus 0.1 0.084 0.315 0.436 0.079 0.908 0.496 0.084 0.254
Magface 0.1 0.246 0.048 0.080 0.195 0.551 0.086 0.278 0.047
COTS 0.1 0.188 0.170 0.269 0.150 1.025 0.306 0.207 0.122

(b) Comparisons only across demographic groups
Model All Gender Skin df–dm df–lf df–lm dm–lf dm–lm lf–lm

af_casia 0.1 0.024 0.011 0.321 0.037 0.007 0.009 0.005 0.009
af_glint360k 0.1 0.030 0.029 0.156 0.030 0.026 0.022 0.064 0.026
af_ms1mv2 0.1 0.028 0.025 0.154 0.045 0.036 0.016 0.052 0.032
af_ms1mv3 0.1 0.030 0.029 0.125 0.057 0.025 0.025 0.031 0.025
af_mxnet 0.1 0.037 0.035 0.092 0.035 0.048 0.020 0.104 0.068
af_webface600k 0.1 0.023 0.016 0.098 0.043 0.019 0.012 0.020 0.037
curricularface 0.1 0.051 0.054 0.234 0.123 0.089 0.041 0.061 0.041
ef_arc 0.1 0.030 0.029 0.194 0.050 0.037 0.022 0.049 0.021
ef_arcplus 0.1 0.034 0.034 0.259 0.057 0.047 0.023 0.064 0.019
ef_cos 0.1 0.035 0.034 0.209 0.063 0.060 0.022 0.067 0.034
ef_cosplus 0.1 0.040 0.040 0.200 0.047 0.073 0.024 0.107 0.048
Magface 0.1 0.006 0.005 0.023 0.020 0.001 0.003 0.002 0.012
COTS 0.1 0.009 0.006 0.090 0.030 0.002 0.002 0.012 0.013

The lowest error rates are marked in bold.
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FIGURE 4: DET plot for the MagFace biometric recognition performance based on the particular demographic group considered: (a) main
demographic groups and (b) demographic subgroups.
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case of Magface: In the case of Magface, the FMR is 0:08%. A
different picture emerges here if we look at the comparison
between light-skinned persons. For seven of 13 models, the
FMR between light-skinned individuals is below 0:1%. Since
one tends to expect higher values for comparisons within a
demographic group than for comparisons between all groups,
this is very striking. Unsurprisingly, 12 of 13 models have a
better FMR of light-skinned versus dark-skinned individuals.
The only exception is, again, MagFace.

For the subgroup dark females, the FMRs are all higher
than 0.1%. Similarly, in the dark-males subgroup, the FMRs
of all models are above 0:1%. The only exception is Magface,
with an FMR of 0:086% in the comparison between dark
males. In the light-females subgroup, most FMRs are also
above 0:1%, Arcplus and Cosplus being the two exceptions.
When comparing within the light-males subgroup, nine of
13 models still have an FMR above 0:1%. If we compare the
FMR values of the subgroups, the following picture emerges:
In most models ð7=13Þ:, dark females have the highest FMR,
followed by dark males, and light males. Light females have
the lowest FMR. Looking at the Magface model, the order of
descending FMR is dark females, light females, dark males, and
light males. It is noticeable that dark females have the worst
FMR in every model. In most cases ð11=13Þ :, dark males have
the second-worst FMR, while light females and lightmales have
the best or second-best FMR in almost equal proportions ð4 : 6Þ :.
Exceptions are Mxnet and Magface, although dark females still
have the highest FMR, this time light females and light males
have the second-highest FMR, respectively. In summary, FMRs
are generally higher within dark-skinned subgroups. And the
FMR within dark-skinned females is higher than within dark-
skinned males.

5.2.3. FMR across Different Demographic Groups. Table 4b
shows the FMR across demographic groups. That is, subjects
from one demographic group are only compared to subjects
from other demographic groups and not their own group.
Since the two subjects being compared do not belong to the
same demographic group and thus do not share certain char-
acteristics (gender, skin color), it is expected that the FMR
should be lower compared to the average value of 0:1%
[18, 41]. This is also true in most cases. Comparing subjects
of different genders, any model has no FMR above 0:1%. The
best model is Magface with 0:006%, and the worst model is
CurricularFace with an FMR of 0:051%. When comparing
different skin colors, the same pattern emerges. No model
has an FMR of more than 0:1%. Magface is the best model
with an FMR of 0:005%, and Curricularface is the worst
model with an FMR of 0:054%. Comparing the FMRs across
gender with those across skin color, the values are very simi-
lar in magnitude. Only Casia can distinguish skin color with
an FMR of 0:011%, significantly better than Gender with an
FMR of 0:024%.

Looking at the FMRs between the subgroups, it is notice-
able that especially the FMRs between dark females and dark
males are relatively high. Only three of the 13 models have an
FMR of less than 0:1% when comparing dark females and
dark males. Besides COTS, one is Magface with 0:023% and

only very close Webface600k with 0:098%. This observation
aligns with the findings of Kolberg et al. [54], where the error
rates across dark-skinned subgroups were also significantly
higher than for other demographic subgroups.

In the comparison between dark females and light
females, the FMR of 12 of 13 models is below 0:1%, only
Curriuclarface performs worse in this category with 0:123%.
Magface again performs best with 0:02%. The FMRs between
dark females and light males are relatively low. Magface dis-
tinguishes best with an FMR of 0:001%, and Curricularface
distinguishes worst with an FMR of 0:89%. When comparing
dark males with light females, the same picture emerges:
COTS distinguishes best with an FMR of 0:002%, followed
by Magface with an FMR of 0:003%, and Curricularface dis-
tinguishes worst with an FMR of 0:041%.

When comparing dark males and light males, the FMR
values are slightly higher for most models compared to
dm–lf. For Mxnet and Cosplus, they are above 0:1%. The
best differentiator is again Magface with an FMR of 0:002%.

The last comparison is between the groups light females
and light males. No model has an FMR of more than 0:1%.
The best model is Casia with an FMR of 0:009%. The worst
model is Mxnet, with an FMR of 0:068%.

Table 5 lists the GARBE fairness scores for all different
models and demographics.

For each model and metric, α was varied to include only
FNMR fairness (α¼ 0), only FMR fairness (α¼ 1), and both
equally combined (α¼ 0:5). The GARBE is 0 for a very fair
system and 1 for a very unfair system.

5.3. Subgroups. Finally, we consider the fairness values with
respect to the subgroups. The values can also be found in
Table 5. As with the categories gender and skin color, the
Casia model has the best fairness values with regard to
FNMR, with a GARBE of 0:237. According to the GARBE,
the Arc model is the least fair, with 0:732. The fact that Casia
is the fairest model with respect to GARBE in all three
considered categories regarding FNMR could again be
related to the fact that Casia has generally higher FNMR
values than all other models, which lowers the chance of a
high ratio between the considered values (FNMR-male and
FNMR-female, etc.) and thus makes a fairer impression than
if the considered FNMR values are low. According to GARBE,
Mxnet provides the best fairness between subgroups in terms
of FMR. The Mxnet model has a GARBE of 0:38. Further,
Curricularface is the least fair model with 0:755. Looking at
both error rates combined (α¼ 0:5), the fairest model with
respect to GARBE is Casia with 0:479. The least fair model is
Curricularface with 0:728.

5.4. Summary—Individual Algorithms. We observe that
GARBE, as mentioned earlier in the discussion of metrics, is
a fairness metric with good predictive power with respect to
equal treatment of different demographic groups. In contrast
to other metrics, e.g., IR or FDR, the GARBEmetric considers
all error values, which becomes clear when assessing fairness
between subgroups, since there are four demographic groups
to consider there, instead of two. However, the results also
show the weakness of GARBE, since it does not fulfill
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FFMC.4. When a system performs equally bad for all
demographic groups, the GARBE fairness score is better
than for other systems (c.f., af_casia GARBE scores).

5.5. Fusion Results. In the following evaluations of the
fusions, we again only consider the GARBE fairness metric.
Additionally, only FMR fairness (α¼ 1) is evaluated, as the
scope of this paper does not allow for further analysis of
FNMR fairness values. The combined fairness of FMR and
FNMR is also left out, for these values another circumstance
is that the influence of the initial values is not directly
comprehensible, since one does not know to what extent
FMR or FNMR are causal for the result. Table 6 shows the
fusion results when selecting the candidates based on their
FMR performance. Table 7 shows the fusion results when
selecting the candidates based on their GARBE scores.
Table 8 shows the fusion results when selecting the
candidates based on their Pareto efficiency. Figure 5 plots the
Pareto efficiency for all tested systems based on the particular
demographics. The Pareto curve combining all systems in the
most lower left corner is called Pareto efficient and marked in
green. These systems are then used for fusion and further
evaluation.

5.5.1. Skin Color. Arcplus and Magface were chosen with the
intention of aligning the two FMR values within light and
dark subjects. Arcplus has the best FMR value for light–light
comparisons, while Magface has the best FMR value for
dark–dark comparisons. Subsequently, we expect a better
fairness score over the demographic characteristic skin color
from a fusion of these two models. In Table 6a, we first
compare the new FMR values for dark–dark and light–light
for the different fusions AND-, OR-, and Score-fusion with
the values of the baseline models.

For the AND-Decision fusion, the FMR value of the
fusion improves to 0:030% compared to the baseline models
for dark–dark comparisons, and the FMR value of light–light
also improves to 0:013% compared to both baseline models.

Since these two values are relatively closer to each other than
the values of the initial models, the GARBE measure also
improves: the fairness score with respect to the fusion is
0:398, while the fairness score for the initial models is
0:418 for Magface and 0:773 for Arcplus. Thus, this fusion
was able to improve fairness with respect to the considered
fairness score. With the OR-Decision fusion, the fairness
value changes to 0:392 and in the case of the Score-fusion
to 0:302. Based on these values, the selection criterion of the
initial models seems to make sense. Furthermore, the Score-
fusion seems to have the best effect on fairness. The other
values (FMR and FNMR within genders and subgroups) are
not compared, since they were irrelevant for the selection of
the initial models and the inclusion and discussion of these
parameters exceed the scope of the thesis.

For GARBE, the candidates are the Webface600k,
MS1MV3 and Mxnet models. The results of this fusion are
shown in Table 7a. As previously observed, the AND-Decision
fusion lowers the FMR across all demographic groups, in this
case, reducing the FMR to 0:011%. The FNMR increases to
0:75% with the AND-Decision, as expected. The FMR
between dark-skinned subjects decreases to 0:04% by AND-
fusion, and for light-skinned subjects, the FMR decreases to
0:014%. As a result, the GARBE between the two FMRs is
0:477. Thus, the GARBE of the AND-fusion is not better than
the GARBE of Webface600k, but it is better than the GARBE
of MS1MV3 and Mxnet. An improvement over all the initial
models could not be achieved with the AND-fusion. In con-
trast to AND-fusion, OR-fusion increases FMR across all
groups to 0:242%, while FNMR improves to 0:441%, as
expected. The FMR between dark-skinned subjects increases
to 0:572%, and the FMR between light-skinned subjects
increases to 0:328% compared to all baseline models. But
GARBE deteriorates to 0:271 compared to all baselinemodels.
The Majority-Vote-fusion improves FMR to 0:047%, while
FNMR settles between baseline models at 0:562%. The FMR
between dark-skinned subjects improves to 0:149%, while the

TABLE 5: GARBE fairness evaluations for different demographics and different α factors, where α= 1 emphasizes on FNMR fairness and α= 0
emphasizes on FMR fairness.

Model
Gender Skin color Subgroups

α¼ 0 α¼ 0:5 α¼ 1 α¼ 0 α¼ 0:5 α¼ 1 α¼ 0 α¼ 0:5 α¼ 1

af_casia 0.150 0.284 0.419 0.327 0.520 0.713 0.237 0.479 0.720
af_glint360k 0.563 0.533 0.503 0.549 0.613 0.677 0.711 0.603 0.495
af_ms1mv2 0.586 0.414 0.241 0.528 0.507 0.487 0.716 0.643 0.571
af_ms1mv3 0.540 0.277 0.014 0.555 0.452 0.349 0.620 0.611 0.602
af_mxnet 0.609 0.469 0.329 0.541 0.467 0.349 0.730 0.555 0.380
af_webface600k 0.588 0.365 0.142 0.498 0.333 0.168 0.716 0.590 0.464
Curricularface 0.510 0.362 0.214 0.696 0.622 0.547 0.702 0.728 0.755
ef_arc 0.605 0.547 0.489 0.555 0.630 0.705 0.732 0.679 0.625
ef_arcplus 0.580 0.580 0.581 0.602 0.688 0.773 0.728 0.700 0.672
ef_cos 0.580 0.476 0.373 0.561 0.580 0.599 0.722 0.660 0.598
ef_cosplus 0.573 0.576 0.579 0.595 0.643 0.691 0.715 0.616 0.518
Magface 0.626 0.648 0.669 0.361 0.389 0.418 0.693 0.641 0.588
COTS 0.614 0.332 0.050 0.336 0.311 0.285 0.688 0.625 0.562

The best fairness values are marked in bold.
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FMR between light-skinned subjects drops to 0:062%.
GARBE deteriorates to 0:416 compared to the baseline mod-
els. Score-fusion can again use the FMR of 0:1%. The FNMR
across all groups improves to 0:486%. The FMR among dark-
skinned subjects deteriorates to 0:296%, and among light-
skinned subjects, it is in between the scores of the initial
models with 0:091%. Thus, the Score-fusion achieves a
GARBE value of 0:377, which is only better than the fairness
value of Mxnet, but worse than that of MS1MV3 and
Webface600k.

None of the tested fusions could improve the fairness of
Webface600k, and all fusions perform worse than the fairest
initial model in terms of GARBE.

For the skin color characteristic, only twomodels form the
Pareto curve, i.e.,Webface600k andMagface, as can be seen in
Figure 5(a). Since only two models are on the Pareto curve,
only these two are fused, and there is no opportunity for a
Majority-Vote-fusion. The results are shown in Table 8a, and
the AND-fusion again improves all FMR values and worsens
the FNMR value across all groups to 0:573%. The GARBE
improves to 0:076. With OR-fusion, the FNMR value
improves compared to the baseline models, and the FMRs
worsen. GARBE also improves with OR-fusion, this time to
0:084. With Score-fusion, we normalize the FMR across all
groups to 0:1%. The FNMR improves slightly to 0:383%. The
FMR between dark-skinned subjects is 0:141%, lower than

that of Webface600k but higher than that of Magface. The
FMR between light-skinned subjects is 0:182%, lower than
that of Magface but higher than the FMR of Webface600k.
The GARBE here is lower than that of the baseline model but
higher than the GARBE of the other fusions with 0:127. The
OR-fusion and AND-fusion are the only systems forming a
new Pareto-curve and offer a Pareto-efficient trade-off
between FNMR and GARBE.

5.5.2. Gender. To improve fairness between the female and
male demographic groups, Cosplus and Magface were cho-
sen. Cosplus has the lowest FMR for females, and Magface
has the lowest FMR for males. Table 6b shows the fusion
results. The AND-fusion results in the FMR of females and
males being almost equal, both around 0:014%. This results
in a fairness score of 0:006 for the AND-fusion, compared to
the baseline models’ fairness scores of 0:579 for Cosplus and
0:669 for Magface. The OR-fusion yields similar fairness
scores: the GARBE value is decreased to 0:051. And the
Score-fusion approach can also improve the fairness score
to 0:102. The selection criterion appears to be appropriate for
improving fairness, at least for these two models, for each
fusion tested.

The fairest three models in the gender category are
MS1MV3, Webface600k, and Curricularface. Table 7 sum-
marizes the results. With the AND-fusion, the FMR across

TABLE 6: Fusion results based on FMR candidates.

(a) Fusions of ef_arcplus and Magface to improve skin color fairness

FMR FNMR FMR FMR GARBE
All All Dark Light (α¼ 1)

ef_arcplus 0.1 0.753 0.519 0.066 0.773
Magface 0.1 0.389 0.080 0.195 0.418
AND-fusion 0.009 0.782 0.030 0.013 0.398
OR-fusion 0.191 0.361 0.570 0.249 0.392
Score-fusion 0.1 0.393 0.275 0.147 0.302

(b) Fusions of ef_cosplus and Magface to improve gender fairness
FMR FNMR FMR FMR GARBE
All All Female Male (α¼ 1)

ef_cosplus 0.1 0.774 0.084 0.315 0.579
Magface 0.1 0.389 0.246 0.048 0.669
AND-fusion 0.007 0.804 0.014 0.014 0.006
OR-fusion 0.193 0.360 0.317 0.351 0.051
Score-fusion 0.1 0.395 0.194 0.158 0.102

(c) Fusions of af_casia, ef_rcplus, and Magface to improve fairness of demographic subgroups
FMR FNMR FMR FMR FMR FMR GARBE
All All df dm lf lm (α= 1)

af_casia 0.1 4.341 1.353 0.562 0.122 0.017 0.720
ef_arcplus 0.1 0.753 1.360 0.578 0.083 0.108 0.672
Magface 0.1 0.389 0.551 0.086 0.278 0.047 0.588
AND-fusion 0.002 4.431 0.068 0.010 0.004 0.001 0.842
OR-fusion 0.277 0.349 2.758 1.114 0.447 0.166 0.628
Majority-Vote 0.021 0.704 0.441 0.104 0.034 0.008 0.778
Score-fusion 0.1 0.408 1.400 0.357 0.201 0.044 0.702

Bold numbers mark best results.
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all groups improves to 0:005%, while the FNMR across all
groups deteriorates to 1:197%. The FMR among females
improves to 0:007% and that among males to 0:016%. The
GARBE of these two values is 0:430, which is worse than all
GARBE values of the baseline models. In OR-fusion, the
FMR increases to 0:258%, and the FNMR across all groups
improves to 0:447%. The FNMR within female subjects
increases to 0:407% and that between male subjects increases
to 0:401%. The GARBE improves to 0:007, an improvement
compared to all baseline models. The Majority-Vote again
lowers the FMR among all demographic groups, and the
FNMR is intermediate to the FNMRs of the baseline models.
The FMR among female subjects drops to 0:058%, while it
drops to 0:08% among male subjects. The GARBE fails to
improve over all the baseline models and is 0:159. In Score-
fusion, the FNMR improves to 0:51%. The FMR among
female subjects is between all baseline models with 0:145%,
and that of male subjects deteriorates to 0:230%. Thus, the
GARBE worsens compared to the baseline models and
amounts to 0:227%.

For the gender characteristic, MS1MV3, Webface600k,
and Magface form the Pareto curve, as can be seen in

Figure 5(b) and are selected for fusion. The results of the fusion
are summarized in Table 8b. The AND-fusion again improves
the FMRs, both within subjects of all groups and within the
specific groups, female andmale. In return, the FNMRworsens
to 0:737% across all groups. The GARBE for the FMR among
females and the FMR among males is 0:217 for the AND-
fusion, which is fairer than Magface, but still more unfair
than MS1MV3 and Webface600k. With OR-fusion, again,
the opposite effect can be seen. The FNMR across all groups
decreases, and the FMRs increase compared to all initial mod-
els. The GARBE is 0:27 and is slightly worse than the GARBE
of the AND-fusion. TheMajority-Vote-fusion also behaves like
the Majority-Vote-fusions before: FMRs decrease across all
groups and in the male and female demographic groups. The
FNMR is within the range of the baseline models. GARBE
improves to 0:145 compared to the AND- and OR-fusion,
but the fusion is still more unfair than theMS1MV3 andWeb-
face600k baseline models. Score-fusion improves the FNMR
across all groups slightly to 0:388%. The FMR between females
is 0:213%. The FMR within males is lower than that of
MS1MV3 and Webface600k with 0:070% but higher than
that of Magface. The GARBE is the highest compared to the

TABLE 7: Fusion results based on GARBE candidates.

(a) Fusions of af_ms1mv3, af_mxnet, and af_webface600k to improve skin color fairness

FMR FNMR FMR FMR GARBE
All All Dark Light (α¼ 1)

af_ms1mv3 0.1 0.656 0.267 0.129 0.349
af_mxnet 0.1 0.568 0.278 0.121 0.393
af_webface600k 0.1 0.527 0.215 0.153 0.168
AND-fusion 0.011 0.750 0.040 0.014 0.477
OR-fusion 0.242 0.441 0.572 0.328 0.271
Majority-Vote 0.047 0.562 0.149 0.062 0.416
Score-fusion 0.1 0.486 0.296 0.134 0.377

(b) Fusions of af_ms1mv3, af_webface600k, and curricularface to improve gender fairness
FMR FNMR FMR FMR GARBE
All All Female Male (α¼ 1)

af_ms1mv3 0.1 0.656 0.162 0.167 0.014
af_webface600k 0.1 0.527 0.184 0.138 0.142
Curricularface 0.1 1.101 0.123 0.191 0.214
AND-fusion 0.005 1.197 0.007 0.016 0.430
OR-fusion 0.258 0.447 0.407 0.401 0.007
Majority-Vote 0.037 0.641 0.058 0.080 0.159
Score-fusion 0.1 0.510 0.145 0.230 0.227

(c) Fusions of af_glint360k, af_mxnet, and af_webface600k to improve fairness of demographic subgroups
FMR FNMR FMR FMR FMR FMR GARBE
All All Df Dm Lf Lm (α= 1)

af_glint360k 0.1 0.601 0.748 0.531 0.108 0.155 0.495
af_mxnet 0.1 0.568 0.696 0.324 0.130 0.401 0.380
af_webface600k 0.1 0.527 0.673 0.239 0.203 0.114 0.464
AND-fusion 0.011 0.698 0.161 0.055 0.018 0.020 0.608
OR-fusion 0.242 0.445 1.470 0.826 0.355 0.560 0.375
Majority-Vote 0.046 0.554 0.487 0.214 0.070 0.091 0.532
Score-fusion 0.1 0.487 0.888 0.404 0.156 0.210 0.479

Bold numbers mark best results.
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other fusions at 0:280%; compared to the baseline models, only
Magface ismore unfair. TheOR-fusion and theMajority-Vote-
fusion both form the new Pareto curve and are therefore pareto
efficient.

5.5.3. Demographic Subgroups. In the comparison of fairness
between subgroups, the Casia, Arcplus, and Magface models
were used as initial models for the fusion. The models were

chosen so that the selected models each included the lowest
FMR for all subgroups. The results of the fusion are docu-
mented in Table 6b. The baseline models have a GARBE
fairness score of 0:72 for Casia, 0:672 for Arcplus, and
0:588 for Magface. For the AND-fusion, all FMR scores of
the subgroups improve compared to all baseline models. The
GARBE fairness score is 0:842 for the AND-Fusion. For the
OR-fusion, the FMR values certainly deteriorate as expected.

TABLE 8: Fusion results based on Pareto-efficient candidates.

(a) Fusions of af_webface600k and Magface to improve skin color fairness

FMR FNMR FMR FMR GARBE
All All Dark Light (α¼ 1)

af_webface600k 0.1 0.527 0.215 0.153 0.168
Magface 0.1 0.389 0.080 0.195 0.418
AND-fusion 0.017 0.573 0.026 0.030 0.076
OR-fusion 0.183 0.344 0.270 0.319 0.084
Score-fusion 0.1 0.383 0.141 0.182 0.127

(b) Fusions of af_ms1mv3, af_webface600k, and Magface to improve gender fairness
FMR FNMR FMR FMR GARBE
All All Female Male (α¼ 1)

af_ms1mv3 0.1 0.656 0.162 0.167 0.014
af_webface600k 0.1 0.527 0.184 0.138 0.142
Magface 0.1 0.389 0.246 0.048 0.669
AND-fusion 0.006 0.737 0.014 0.009 0.217
OR-fusion 0.257 0.323 0.507 0.292 0.270
Majority-Vote 0.036 0.514 0.073 0.054 0.145
Score-fusion 0.1 0.388 0.213 0.119 0.280

(c) Fusions of af_mxnet, af_webface600k, and Magface to improve fairness of demographic subgroups
FMR FNMR FMR FMR FMR FMR GARBE
All All df dm lf lm (α= 1)

af_mxnet 0.1 0.568 0.696 0.324 0.130 0.401 0.380
af_webface600k 0.1 0.527 0.673 0.239 0.203 0.114 0.464
Magface 0.1 0.389 0.551 0.086 0.278 0.047 0.588
AND-fusion 0.006 0.656 0.110 0.018 0.014 0.005 0.724
OR-fusion 0.259 0.317 1.424 0.535 0.523 0.508 0.308
Majority-Vote 0.035 0.512 0.387 0.098 0.075 0.051 0.562
Score-fusion 0.1 0.391 0.922 0.239 0.229 0.111 0.541

Bold numbers mark best results.

0.8

0.6

G
A

RB
E 

(α
 =

 1
)

0.4

0.2

0
0 2

FNMR (%)
4

ef_cosplus
af_glint360k

af_casia
ef_arcplusef_arc

ef_cos
curricularface

af_ms1mv2

af_ms1mv3
af_mxnet

Magface

af_webface600k

ðaÞ

0.8

0.6

G
A

RB
E 

(α
 =

 1
)

0.4

0.2

0
0 2

FNMR (%)
4

ef_cosplus
af_glint360k

af_casia

ef_arcplus

ef_arc
ef_cos

Curricularface
af_ms1mv2

af_ms1mv3

af_mxnet

Magface

af_webface600k

ðbÞ

0.8

0.6

G
A

RB
E 

(α
 =

 1
)

0.4

0.2

0
0 2

FNMR (%)
4

ef_cosplus
af_glint360k

af_casiaef_arcplus
ef_arc

ef_cos

Curricularface

af_ms1mv2
af_ms1mv3

af_mxnet

Magface

af_webface600k

ðcÞ
FIGURE 5: Pareto efficiency plots for different demographics. The Pareto-efficient systems are marked in green, while Pareto-inefficient
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(b) Pareto efficiency for gender. (c) Pareto efficiency for subgroups.
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The fairness score also declines to 0:628. A deterioration in
fairness also occurs with the Majority-Vote-fusion, with the
GARBE score deteriorating to 0:778. With the Score-fusion, a
mean GARBE value of 0:702 is reached. Fusions of these three
models chosen by the selection criterion do not improve
fairness between demographic subgroups compared to the
initial models.

The three fairest models in terms of subgroups are
Mxnet, Webface600k, and Glint360k. The results of the
fusion are summarized in Table 7b. In the AND-fusion,
the FMR decreases to 0:11%, while the FNMR between all
subjects increases to 0:698%. The FMR of each subgroup
decreases to 0:161% within dark females, to 0:055% within
dark males, to 0:018% within light females, and to 0:02%
within light males. The GARBE for the AND-fusion is
0:608, which is worse than that of the baseline models. For
the OR-fusion, the FNMR worsens across all groups, as do
the FMRs for each demographic group. The FNMR improves
to 0:445%. GARBE also improves compared to the baseline
models to 0:375. In the Majority-Vote-fusion, as in the
AND-fusion, all FMR values improve. The FNMR is between
the values of the initial models at 0:554%. GARBE is worse
than the baseline models at 0:532. In Score-fusion, the
FNMR again improves to 0:487%. The FMR of dark females
worsens, and the FMR of dark males, light females, and light
males is between the initial FMRs. The GARBE of the Score-
fusion with 0:479 is only better than that of Glint360k but
still worse than that of Mxnet and Webface600k.

The models Mxnet, Webface600k, and Magface form the
Pareto curve concerning subgroups, as can be seen in
Figure 5(c), are merged. The results are shown in Table 8.
The AND-fusion again reduces all FMRs, while the FNMR
increases to 0:656% within all subjects. The GARBE of 0:724
is higher than the GARBE of the initial models, making the
AND-decision more unfair. For the OR-decision, the FMRs
increase within all subjects and the subjects of the specific
demographic groups. In return, the FNMRs are at 0:317%.
The GARBE also drops to 0:308 in this case, making the OR-
fusion fairer than all the baseline models. The Majority-
Vote-fusion lowers the FMR across all subjects to 0:035%.
The FNMR is between the values of the baseline models at
0:512%. The FMR among dark females decreases to 0:387%,
as does the FMR among light females to 0:075%. The FMR
within dark males and light males is between the values of
the initial models. The GARBE of 0:562 is lower than that of
Magface but still higher than that of Mxnet and Webfa-
ce600k. The Score-fusion is again standardized to an FMR
of 0:1%. The FNMR is slightly worse than the FNMR of
Magface with 0:391%. FMRs within demographic subgroups
lie between the baseline models, except dark females perform
worse. The GARBE is 0:541, which is fairer than Magface but
unfairer than Mxnet and Webface600k.

The OR-fusion is the only pareto-efficient system, when
comparing the baseline systems and the other fusions.

5.6. Summary—Algorithm Fusion

5.6.1. Effect on Fairness. We conclude that 12 out of 33 mer-
gers improved fairness under GARBE. Six of these are

accounted for by the characteristics of gender and skin
color and the selection criterion of the lowest FMR of each
covariate considered. In those cases, every fusion improved
the fairness of the baseline models. The OR-fusion accounts
for two improvements in fairness regarding the selection
criterion of the best fairness values. Three are accounted for
by the fusions with the selection criterion of the Pareto curve,
with only two models on the Pareto curve. And the last one is
also accounted for by the OR-fusion with the selection
criterion of the Pareto curve. The summary is visualized in
Table 9.

5.6.2. Effect of the AND-Fusion. In every fusion performed,
the AND-fusion led to a reduction in FMR between all sub-
jects. This means that the overall probability of a false match
can be significantly reduced with the AND-fusion. However,
the AND-fusion significantly increases the FNMR between
all subjects. This means the probability of a false nonmatch
occurring is higher in systems with an AND-fusion.

It could also be shown that the FMR of the individual
covariates decreases in each case due to the AND-fusion.
More interesting is the effect of the AND-fusion on the fair-
ness of the GARBE for FMR. In three out of nine cases, the
AND-fusion improved fairness relative to all baseline mod-
els. This was the case for all the fusions using only two
models. The AND-fusion improved fairness twice for the
covariate skin color and once for gender. No improvement
in subgroup fairness was possible with the AND-fusion. The
AND-fusion combined with the selection criterion of the
lowest FMR of a covariate appears promising when only
two covariates (male and female or dark- and light-skinned)
are considered. In both cases, fairness could be improved.

5.6.3. Effect of the OR-Fusion. The OR-fusion behaves oppo-
site to the AND-fusion concerning FMR and FNMR. The
FMR within all subjects and each covariate increases signifi-
cantly compared to the baseline value of the merged models
ð0:1%Þ :. In turn, the FNMR decreases significantly. This
secures the OR-fusion a place on the Pareto curve for the
selection criterion every time. The OR-fusion can improve

TABLE 9: Summary of evaluated fusions showing whether they
improved the fairness score or not.

Measure Fusion Gender Skin color Subgroups

FMR

AND ✓ ✓ ×
OR ✓ ✓ ×

Majority − − ×
Score ✓ ✓ ×

GARBE

AND × × ×
OR ✓ × ✓

Majority × × ×
Score × × ×

Pareto

AND × ✓ ×
OR × ✓ ✓

Majority × − ×
Score × ✓ ×
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the fairness of the initial models in six out of nine cases. The
OR-fusion could improve the fairness of all combinations
created by the selection criterion of the lowest FMR per
variate.

For the selection criterion based on the lowest fairness
scores, OR-fusion improved fairness in two out of three cases.
For the Pareto curve, fairness was only improved in one case.

5.6.4. Effect of the Majority-Vote-Fusion. The Majority-Vote-
fusion could only be applied in six of the nine fusions. The
FMR within all subjects could be reduced in every case. The
FNMR, on the other hand, is always a value between the initial
values of the baseline models. The FMRs of the individual cov-
ariates are mostly between the initial values and, in some cases,
below.

The fairness could not be improved compared to all
baseline models. In some cases, the fairness even worsened
compared to all initial models.

5.6.5. Effect of the Score-Fusion. Score-fusion normalized the
FMR to 0.1%, as in the baseline models. In five out of nine
cases, the FNMR was reduced by Score-fusion. In the other
four cases, it is comparable to the FNMR of the best baseline
model. The FMR of the individual covariates ismostly between
those of the baseline models, but in some cases, it is higher.

In three out of nine cases, fairness could be improved.
Fairness was specifically improved when only two models
were merged with the AND-fusion. In the other cases, the
GARBE is between or even above that of the baseline models.

6. Conclusions

This work presented a benchmark of 12 open source face
recognition systems on a common database. The overall bio-
metric performance as well as the performance for specific
demographic groups is evaluated as a baseline to inspect the
raw system bias.

The main contribution of the work was to analyze
whether fairness can be improved by fusing face recognition
models. Since all possible combinations of models would
have been a too large number to evaluate effectively, three
selection criteria for models to be fused were formulated. The
first selection criterion chooses the models with the lowest
FMR for their demographic group. The second selection crite-
rion selects the three models with the best fairness in terms of
FMR. The last criterion selects the models based on the Pareto
curve. For the selection criterion based on FMR, improvements
were achieved for fairness concerning gender and skin color for
all types of fusions (AND-, OR-, Majority-Vote-, and Score-
fusion). However, fairness between subgroups could not be
improved. For the selection criterion GARBE, the fairness
could only be improved in two cases: in each case for the
OR-fusion with respect to gender and demographic subgroups.
For the Pareto efficiency, fairness could be improved with
AND-, OR-, and Score-fusion for skin color demographics,
while gender fairness could not be improved. Fairness for
demographic subgroups could only be improved with the
OR-fusion. In addition, we tested whether the fusions were
Pareto efficient relative to the baseline models, thus adding

better points in the Pareto curve. The OR-fusion is always
Pareto efficient, while the AND- and Majority-Vote-fusion
were Pareto efficient only in individual cases.

Based on these results, the following trends could be
identified. The OR-fusion was most successful in improving
fairness, while the Majority-Vote-fusion failed to improve
fairness in any case. Fairness was best improved for skin
color and gender, while the fairness of demographic sub-
groups could only be improved in two of 12 cases. The com-
bination of two models seems to give better results regarding
fairness than the combination of three models. The selection
criterion of the lowest FMR seems to be the most effective to
improve fairness.

The question of how the fusions influence the general
performance, i.e., the FNMR, must be answered for each
individual fusion. The OR-fusion always improves the
FNMR for the cost of a worst FMR. The AND-fusion worsens
the FNMR in every case, but on the other hand improves the
FMR. The Majority-Vote-fusion mostly achieves an interme-
diate FNMR of the initial models, while the FMR can be
significantly improved. The Score-fusion is the only one
where we can maintain a fixed FMR of 0.1% with the effect
that the FNMR also depends on the new threshold, thus vary-
ing increase and decrease. Accordingly, the choice of fusion is
closely related to the application scenario and whether secu-
rity or user convenience is preferred.

A general recommendation on how systems should be
fused cannot be made from the above trends. This would
require a statistical study for each criterion, fusion type,
and demographics. However, the trends can be used to
examine the different types of fusions, selection criteria,
and demographics more closely and individually to avoid a
flood of combinations.
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