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Finger vein recognition is gaining popularity in the field of biometrics, yet the inter-operability of finger vein patterns has received
limited attention. This study aims to fill this gap by introducing a cross-device finger vein dataset and evaluating the performance
of finger vein recognition across devices using a classical method, a convolutional neural network, and our proposed patch-based
convolutional auto-encoder (CAE). The findings emphasise the importance of standardisation of finger vein recognition, similar to
that of fingerprints or irises, crucial for achieving inter-operability. Despite the inherent challenges of cross-device recognition, the
proposed CAE architecture in this study demonstrates promising results in finger vein recognition, particularly in the context of
cross-device comparisons.

1. Introduction

Finger vein recognition is a biometric verification technique
that utilises vein patterns to authenticate individuals’ identi-
ties. Unlike other biometric traits like the face or iris, finger
veins are not visible to the naked eye and can only be captured
under infrared light. This unique characteristic of finger veins
offers several advantages, including increased resistance to
stealing or copying.Moreover, since vein patterns do not leave
any visible traces (e.g., latent prints), finger vein recognition
inherently offers higher privacy compared to other biometric
methods, such as faces or fingerprints. Finger vein patterns
are also less prone to being affected by external factors such as
dirt or oil, and since each finger has a distinct vein pattern,
finger vein recognition offers a high level of robustness. All
these factors make finger vein patterns as a reliable and prom-
ising biometric trait suitable for deploying in challenging and
demanding environments.

Finger vein recognition typically involves four steps:
image acquisition, pre-processing, feature extraction, and
comparison. The feature extraction step aims to derive iden-
tity information from finger vein images. Shape, texture, and
key point information are commonly employed features in
finger vein recognition. Shape-based feature extraction meth-
ods, such as curvature methods [1–3], detect vein patterns by
using the curvature information in cross-sections of a finger
vein image. Thesemethods demonstrate a reliable vein extrac-
tion performance under challenging illumination conditions.
While shape features focus on only the vein pattern, texture-
based features combine finger vein patterns and the finger
background by exploring the local relations between image
pixels [4, 5]. Since the finger background is susceptible to
illumination changes, texture features are more sensitive to
illumination conditions compared to curvature methods. Key
points of vein patterns, such as bifurcations and end-points,
are another type of feature used for finger vein recognition
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[6, 7]. These points are tracked and compared to the finger
vein images from other individuals. Key point-based methods
are less sensitive to translation and rotation compared to
shape and texture features. However, due to the low contrast
of finger vein images, point extraction does not always yield
reliable feature descriptors.

In recent years, deep learning models have emerged as a
new approach to finger vein recognition. Unlike classical
ones (i.e., hand-crafted features), these methods encapsulate
feature extraction and comparison in a neural network archi-
tecture, which reduces pre-processing and feature engineer-
ing efforts. As the learned representations are derived from
data rather than being manually engineered on individual
instances, the resulting descriptions are regarded as more
resilient to variations such as changes in illumination. Con-
volutional neural networks (CNNs) are commonly used for
finger vein recognition because of their ability to recognise
patterns. While initial research on CNNs for finger vein rec-
ognition typically builds these models from scratch [8–10],
more recent studies adopt a transfer-learning approach due to
the limited availability of large finger vein datasets. The
transfer-learning approach, which involves leveraging pre-
existing networks to perform finger vein recognition, achieves
state-of-the-art results on publicly available finger vein datasets
[11–13]. Convolutional auto-encoders (CAEs) are another type
of promising deep learning approach for finger vein recogni-
tion. While CNNs require label information to learn feature
representations, CAEs can learn it without the need for label
information, which reduces the need for large labelled datasets.
Though the early studies using CAEs for finger vein recogni-
tion fall short of CNNmodels, they demonstrate great potential
in this field [14–17]. CAEs are also used with traditional meth-
ods and CNNs, where they serve as an enhancement method to
help the main feature extraction method to achieve more accu-
rate and robust finger vein descriptors [18].

Though the current advancements in finger vein recog-
nition indicate great potential for this biometric trait, there is
limited work exploring the inter-operability of finger vein
images. Inter-operability of a biometric trait refers to the
ability of being recognised and verified across multiple sys-
tems. This means that the biometric trait is acquired by one
system can be used by other systems for various purposes,
such as access control, identification, or authentication.
Inter-operability is a crucial aspect of open biometric systems
as it increases the usefulness of biometric traits for various
applications without compromising accuracy or security.
However, the inter-operability of finger vein images has
not been fully explored yet. Though the representation of
captured finger vein patterns stays consistent across different
acquisition devices [19], image quality and illumination may
vary. Some limited studies on cross-device finger vein recog-
nition [19, 20] indicate a significant performance drop in
cross-device settings, yet they lack a thorough analysis of
the inter-operability of finger vein recognition across differ-
ent recognition methods.

Inter-operability requires the establishment and adapta-
tion of standard data formats, sample quality control, proto-
cols, and interfaces. Though such standards already exist for

fingerprints, iris, and faces, there is no such standard cur-
rently defined for finger vein image quality. This study
underscores the importance of establishing such standards
for finger vein recognition to achieve inter-operability. More-
over, it analyses the strengths and weaknesses of the finger
vein recognition methods across different acquisition settings
and proposes a new patch-based CAE architecture that shows
great potential under harsh conditions such as cross-device
comparisons.

The structure of this paper is as follows: Section 2 pro-
vides a comprehensive review of the research on finger vein
recognition from its inception to recent advances. The meth-
odology used in this study is outlined in detail in Section 3.
Section 4 describes the cross-device dataset used in the
experiments, while Section 5 elaborates on the details of
the experiments conducted. The results of the experiments
are presented in Section 6, and a thorough analysis and
discussion of the results are given in Section 7. Finally, in
Section 8, the paper concludes with a summary of the find-
ings and suggestions for future research.

2. Background and Related Work

2.1. Background on Finger Vein Recognition. Classical meth-
ods for finger vein recognition widely exploit the character-
istics of finger veins, such as shape and texture or key points of
the vein patterns, e.g., bifurcations and end-points. The meth-
ods employing shape features utilise the curvature informa-
tion from image cross-sections, where the veins are observed
as dents. Miura et al. [1] propose a method that iteratively
tracks these dents over the finger vein image. Though the
method is successful at extracting vein patterns, the approach
has a potential to track noise over the image. Later the same
authors employed the maximum curvature method to detect
the vein pixels by utilising the local maxima point of curva-
tures [2]. The maximum curvature method achieves a reliable
vein extraction performance under various illumination con-
ditions, making it a commonly used baseline method in the
literature. Huang et al. [21] propose a wide line detector to
detect vein lines on a finger vein image. The authors also
introduce a pattern normalisation method in the same
work, which corrects the translations on vein patterns. The
proposed approach achieves an improved recognition perfor-
mance on an in-house dataset compared to [1] and [2]. Yang
et al. [22] incorporate vein anatomy structure into the com-
putation of curvatures. The authors show that the introduc-
tion of orientation maps based on curvature direction results
in less noisy extraction of vein patterns compared to previously
mentioned methods. Additionally, they propose a comparison
method to compensate for translational errors between finger
vein pairs. The proposed vein extraction and comparison
method outperforms widely used vein pattern-based methods
on two publicly available finger vein datasets. Qin et al. [23]
employ radon transform to enhance finger vein images prior to
vein extraction. The proposed enhancement step achieves an
improved recognition performance on public datasets, indicat-
ing the importance of pre-processing for shape-based features.
While shape features focus solely on the vein pattern, texture
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features encompass both vein patterns and the finger back-
ground information. Rosdi et al. [4] utilise local line binary
patterns (LLBP) to extract texture information from finger
vein images. Different from the local binary pattern (LBP),
LLBP takes into account the horizontal shape of veins. The
proposed texture descriptor outperforms LBP and local deriv-
ative patterns on an in-house dataset. Hu et al. [5] combine
LBP descriptors with 2D principal component analysis to min-
imise the redundant information in LBP images. Though the
finger background contains valuable information for finger
vein recognition, it is more susceptible to illumination changes
compared to vein patterns. Consequently, texture-based fea-
tures are generally regarded as less robust to illumination
changes than shape features. Besides the shape and texture,
key points of vein patterns, such as bifurcations and endpoints,
are utilised as feature descriptors for finger vein recognition.
Though key-points are considered more robust against rota-
tions, irregular shading and low contrast of finger vein images
affect the accuracy of extracted features. In order to mitigate
irregular shading, Matsuda et al. [6] utilise curvature vein tem-
plates instead of the grey images for key-point extraction. Liu
et al. [7] employ singular value decomposition for key-point
pairing to achieve robustness against rotations and translations.

Over the last decade, deep learning models, particularly
the CNNs, have gained popularity for finger vein recognition.
Researchers propose a variety of architectures to address chal-
lenges in finger vein recognition, such as intra-class variation.
The majority of these models used for finger vein recognition
typically require a 3-channel input. Zeng et al. [24] propose to
combine a pair of finger vein images with their corresponding
difference image in these channels, to reinforce the learning of
intra-class variations. In contrast, Song et al. [25] opted for a
different strategy, utilising a composite image of finger image
pairs instead of a different image. Tang et al. [11] propose a
Siamese CNN along with contrastive loss to effectively learn
both inter- and intra-class variances. Wang et al. [26] investi-
gate multi-scale features using Inception modules in order to
achieve robust finger vein representations against transla-
tions. Additionally, the authors incorporate centre loss to
further enhance the discriminative properties learned by the
proposed architecture. The study conducted by Kuzu et al.
[12] on various state-of-the-art architectures highlights the
superiority of pre-trained weights over random initialisation
on public finger and palm vein datasets. A subsequent study
by the same authors [13] emphasises the importance of the
loss function on the recognition performance. CNNs are also
employed as a complementary tool to enhance the classical
finger vein recognition methods. Prommeger et al. [27] eval-
uate several CNN architectures for finger segmentation and
analyse various training strategies, including combining all
datasets for training the architectures and excluding the eval-
uation set from this combination. The study reveals that when
the evaluation set is not represented in the train data, all the
subjected networks fail to achieve compatible segmentation
results.

Although CNNs are now more popular in finger vein
recognition, the literature presents diversity in deep learning
architectures on finger vein recognition. Ou et al. [28]

propose a generative adversarial network architecture to arti-
ficially increase finger vein samples for training deep learning
models. The architecture specifically focuses on increasing
intra-class variance while generating new finger vein samples.
The considerable improvement in recognition performance
achieved through the use of synthetic data underscores the
significance of training data size in deep learning models.
Huang et al. [29] employ a vision transformer (ViT)-based
architecture to combine local and global finger vein features.
The authors employ an extreme learning machine (ELM) for
multi-level feature extraction. The proposed ViT+ELM
approach outperforms base ViT architectures on finger vein
recognition. Apart from supervised methods, researchers also
explore unsupervised approaches for finger vein recognition.
Bros et al. [18] utilise a CAE architecture for enhancing finger
vein images, where the enhanced version is obtained as a
linear combination of the raw finger vein image and its cor-
responding manually annotated vein patterns. The approach
achieves a 20% improvement in recognition performance on a
publicly available dataset. Similarly, Chen et al. [30] employ
a CAE architecture for finger vein segmentation. Later, a
descriptor network is trained to learn key point information
from the segmented finger vein images. This approach
achieved a 5% improvement in recognition performance
compared to baseline vein extraction and comparison meth-
ods. Pan et al. [31] propose a two-branchCAE architecture for
finger vein enhancement. The authors aim to disentangle
texture and shape features by using the two-branch architec-
ture. The proposed approach outperforms the majority of the
classical methods examined in this work, indicating the
potential of unsupervised methods in finger vein recognition.

2.2. Inter-Operability. Inter-operability is essential for the
efficient and accurate exchange and utilisation of biometric
data across multiple systems. To facilitate the exchange of
biometric data across systems standards, protocols, and
interfaces as well as data format, such as ANSI/NIST-ITL
[32], ISO/IEC 19784 [33], or ISO/IEC 39794-9 [34] are estab-
lished. These standards and protocols define conventions for
data capture, including aspects such as resolution, position-
ing, or the dimensions of the captured biometric trait. While
these standards are well-established and widely used in fin-
gerprint or iris recognition, there is currently no such stan-
dard specifically implemented for finger vein recognition.

Despite its importance, there is little work exploring the
inter-operability of finger vein images. Kauba et al. [35] make
one of the few attempts in this regard. The authors introduce
two finger vein acquisition devices equipped with LED and
laser illumination modules. Though the work examines the
impact of illumination modules on finger vein recognition
performance, it presents cross-device comparisons as well.
Though the presented cross-device performance is at an
acceptable level, the authors indicate a substantial drop in
recognition performance compared to the single-device set-
ting. Moreover, since both devices in this study have the
same design except for the illumination modules, the results
provide limited insight into the factors affecting cross-device
finger vein recognition. Prommeger et al. [20] investigate
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cross-device finger vein recognition on four acquisition
devices. They evaluate the performance using classical base-
line methods and a CNN architecture. The results indicate a
significant performance drop in cross-device recognition,
particularly when the acquisition devices exhibit different
characteristics, such as contact features. Though this work
includes more variety in devices and recognition methods, it
is limited in terms of exploring the reasons causing this
performance drop with cross-device pairs. Arican et al.
[19] perform a cross-device recognition experiment on five
different finger vein acquisition devices. The work imple-
ments only one classical finger vein recognition method.
The results of the cross-device experiments support the pre-
vious works by showing a substantial performance drop
compared to single-device experiments. The authors attri-
bute this poor performance in the cross-device setting to
the deformations on the captured vein patterns due to the
different properties of the acquisition devices. Though this
study provides a deeper understanding of inter-operable fin-
ger vein recognition compared to the other works, it employs
only a single recognition method for analysis. Due to chal-
lenges in the data gathering process, Arican et al. [19] utilises
only a limited part of the cross-device data introduced in
their study. This study extends the dataset presented by Ari-
can et al. [19] by utilising all available data captured by six
acquisition devices. Furthermore, in addition to the classical
method employed by Arican et al. [19], this work incorpo-
rates two more recent deep-learning methods for cross-
device finger vein recognition. As a result, this study provides
a more comprehensive understanding of cross-device finger
vein recognition. Additionally, this study introduces a patch-
based CAE architecture in conjunction with the expanded
dataset and the recognition methods.

3. Methodology

3.1. Miura Method. Miura method is a well-known classical
approach used for finger vein recognition. It utilises the
maximum curvature method [2] for extracting vein patterns
and the Miura match technique [1] for comparing the vein
patterns. The maximum curvature method provides a reli-
able vein extraction under challenging illumination condi-
tions, and the Miura match improves the robustness against
translation errors that are frequently observed in finger vein
images. As a result, the Miura method is widely used as a
baseline method for finger vein recognition. Hence, in this
study, the Miura method is utilised to establish a reference
point for cross-device recognition experiments.

3.1.1. Maximum Curvature. In an infrared image, finger
veins appear as dark ghost-like lines, and their cross-section
is represented as dents. The maximum curvature method
calculates the local maxima of these dents which locates a
vein pixel (Figure 1). The depth and the width of the dents
are utilised to determine the likelihood of a detected point
being on a vein. Then, the likelihoods are compared against a
threshold to achieve the binary vein pattern. Since the
method only utilises the location of the local maxima, maxi-
mum curvature cannot provide width information about the

veins. As a result, the extracted vein pattern has a constant
width for all detected veins. The curvature behaviour is
robust against illumination, allowing the maximum curva-
ture method to extract reliable vein patterns under challeng-
ing illumination conditions.

3.1.2. Miura Match.Miura match is proposed by Miura et al.
[1] is a method used to compute the correlation between two
binary finger vein patterns. The method calculates the corre-
lation scores as the ratio of the total number of vein pixels to
the number of correlated vein points, resulting in scores
ranging from 0.0 (no correlation) to 0.5 (perfect correlation).
The Miura match method provides robustness against trans-
lation errors by cropping a small window of the probe image,
which allows the method to compensate for small transla-
tions between finger vein pairs. Figure 2 shows how the
method is executed. Reducing the crop size allows compen-
sation of larger translation errors but also increases the like-
lihood of false matches.

3.2. CNNs. CNNs are a type of neural network capable of
capturing sophisticated spatial and temporal relations among
image pixels by using a series of convolutional kernels. These
kernels are trained with the input data, allowing CNNs to
generalise finger vein features compared to classical methods.
The learned representations through layers of kernels can
then be used to make predictions. Owing to these properties,
CNNs have led to breakthroughs in computer vision tasks
such as biometric recognition and medical imaging.

The CNN architecture used in this work is proposed by
Kuzu et al. [13] and achieved promising recognition perfor-
mances on publicly available finger and palm vein datasets.
The authors have modified the DenseNet-161 architecture by
adding a “Custom Embedding Layer” (Table 1) to extract
finger vein features. This custom layer encapsulates an aver-
age pooling layer, a fully connected layer, and batch normal-
isation. The custom embedding layer is trained from scratch
to learn dedicated finger vein features, while the rest of the
layers are initialised with ImageNet [36] weights. The net-
work is trained on a publicly available finger vein dataset
(SDUMLA-HMT [37]) in identification mode, where every
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finger represents a different identity. Evaluation is conducted
in verification mode, where the network outputs learned
representations of fingers, and the Euclidean distance is
used to measure the similarity between two finger vein repre-
sentations. SDUMLA-HMT dataset exhibits rotation and
translation errors, therefore, training the model on such
data could come in handy while dealing with transforma-
tions observed on cross-device finger vein pairs.

3.3. Patch-Based CAE (P-CAE). An auto-encoder is a neural
network that consists of two sub-networks, namely, an
encoder and a decoder. The encoder network compresses
the input to a lower dimensionality while the decoder
decompresses it to the input dimensions again. Through
this process, the AE aims to learn the most representative
features of the input data, which can later be used for
comparison. Training focuses on achieving the closest

decompression output to the input data, allowing AEs to
be trained in an unsupervised fashion. This property is useful
when the label information is difficult to realise for large
amounts of data, such as finger veins. Convolutional variants
of AEs (CAEs) involve “convolution layers” rather than tra-
ditional fully connected layers. These convolutional layers
help to discover abstract relations among image pixels.
CAEs can be a promising alternative to complex and deep
CNN models used in finger vein recognition since the sim-
plicity of the architecture can allow one to learn pure finger
vein features without compromising the generalisation of the
extracted features.

Despite the CAEs theoretically holding promise in learn-
ing finger vein representations, few studies [38, 39] point out
significant challenges in this direction. Figure 3 illustrates the
hurdles faced in reconstructing vein patterns using a CAE
model proposed in [38]. The authors state that due to the low

ðaÞ ðbÞ ðcÞ
FIGURE 2: Maximum curvature veins and Miura match: (a) reference image; (b) probe image; (c) comparison.

TABLE 1: CNN architecture.

Layers Input size Output size

Convolution 7× 7 conv, str.2 224× 224× 3 112× 112× 96

Pooling 3× 3 max pool, str.2 112× 112× 96 56× 56× 384

Dense block 1
1× 1 conv

56× 56× 96 56× 56× 384
3× 3 conv × 6

Transition 1
1× 1 conv

56× 56× 384 28× 28× 192
2× 2 avr. pool., str.2

Dense block 2
1× 1 conv

28× 28× 192 28× 28× 768
3× 3 conv × 12

Transition 2
1× 1 conv

28× 28× 768 14× 14× 384
2× 2 avr. pool., str.2

Dense block 3
1× 1 conv

14× 14× 384 14× 14× 2112
3× 3 conv × 36

Transition 3
1× 1 conv

14× 14× 2112 7× 7× 1056
2× 2 avr. pool., str.2

Dense block 4
1× 1 conv

7× 7× 1056 7× 7× 2208
3× 3 conv × 24

Custom embedder

7× 7 global avr. pool
7× 7× 2208 1× 2208Batch normalisation

Dropout (50%)
Fully connected layer

1× 2208 1× 1024
Batch normalisation

Classifier Output layer 1× 2024 1×U
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contrast and sparsity of the vein patterns, the CAE struggles
to learn vein pattern encoding, yet it rather learns global
structures such as finger background and joint shapes and
locations.

This study introduces a patch-based approach to learn-
ing vein representations to address the challenges encoun-
tered in prior studies. The P-CAE is designed to reconstruct
small patches extracted from the finger region instead of
reconstructing the entire finger region in one step. By focus-
ing on patches, the P-CAE aims to simplify the task of recon-
structing sparse and complicated vein patterns to learn the
representations of small vein segments. Figure 4 illustrates
the improved reconstruction performance of the proposed P-
CAE on the same finger compared to the CAE proposed in
[38] (Figure 3).

The P-CAE model proposed in this study, presented in
Table 2, is trained to learn finger vein features from scratch.
The architecture consists of six layers of encoder and decoder
networks. The encoder performs compression through con-
volution blocks, while the decoder utilises de-convolution
blocks for the reconstruction of the input data (Table 3).
65× 65 pixel patches are compressed to a latent vector with
a dimension of 32. The patch size is determined after a series
of experiments. The patches are extracted only from the
finger region. The P-CAE is trained on the UTFVP dataset
[40], which offers high-quality finger vein images that could
help in learning more representative finger vein features.
Mean absolute error is utilised to measure how close the
reconstructed image is to the input. The model is trained
with Adam optimiser with a learning rate of 10−5 and a
weight decay of 10−8 for 50 epochs.

Comparison of image pairs is conducted at patch level.
Initially, overlapping patch pairs of size 65× 65 pixels are
extracted from corresponding positions in both the reference
and probe images. Subsequent to patch extraction, the latent
representations of these patch pairs are computed through
the encoder of the P-CAE. The similarity between each patch
pair is quantified using cosine similarity. The overall similar-
ity of the image pair is determined by averaging all patch pair
similarities.

ðaÞ ðbÞ
FIGURE 3: Finger vein image reconstruction with a CAE [38]: (a) input; (b) reconstruction.

ðaÞ ðbÞ
FIGURE 4: Finger vein image reconstruction with the patch-based CAE: (a) input; (b) reconstruction.

TABLE 2: CAE architecture.

Blocks
Input size Output size

(H × W × C) (H × W × C)

Convolution block 1 65× 65× 1 32× 32× 16
Convolution block 2 32× 32× 16 16× 16× 32
Convolution block 3 16× 16× 32 8× 8× 64
Convolution block 4 8× 8× 64 4× 4× 128
Convolution block 5 4× 4× 128 2× 2× 256
Convolution block 6 2× 2× 256 1× 1× 512

Latent vector 1× 1× 512 1× 32

De-convolution block 1 1× 1× 512 3× 3× 256
De-convolution block 2 3× 3× 256 5× 5× 128
De-convolution block 3 5× 5× 128 9× 9× 64
De-convolution block 4 9× 9× 64 17× 17× 32
De-convolution block 5 17× 17× 32 33× 33× 16
De-convolution block 6 33× 33× 16 65× 65× 16
Convolution 65× 65× 16 65× 65× 1

TABLE 3: Content of a convolution and de-convolution block.

Block type Block content

Convolution block
3× 3 conv., str. 2

Batch normalisation
LeakyReLU

De-convolution block
3× 3 transposed conv., str. 2

Batch normalisation
LeakyReLU
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4. Devices and Dataset

The cross-device data [19] is a collaboration involving the Uni-
versity of Twente, Salzburg University, the Norwegian University
of Science and Technology, and the IDIAP Research Institute.
The dataset was compiled in 2019 during the BIOSIG conference
inDarmstadt,Germany.Over a span of 2 days,finger vein images
of 59 individuals were recorded using six distinct capturing
devices. Figure 5 shows the devices used in data acquisition.
Images of six fingers (index, middle, and ring fingers of both
hands) are captured by each device in two sessions. Table 4
provides information about the number of subjects involved in
each device as well as device properties. The finger vein images
are acquired under limited supervision in order to simulate a
more realistic recognition scenario. The cross-device finger vein

dataset is publicly available (https://www.utwente.nl/en/eemcs/
dmb/downloads/utcdfvp/).

4.1. UTFV. The device developed by the University of
Twente [40] features a semi-open design that allows user
to see the position of their finger. The device includes a finger
rest, which restricts finger positioning. Illumination is pro-
vided through 8 850 nm LED-infrared modules from the top,
while the camera is located at the bottom. The illumination
modules are automatically adjusted. The device captures
high-quality finger vein images at a resolution of 340× 648
pixels (Figure 6(a)).

4.2. ZkTeco. ZkTeco [41] is a commercial device that comes
with both finger vein and fingerprint sensors. The device has

ðaÞ ðbÞ ðcÞ

Light controls

CAM

Side NIR
Light

Top NIR light

ðdÞ

Camera with
lens

Reflected light
illuminator

NIR pass-
through

filter

Control
board

Transillumination light
source: Laser modules

Finger
support

ðeÞ

Camera with
lens

Reflected light
illuminators

NIR pass-
through

filter

Housing
frame

Subject’s
hand

Light transmission
source: NIR Lasers

Control
Board

LCD
Display

ðfÞ
FIGURE 5: Acquisition devices: (a) UTFV device; (b) ZkTeco device; (c) IDIAP device; (d) NTNU device; (e) PFV_L device; (f ) PFV_C device.

TABLE 4: Device properties.

Device Subjects per session Number of images Resolution Illumination type Illumination side

UTFV 58/45 618 340× 648 LED Top
ZkTeco 58/46 624 240× 320 LED Two-side
IDIAP 55/41 567 320× 240 LED Top
NTNU 58/44 612 132× 200 LED Top
PFV_L 41/9 294 180× 500 Laser Bottom
PFV_C 48/9 342 182× 505 Laser Top
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a fully open design and features a finger rest. LED-infrared
illumination modules are located on both sides of the finger.
Unlike other devices, ZkTeco captures only a small region of
the finger around the first knuckle. The captured images have
a resolution of 240× 320 pixels (Figure 6(b)).

4.3. IDIAP. The device provided by the IDIAP research institute
[42] has a fully closed design and does not feature finger support,
allowing the user more flexibility in finger placement. As a result,
the images exhibit more pronounced geometric transformations,
such as 3D rotations and/or bending, when compared to the
previous two devices. In addition to geometric transformations,
this device also exhibits slight radial distortion (Figure 6(c)). The
radial distortion is corrected by using the approach presented in
[43]. The illumination is provided from the top side, and the
captured images have a resolution of 320× 240 pixels.

4.4. NTNU. The acquisition device developed by the Norwe-
gian University of Science and Technology [44] captures finger
vein images with a resolution of 744× 480 pixels. However, a
significant portion of the captured images consist of a black
background. After removing the background, the images are
resized to 132× 342 pixels. This part is removed in this work.
After removing this black background, images are resized to
132× 342 pixels (Figure 6(d)). The device is equipped with
LED-NIR modules positioned at the top of the finger. A finger
rest guides the user with finger positioning and restricts finger
movements during image acquisition.

4.5. Plus_FV3_Laser (PFV_L). The device developed by Salz-
burg University [35] is equipped with infrared-laser illumi-
nation modules and features a finger support that restricts
the placement of the fingers on the device. This device cap-
tures three fingers at once, which are then separated in a pre-
processing stage. Due to the design of the finger support,
some images may include a part of the neighbouring fingers.
After pre-processing, the image resolution is set at 300× 450
pixels (Figure 6(e)). This device has only nine subjects with
two sessions.

4.6. PLUS_FV3_Contactless (PFV-C). The device developed
by Salzburg University [45] enables fully contactless image
acquisition. As PFV_L device, this device is featured with
Laser LED modules. Though being a contactless device, it
is equipped with a touchscreen that guides the user with
finger positioning. The resolution of the captured images is
set at 182× 505 pixels (Figure 6(e)). The data collected by
this device have only nine subjects with two sessions.

5. Experiments

Finger vein recognition performance is evaluated on each
device using the Miura method, CNN, and our proposed
P-CAE architecture mentioned in Section 3. Single-device
pair experiments serve as a reference point for cross-device
pairs and also examine the factors influencing finger recog-
nition. PFV_L and PFV_C devices have only nine subjects
with two sessions. Single-device pair comparisons on these
devices include the pairs generated among only these nine
subjects, while the cross-device pairs involve all common
subjects among device pairs.

The Miura method parameters are optimised for each
single-device pair, and the reference device parameters are
used in cross-device evaluations to simulate a more realistic
cross-device recognition scenario. The CNN model is pre-
trained on ImageNet [36] and then fine-tuned with the
SDUMLA-HMT [37] finger vein dataset. This data exhibits
severe rotations and translations. Since it is indicated in [19],
the rotation and translation errors are one of themain reasons
for bad inter-operable performance, the CNN can benefit
from the geometric transformations observed in SDUMLA-
HMT. On the other hand, our P-CAE model is trained on the
UTFVP dataset from scratch. This dataset involves high-
quality finger vein images, allowing the P-CAE to learn
more representative finger vein features. There is no further
tuning performed on both CNN and P-CAE models.

Recognition performances are compared using an equal
error rate (EER) in percentage and false non-match rate
where the false match rate equals 0.1% (FMR1000). EER

ðaÞ ðbÞ ðcÞ

ðdÞ ðeÞ ðfÞ
FIGURE 6: Finger vein images acquired by different devices: (a) UTFV image; (b) ZkTeco image; (c) IDIAP image; (d) NTNU image; (e) PFV_L
image; (f ) PFV_C image.
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indicates the error rate where the false non-match rate equals
to false match rate, while FMR1000 presents the false non-
match rate where the false match rate equals 0.1% at most.
Additionally, similarity score histograms are utilised to inter-
pret how the recognition method is affected by different
device pairs.

5.1. Pre-Processing. The images acquired by each device have
different properties, such as the image background and the
number of fingers captured in a frame, which require adjust-
ments to the pre-processing step accordingly. For example,
the PFV_L device captures three fingers per frame, while the
PFV_C device involves a single finger. On these devices,
fingers are detected using the finger tip and finger edges;
then, the fingers are cropped using these reference points.
Table 4 presents the image resolutions after cropping. The
images acquired by the IDIAP device are subject to radial
distortion. Yet, since the distortion parameters are unknown,
the images from this device are corrected using the fact that
straight lines transform into curves under radial distortion
[43]. Contrast-limited adaptive histogram equalisation is
applied to improve the contrast of the finger vein images.
In-plane finger rotations are corrected using the center line
method proposed by Huang et al. [21]. First, the finger edges
are detected using the edge detection method proposed by
Lee et al. [46]. Due to the complex background on the IDIAP
device, the Sobel edge detector [47] is used. Then, a straight
line is fitted in between the edges, and the line is aligned to
the centre of the image.

5.2. Image Pair Generation, Alignment, and Comparison. A
mated pair refers to a pair of biometric samples from the
same individual and from the same biometric instance (i.e.,
the same finger), and similarly, a non-mated pair is a pair of
images coming from different individuals. For single-device
datasets, for each image of a finger, there is one mated sam-
ple, since only two images are captured per finger. For the
cross-device pairs, for each finger image, there are two mated
pairs since both images captured on the probe device could
be considered as a new image of the finger. The number of
mated and nonmated image pairs generated for each device
setting is presented in Table 5.

While comparing single-device pairs is straightforward,
the challenge arises when dealing with cross-device image
pairs due to variations in the resolutions of the reference
and probe devices. To ensure equivalent conditions in

cross-device comparisons, it is crucial to calibrate the devices
beforehand, aligning the structures at the same scale. In the
absence of calibration parameters in this dataset, manual
scaling between reference and probe image pairs is required
for each device setting. To establish these scaling parameters,
maximum curvature veins are employed. Initially, a subset of
mated pairs is randomly selected for each device setting, and
maximum curvature veins are extracted. Horizontal and ver-
tical scaling parameters are then determined with the objec-
tive of achieving the maximum correlation between
the reference and probe veins. It is crucial to note that the
lower-resolution image is consistently scaled to match the
higher-resolution image.

Normakristagaluh et al. [48] emphasise the importance
of the proper alignment of finger vein image pairs for effec-
tive comparisons. In line with their insight, the iterative clos-
est point (ICP) [49] method is employed to align reference
and probe finger vein images. Figure 7 illustrates the ICP
registration process. The ICP uses finger-edge information
to correct in-plane rotations. However, it falls short in
addressing other registration errors, such as translations,
where the captured vein pattern is shifted in the probe image.
Van der Spek et al. [50] argue that the finger bone structure
carries identity information, indicating that this structure
should be consistent for mated pairs and can be used to
detect and correct translation errors, particularly in the con-
text of horizontal shifts. The method proposed in [51] is
employed to compensate for horizontal translations between
reference and probe images. Figure 6 demonstrates that
ZkTeco captures only a region around the first joint while
the whole finger is captured by the other devices. Previous
work [19] points out this difference as one of the reasons for
false rejections in the UTFV-ZkTeco device pair. To align the
ZkTeco device images with those of other devices, the same
horizontal alignment method is utilised. Figure 8 illustrates
the horizontal alignment process on an image pair from
UTFV-ZkTeco.

Miura method possesses distinct parameters for vein extrac-
tion and translation compensation. Similarly, the comparisons
with the P-CAE employ specific parameters for translation com-
pensation. These parameters are device-specific and finely tuned
to optimise comparisons within individual devices. However, in
the context of cross-device comparisons, instead of the conven-
tional approach of optimising these parameters for each device
pair, the parameters optimised for the reference device are used.

TABLE 5: Number of mated and non-mated pairs per device pair.

UTFV ZkTeco IDIAP NTNU PFV_L PFV_C

Mated Non-mated Mated Non-mated Mated Non-mated Mated Non-mated Mated Non-mated Mated Non-mated

UTFV 528 10,000 1,056 10,000 888 10,000 1,032 10,000 528 10,000 600 10,000
ZkTeco 1,056 10,000 540 10,000 912 10,000 1,056 10,000 540 10,000 612 10,000
IDIAP 888 10,000 912 10,000 456 10,000 888 10,000 432 10,000 480 10,000
NTNU 1,032 10,000 1,056 10,000 888 10,000 528 10,000 534 10,000 606 10,000
PFV_L 528 10,000 540 10,000 432 10,000 534 10,000 84 6,888 366 10,000
PFV_C 600 10,000 612 10,000 480 10,000 606 10,000 366 10,000 84 6,888

The columns of the table represent the probe devices, while the rows are the reference.
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translated (ICP).
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Adhering to reference device parameters in cross-device scenar-
ios aligns coherently with scenarios in which the subjects register
on the reference device, while the probe device used for verifica-
tion remains susceptible to potential replacements due to tech-
nical issues or technological advancements.

6. Results

6.1. Single-Device. The diagonal entries of Table 6 display the
recognition performance of the Miura method, CNN, and
CAE for each single-device pair. The recognition perfor-
mance is presented in EER (%) and FNMR1000 metrics. It
is observed that the recognition performance varies consid-
erably among acquisition devices, even when the same fin-
gers are captured on each device. For instance, the UTFV
device achieves a recognition performance of 0.57% EER
with the Miura method, while the performance of the same
fingers is 5.13% and 16.2% EER for the ZkTeco and IDIAP
devices, respectively. Additionally, the table shows that the
NTNU device performs significantly worse compared to the
other devices. The best performance achieved on the NTNU
device is presented as 32.6% with the Miura method.

6.2. Cross-Device. Regardless of the recognition method,
cross-device performance is noticeably worse compared to
single-device settings. The recognition performance on the

UTFV device drops from 0.57% to 15.1% EER when the
reference device is replaced with ZkTeco. Table 6 demon-
strates that the change in recognition performance signifi-
cantly varies among cross-device pairs. For example, the
UTFV–ZkTeco pair achieves 10.4% EER with the Miura
method, while the recognition performance drops by approxi-
mately 55% when the probe device is IDIAP. The histogram
plots of single and cross-device pairs (Figures 9–11) reveal that
mated cross-device pairs have substantially lower scores than
single-device pairs. The plots also demonstrate that in cross-
device settings, the subjected recognition methods struggle to
distinguish mated pairs from non-mated ones.

Although PFV devices capture high-quality images, their
cross-device pairs demonstrate substantially worse performance
compared to the other device pairs, such as UTFV–ZkTeco and
UTFV–IDIAP. Furthermore, despite the small size of the evalu-
ation set, the PFV_C device achieves noticeably higher EER
compared to the PFV_L device. Figure 12 also shows that mated
pairs of UTFV-PFV_L and UTFV-PFV_C are indistinguishable
from non-mated pairs.

Although none of the recognition methods achieves com-
petitive performance on cross-device pairs, it is evident that the
proposed P-CAE outperforms the classical method on cross-
device pairs, including UTFV, ZkTeco, and IDIAP devices.
Miura method achieves 10.4% EER on the UTFV–ZkTeco

TABLE 6: EER and FNMR1000 performances in the percentage of Miura method, CNN, and CAE with different device pairs.

Miura

UTFV ZkTeco IDIAP PFV_L PFV_C NTNU

EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000

UTFV 0.57 1.52 10.4 50.19 25.0 82.67 47.1 97.54 49.8 99.83 47.7 99.13
ZkTeco 15.1 40.91 5.13 24.63 35.0 88.16 45.4 97.78 34.4 98.04 49.4 99.83
IDIAP 36.4 88.44 29.1 66.56 16.2 44.74 37.6 89.12 40.3 94.58 39.9 99.12
PFV_L 48.7 97.54 44.4 99.81 44.7 99.92 9.52 34.52 42.3 87.98 49.8 100.0
PFV_C 49.8 99.83 48.5 98.37 37.4 97.92 43.1 90.16 22.6 58.33 46.8 99.67
NTNU 49.3 99.82 49.9 99.91 48.5 100.0 46.8 100.0 49.5 100.0 32.6 76.30

CNN
UTFV ZkTeco IDIAP PFV_L PFV_C NTNU

EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000

UTFV 12.7 95.19 24.4 93.74 33.4 97.58 42.4 99.64 42.2 99.42 47.8 99.88
ZkTeco 24.4 93.74 10.6 85.02 46.4 99.43 41.9 97.71 34.2 99.54 49.9 99.97
IDIAP 33.4 97.58 46.4 99.43 23.2 99.57 43.3 99.41 48.5 100.0 49.5 99.64
PFV_L 42.4 99.94 41.9 97.71 43.3 99.41 25.0 97.13 39.6 99.96 48.1 99.50
PFV_C 42.2 94.42 34.2 99.54 48.5 100.0 39.6 99.96 27.4 96.62 49.5 99.49
NTNU 47.8 99.88 49.9 99.97 49.5 99.64 48.1 99.50 49.5 99.49 34.3 98.93

CAE
UTFV ZkTeco IDIAP PFV_L PFV_C NTNU

EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000 EER FMR1000

UTFV 1.25 3.03 7.95 18.47 12.3 55.18 34.8 97.54 40.1 98.83 48.2 99.88
ZkTeco 9.85 17.42 2.41 12.96 21.3 75.33 28.9 96.67 25.8 88.24 49.4 100.0
IDIAP 10.3 49.66 22.3 75.00 14.5 49.78 37.0 97.45 47.6 94.72 49.1 99.56
PFV_L 26.8 95.45 39.4 99.07 48.3 99.19 8.62 34.52 42.1 94.54 48.5 100.0
PFV_C 42.8 98.67 48.5 98.53 42.9 99.97 29.8 73.77 14.3 36.90 49.3 99.83
NTNU 46.9 99.91 49.9 100.0 48.2 99.89 49.4 100.0 49.1 99.50 40.7 95.64
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FIGURE 9: Correlation histograms of single-device pairings with Miura method: (a) UTFV–UTFV; (b) ZkTeco–ZkTeco; (c) IDIAP–IDIAP;
(d) NTNU–NTNU; (e) UTFV–ZkTeco; (f ) UTFV–IDIAP; (g) IDIAP–ZkTeco; (h) NTNU–ZkTeco.
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FIGURE 10: Euclidean distance histograms of single-device settings with CNN: (a) UTFV–UTFV; (b) ZkTeco–ZkTeco; (c) IDIAP–IDIAP;
(d) NTNU–NTNU; (e) UTFV–ZkTeco; (f ) UTFV–IDIAP; (g) IDIAP–ZkTeco; (h) NTNU–ZkTeco.
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FIGURE 11: Cosine similarity histograms of single-device settings with CAE: (a) UTFV–UTFV; (b) ZkTeco–ZkTeco; (c) IDIAP–IDIAP;
(d) NTNU–NTNU; (e) UTFV–ZkTeco; (f ) UTFV–IDIAP; (g) IDIAP–ZkTeco; (h) NTNU–ZkTeco.
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pair, while P-CAE achieves 7.5% EER on the same device pair.
Moreover, on this device pair, the FMR1000 metric is substan-
tially superior to the Miura method. This suggests that the
P-CAE has fewer false non-match decisions for lower thresh-
olds compared to the Miura method. The histogram plots of
these two methods (Figures 9(e) and 11(e)) demonstrate that
the P-CAE achieves a better separation of mated and non-
mated cross-device pairs than the Miura method. On the other
hand, the CNN indicates notably worse recognition perfor-
mance compared to the other two methods. Especially on the

UTFV–ZkTeco pair, the difference is more eminent. While the
P-CAE achieves 7.5% EER on this device pair, the CNN indi-
cates 24.4% EER, which is more than three times worse com-
pared to the P-CAE.

7. Discussion

Cross-device collected data poses several challenges for cap-
turing device-agnostic vein image recognition. First and fore-
most, the data collection set-up lacks strict supervision due
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FIGURE 12: Correlation histograms of selected PFV device pairs: (a) PFV_C–PFV_C; (b) PFV_L–PFV_L; (c) UTFV–PFV_C; (d)
UTFV–PFV_L; (e) PFV_L–PFV_C.
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to the limited time allocated for the collection process, the
number of participants, and the number of devices used for
collection. Therefore, captured data involves translation and
rotation in combination with uncontrolled ambient illumi-
nation. During the data collection, it was also observed that
some subjects skipped some devices, intending to return to
those devices later. However, as presented in Table 4, this
intended return does not appear to have occurred for many
subjects. Notably, the devices PFV_L and PFV_C exhibit
clear instances of this phenomenon, with both the number
of subjects and, particularly, the number of subjects return-
ing for the second session are significantly lower than other
devices. Moreover, the time limitations led to the oversight of
the camera calibration step. Given the critical importance of
camera calibration for cross-device comparisons, the omis-
sion of this step presents one of the primary challenges in
cross-device comparisons within this dataset.

The challenges encountered during the data collection
stage, particularly the lack of supervision, have a notable impact
on the recognition performance across different devices.
Devices such as PFV_L and PFV_C demonstrate noticeably
poorer performance compared to what is reported in the liter-
ature. Previous studies report a recognition performance of
0.28%EER for the PFV_L device [35] and 3.66% EER for
PFV_C [45] using the Miura method. Though the sample
size for these devices is considerably smaller for these devices
compared to the literature, the EER of 9.52% for PFV_L and
22.6% for PFV_C indicate the substantial impact of the data
capturing process. Furthermore, Figure 13 illustrates that even
when the same vein pattern is captured across different devices,
the appearance of the vein patterns varies. For example, the
image from the PFV_C device exhibits on-axis rotation, result-
ing in a slightly different view of the same vein patterns.
PFV_C, being a contactless device, allows even a higher degree
of on-axis rotations. Moreover, since this device lacks a finger
rest, the distance between the finger and the camera varies
between capturing sessions. On-axis rotations, together with
fingers captured at varying distances, are found to be one of
the contributing factors to the low mated pair scores for cross-
device pairs. On the other hand, the image from the NTNU
device does not exhibit a clear vein pattern compared to the
images from the other devices. These observed differences serve
as evidence to account for the variations in the comparison
performances presented in Table 6, even though the same fin-
gers are employed for comparison on each device.

Histogram plots (Figures 9–11) indicate that all three rec-
ognition methods face challenges in distinguishing between
mated pairs and non-mated ones. The FNMR1000metrics for
cross-device comparisons, compared to single-device ones,

suggest that the recognition methods tend to have a signifi-
cantly higher number of false non-match pairs compared
to single-device scenarios. The following subsections discuss
the factors causing this phenomenon for each recognition
method.

7.1. Miura Method. This section discusses the factors affecting
the comparisons with the Miura method. Figure 14(a) displays
a good mated pair on the UTFV–UTFV device pair, while the
remaining images in Figure 14 represent the same image pair
on different device pairs. It is evident from Figure 14 that when
the probe device is different from the reference device, com-
parisons are significantly affected despite the similarities
between vein patterns. On the UTFV–ZkTeco (Figure 14(b))
pair, differences in the captured finger shape make it challeng-
ing to find a proper scaling factor for this device pair. On the
UTFV device, fingers appear in their natural shape, which is
wider at the root and narrower at the tip. In contrast, the
ZkTeco device captures a fixed rectangular area on the finger.
If the UTFV finger is wide, then the extracted vein patterns on
the UTFV-ZkTeco device pair exhibit differences in terms of
dimensions, which reduces the correlation between the image
pairs. Similarly, the PFV_C device, due to its contactless fea-
ture, captures fingers at varying distances, while the distance
from the camera of a finger is fixed for the UTFV device. This
affects the dimensions of the captured finger image on this
device pair (Figure 14(e)). On-axis finger rotation, observed
on the UTFV–IDIAP (Figure 14(c)) and the UTFV–PFV_L
(Figure 14(d)) device pairs, is another cause of low mated
scores with the Miura method. On-axis rotation affects the
vein appearance on the captured images due to changes in
perspective. In such cases, the Miura method fails to find a
high correlation despite the similarities between vein patterns.

Despite the high-quality images acquired with both PFV
devices, their cross-device performances are noticeably worse
compared to the other device pairs. Figure 12 illustrates how
image pair correlation scores change with different PFV_L
and PFV_C device pairs. Especially on the UTFV–PFV_C
device pair (Figure 12(c)), it is impossible to distinguish
mated and non-mated pairs. Due to the contactless feature
of the PFV_C device, cross-device pairs involving the PFV_C
device exhibit differences in dimensions. Consequently, the
Miura match results in poor comparisons for these image
pairs, even though there are clear similarities between vein
pairs.

7.2. CNN. Kuzu et al. [13] present an impressive recognition
performance on the SDUMLA-HMT dataset using the CNN
model. However, in this study, it is observed that the CNN is
the least competitive recognition method among the three

UTFV ZkTeco IDIAP PFV_L PFV_C NTNU

FIGURE 13: Finger vein images of different devices.
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methods. This difference in performance may be attributed
to the training data not being representative enough of the
evaluation set. As stated in the literature [11, 20], when the
training data lacks similar properties to the evaluation data,
the model fails to achieve satisfactory results. Tang et al. [11]
conduct a study demonstrating that in such scenarios, the
recognition performance can decrease by up to 6% in terms
of EER. The CNN model used in this study accepts images at
a resolution of 228× 228 pixels, while the resolution of
SDUMLA-HMT images is 240× 320 pixels, which is consid-
erably lower than the majority of the images in this study.
This difference in compression ratio may be one of the rea-
sons behind the poor performance of the CNN model. To
assess the impact of training data on the recognition perfor-
mance of the CNN, the model is trained with the UTFVP
dataset. This dataset not only has higher-quality images but
is also collected using the UTFV device. Table 7 compares
the recognition performance when the CNNmodel is trained
on the SDUMLA-HMT and the UTFVP datasets. Although

there is an improvement observed with the UTFVP dataset to
the SDUMLA-HMT, the recognition performance on theUTFV
device is still far from being competitive. When false non-match
pairs of the UTFV device are examined, it is observed that they
are affected by translations and illumination variations. This
highlights the need for more cautious use of CNNs in
challenging conditions like cross-device finger vein recognition
compared to the other methods.

7.3. P-CAE. Although the Miura method outperforms the P-
CAE in single-device settings, the CAE surpasses the Miura
method on certain cross-device pairs, such as UTFV, ZkTEco,
and IDIAP. Moreover, when considering the FMR1000
metric, the P-CAE reduces the false non-match rate by
almost 50% compared to the Miura method on some device
pairs. Figure 15(a) shows the comparison of the same mated
pair with Figure 14(a) but with the P-CAE. Similar to the
Miura method, the P-CAE faces challenges in comparing
the image pairs involving the PFV_L (Figure 15(d)), and the

TABLE 7: Impact of the training data on recognition performance of the CNN in EER (%).

UTFV ZkTeco IDIAP PFV_L PFV_C NTNU

SDUMLA-HMT 12.9 10.5 23.2 25.2 26.9 34.3
UTFVP 8.4 9.8 26.0 21.3 24.9 32.6
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FIGURE 14: Mated pairs of different device pairs with Miura method: (a) UTFV–UTFV; (b) UTFV–ZkTeco; (c) UTFV–IDIAP; (d)
UTFV–PFV_L; (e) UTFV–PFV_C.
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PFV_C (Figure 15(e)) devices due to the translations observed
on the image pairs. The patch-based approach is sensitive to
translation errors. On the UTFV–PFV_L pair (Figure 15(d)),
slight alignment error leads to unsatisfactory comparisons,
particularly at the fingertip. On the UTFV–PFV_C pair, the
differences in finger dimensions result in poor comparisons.

On the other hand, unlike the Miura method, the P-CAE
presents a less sensitive behaviour to slight variations in
finger vein patterns. On both UTFV–ZkTeco (Figure 15(b))
and UTFV–IDIAP (Figure 15(c)) pairs, despite the slight
variations in the vein patterns, the P-CAE is still able to
recognise the similarities between the image pairs. The
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FIGURE 15: Mated pairs of different device pairs with CAE: (a) UTFV–UTFV; (b) UTFV–ZkTeco; (c) UTFV–IDIAP; (d) UTFV–PFV_L; (e)
UTFV–PFV_C.
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strength of the P-CAE lies in its ability to learn representations
not only of the vein structures but also of the finger background
information. As a result, the P-CAE ismore effective at handling
slight variations in vein structures within patches compared to
the Miura method. Moreover, the patch-based CAE provides
more interpretable comparisons compared to the CNN. By
examining the similarities between the patch pairs, it becomes
relatively straightforward to explain matches and non-matches.
This enables the identification of the areas that pose challenges
for an accurate comparison.

In order to investigate the impact of the training data on
the recognition performance of the P-CAE model, the data-
sets are evaluated on a model trained on the SDUMLA-HMT
dataset. Table 8 indicates that almost all datasets performed
worse with the model trained on SDUMLA-HMT. As men-
tioned before, the SDUMLA-HMT dataset involves low-
quality images that mostly do not involve fine and detailed
vein structures. Since the model cannot learn proper repre-
sentations of fine vein structures, they may not be well
encoded in the latent vector, even if they are present in the
finger vein images such as UTFV or PFV_L. The impact is
even more on the lower-quality datasets such as IDIAP.
Despite the poor performance, the results presented in
Table 8 highlight the importance of the train dataset charac-
teristics for the P-CAE. Despite its relatively flexible nature,
the higher quality of the training data yields better recognition
performance even on relatively low-quality datasets such as
IDIAP.

8. Conclusion and Future Work

This study provides a comparative analysis of cross-device
finger vein recognition across six different acquisition
devices using a classical and two deep learning methods. It
examines the factors influencing cross-device recognition
performance. The findings of this study bring attention to
the challenges facing cross-device finger vein recognition and
underscore the need to employ standards for finger vein
acquisition and sample quality assessment, similar to those
implemented for fingerprint or iris recognition. Further-
more, the challenges presented in this study are expected
to lead to new research areas on finger vein recognition.

The results on single-device pairs suggest that biometric
sample capturing conditions and device properties have a sub-
stantial impact on the recognition performance. The recognition
performance of the Miura method ranges from 0.57% EER
(UTFV) to 32.6% EER (NTNU) on the same finger vein images.
Additionally, the performances achieved onPFV_L (9.52%EER)
and PFV_C (22.6% EER) are notably different from the perfor-
mance presented in the literature (0.28% EER and 3.66% EER,
respectively) [35, 45]. The dataset used in this study is acquired
under limited supervision allowing us to explore a wider range of

variations in the captured images. The substantial differences
observed in the recognition performances of different devices
highlight the sensitivity of the recognition methods to the data
acquisition conditions.

The findings on cross-device comparisons support the
results presented in the literature [19, 20] and emphasise
the need for well-established standards for finger vein sample
quality assessment. The results indicate that the recognition
methods cannot discriminate mated cross-device pairs from
non-mated ones. Further examination of such mated pairs
reveals that this problem stems from the differences between
acquisition devices. For example, the rectangular shape of
ZkTeco images makes it difficult to find a common scaling
factor for the image pairs with the other devices. On-axis
rotations and translation errors are found to be another
main reason for poor cross-device recognition performance.
Due to different device properties, variations observed on the
cross-device pairs are higher than in single-device cases.
Also, due to different contact features of the devices, transla-
tion errors are introduced by nature on some device pairs.
Though none of the challenges presented in this work are
new when it comes to finger vein recognition, cross-device
recognition amplifies the impact and requires a different
approach when comparing images from different devices.

Contrary to its superior performance reported in the
literature, the CNN fails to achieve the same competitive
results on the cross-device datasets. Further experiments
imply that the performance of the CNN may depend on
the training data characteristics, and the model used for
authentication may need to be trained with a dataset con-
taining image pairs more similar to those collected by the
acquisition devices, which poses another challenge for cross-
device finger vein recognition with this method. Moreover,
interpreting the CNN outputs to explain mated and non-
mated pairs is rather difficult compared to the other two
methods. In light of these findings, the CNN model may
necessitate additional attention to cross-device finger vein
recognition. These findings imply the need for heightened
focus on the CNN under challenging conditions, such as
cross-device recognition.

Despite being trained on a different dataset than the
evaluation data, the P-CAE outperforms the classical base-
line method on some of the cross-device pairs and achieves
comparable results on the others. For instance, in the UTFV-
ZkTeco pair, the P-CAE indicates 7.95% EER and 18.47%
FNMR1000, which is approximately 30% better than the
baseline and three times better than the results presented
in [19]. Though the patch-based approach is susceptible to
translation errors, the analyses of image pairs suggest that the
P-CAE exhibits greater robustness to slight variations in vein
structures compared to the Miura method. Since each patch

TABLE 8: Impact of the training data on the recognition performance of the P-CAE in EER (%).

UTFV ZkTeco IDIAP PFV_L PFV_C NTNU

UTFVP 1.25 2.41 14.47 8.62 14.29 40.72
SDUMLA-HMT 1.52 5.93 25.38 11.0 23.04 38.71
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is evaluated individually, the patch-based approach offers an
enhanced explainability of mated and non-mated pairs in
comparison to the CNN. Furthermore, the recognition per-
formances indicate that the P-CAE provides a higher gener-
alisation in finger vein comparison compared to the CNN.
Considering the advantages, with an improved alignment
approach, the P-CAE presents competitive and promising
results, particularly under challenging conditions such as
cross-device comparisons.

To summarise, finger vein images possess features that can
be recognised across devices; however, realising the potential of
cross-finger vein recognition is challenging without active
implementation of standards such as ANSI/NIST-ITL [32],
ISO/IEC 19784 [33], or ISO/IEC 39794-9 [34]. Hence, their
practical integration is imperative inter-operable finger vein
recognition. Cross-device comparisons amplify the impact of
existing challenges on finger vein recognition, requiring further
advancements in the recognition methods. On the other hand,
despite the difficulties associated with cross-device finger vein
recognition, the proposed patch-based P-CAE architecture
shows promising potential in addressing some of the challenges
inherent to cross-device comparisons. In light of these findings,
this study holds significant promise for enhancing finger vein
recognition systems and achieving inter-operability.
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