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The extraction of ROI (region of interest) was a key step in noncontact palm vein recognition, which was crucial for the subsequent
feature extraction and feature matching. A noncontact palm vein ROI extraction algorithm based on the improved HRnet for
keypoints localization was proposed for dealing with hand gesture irregularities, translation, scaling, and rotation in complex
backgrounds. To reduce the computation time and model size for ultimate deploying in low-cost embedded systems, this improved
HRnet was designed to be lightweight by reconstructing the residual block structure and adopting depth-separable convolution,
which greatly reduced the model size and improved the inference speed of network forward propagation. Next, the palm vein ROI
localization and palm vein recognition are processed in self-built dataset and two public datasets (CASIA and TJU-PV). The
proposed improved HRnet algorithm achieved 97.36% accuracy for keypoints detection on self-built palm vein dataset and 98.23%
and 98.74% accuracy for keypoints detection on two public palm vein datasets (CASIA and TJU-PV), respectively. The model size
was only 0.45M, and on a CPU with a clock speed of 3GHz, the average running time of ROI extraction for one image was 0.029 s.
Based on the keypoints and corresponding ROI extraction, the equal error rate (EER) of palm vein recognition was 0.000362%,
0.014541%, and 0.005951% and the false nonmatch rate was 0.000001%, 11.034725%, and 4.613714% (false match rate: 0.01%) in
the self-built dataset, TJU-PV, and CASIA, respectively. The experimental result showed that the proposed algorithm was feasible
and effective and provided a reliable experimental basis for the research of palm vein recognition technology.

1. Introduction

Biometric technologies have shown great advantages and
reliability in the field of security authentication and identifi-
cation. Traditional biometric identification technologies,
such as fingerprint recognition [1], face recognition [2], iris
recognition [3], and palm print recognition [4–6], are widely
used in real-life applications. Face recognition is the most
widely used, but it may cause unsuccessful recognition due to
make-up, beard, and wearing masks during the COVID-19
epidemic. Fingerprints and palm prints are easily forged and
destroyed due to being exposed on the skin surface, leading
to recognition security problems. Palm vein recognition, as a

new biometric identification technology, has many advan-
tages and has received wide attention. Near-infrared light at
700−1,000 nm can be absorbed by hemoglobin in blood,
which means that vein images are usually extracted under
the irradiation of near-infrared light. Studies have shown
that all individuals, including twins, have different palm
veins, and that the vast majority of palm veins do not change
radically with age. Because the veins are under the skin, they
are less likely to be injured and less likely to be falsified. It was
well known that palm veins contain more features than fin-
ger veins [7–9], so palm vein recognition is more secure and
reliable than finger vein recognition. The first important step
in the noncontact palm vein recognition process is the
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localization of region of interest (ROI) in the palm vein
image. Due to the noncontact acquisition method and the
different acquisition environment, complex backgrounds,
extra wrist parts, different angles, zooming, and panning
are usually contained in the noncontact palm vein images,
as shown in Figure 1. We need figure out a way to eliminate
these interfering factors, so that we can extract the ROI in
palm vein image accurately.

To solve the above problems, scholars had conducted a lot
of research in recent years. Chai et al. [10] proposed a method
to localize the ROI using the feature points of the hand, i.e., the
valley points between two fingers. El Sayed et al. [11] proposed
an ROI localization method based on threshold segmentation,
morphological, and geometric operations. Kang and Wu [12]
proposed an improvedOTSUmethod to extract hand contours
from grayscale palm vein images and then used the radial
distance function between reference points and contour points
to locate the peaks and valleys of the palm to extract palm vein
ROI. Lin et al. [13] proposed a maximum inner tangent circle
and center of mass based method to extract palm ROI. Yakno
et al. [14] discussed the ROI extraction algorithm and proposed
an improved algorithm for larger ROI extraction. Damak et al.
[15] used hand boundary tracing by scanning contour lines to
draw hand boundary distance contours, rotating the image so
that the line connecting the first and third finger valleys became
horizontal, and selecting four hand boundaries (vertical left
limit, vertical right limit, horizontal lower limit, and horizontal
upper limit) to create the ROI region. Cimen et al. [16] seg-
mented the hand image and determined the boundaries of the
hand surface area. Then, the whole image was scanned pixel by
pixel from right to left and from top to bottom, and the first
point that reached 255 pixels was found to be the tip of the
bone, and a 256× 256 pixel square region was selected as the
ROI region by dropping 150 pixels at this point. Wu et al. [17]
proposed to separate the palm of the hand using image binar-
ization, and afterwards made vertical lines of the four fingers
except the thumb, intersecting at eight points. The edge length
of the ROI region was determined by the number of 255 pixels

contained between two adjacent points, and then the vein
region was rotated so that it was parallel to the image
boundary.

Ananthi et al. [18] proposed to apply OTSU (Otsu’s
method) to wrist-rejected palm vein images. Among the con-
nected regions of the generated binary image, the maximum
connected region represented the boundary of the palm
region with fingers and the ROI was extracted from this
palm region using an improved bounding rectangle strategy
[18]. However, all the above methods usually required clean
background in palm vein image, and when the image back-
ground was complex, it was difficult for the above methods
to extract the vein ROI accurately.

With the rapid development of computer algorithms,
deep learning networks became the mainstream algorithms
for target detection. So far, many classical neural networks
have been proposed, mainly represented by Fast R-CNN,
Faster R-CNN, MaskR-CNN, and YOLOV3 [19–22]. Zhang
et al. [23] proposed Tiny-YOLOV3 target detection algo-
rithm with a target box and the keypoints would be deter-
mined by selecting the midpoint of the target box, and finally
the ROI in palm vein image would be obtained after geomet-
ric calculation. Luo and Zhong [24] proposed an improved
detection method based on Ruixin Zhang’s method, in which
the whole palm was deteced in the first step by Tiny-YOLOV3,
and then the keypoints coordinates were regressed by Mobile-
netV2. Although the method performed well in their self-built
dataset, splitting the detection process into two parts was a bit
tedious and increased the network computation. Sun et al. [25]
proposed to extract hand features usingHRNet network, which
localized hand articulation points for gesture prediction and
achieved good detection results. To localize the keypoints and
extract the ROI in noncontact palm vein images as well as
increase the computation speed, a lightweight keypoints detec-
tion network based on HRnet was proposed in this paper,
which removed the redundant network branches, modified
network structure, and adopted deep separable convolution
for the residual block structure.

FIGURE 1: Some noncontact palm vein images in complex backgrounds.
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2. Data Acquisition

In this paper, the self-built palm vein dataset was built by a
self-built palm vein capture device. The collection device and
the shooting process are shown in Figure 2 [26]. In May and
June 2022, the collection was carried out on the campus of
South China Agricultural University in Guangzhou, Guang-
dong Province, and the target population were students and
staff of different ages. Five images were taken from five ran-
dom angles with single and complex backgrounds. The
shooting distance was between 15 and 20 cm, and a total of
3,000 palm vein images were collected. Each image size was
1,280× 720.

To verify the effectiveness of the experimental algorithm,
two public datasets of palm veins were used in the paper,
namely, the CASIA (Chinese Academy of Sciences) and
TJU-PV (Tongji University) datasets of palm veins. The two
datasets consisted of 7,200 images with some background
interference and 6,000 images with no background interfer-
ence, respectively. The image size in the CASIA dataset was
768× 576, whereas the image size in the TJU-PVdatabase was
800× 600, as shown in Figure 3. The acquired palm vein
images were labeled with Labelme tool according to Pascal
VOC dataset format. In the task of extracting ROI of palm
vein images, four keypoints, i.e., four valleys between the five
fingers, needed to be labeled, starting from the thumb and
labeled sequentially from the numbers 1 to 4. The labeled
image is shown in Figure 4.

To make the training dataset more ample as well as to
increase the diversity of training samples, data enhancement

operations such as random angle inversion, brightness, and
contrast adjustment were performed on the training dataset
in the paper. The enhancement is shown in Figure 5.

3. Methods

A lightweight network based on improved HRnet was pro-
posed to localize four keypoints in a palm vein image and
corresponding ROI was extracted based on the keypoints by
geometric methods for noncontact palm vein images. The
flowchart of the proposed algorithm is shown in Figure 6.
First, the four keypoints were located through the improved
HRnet. Then, the left and right palms were distinguished
according to cross product of vectors drawn from keypoints
and then the obtained keypoint coordinates were used to
locate the ROI of the palm vein image through the geometric
operation. Finally, the eventual ROI was obtained using the
affine transformation algorithm.

3.1. HRnet Algorithm. In pose estimation, the resolution of the
image feature map was crucial. Usually pose estimation meth-
ods would adopt a serial method of reducing from high resolu-
tion to low resolution and then restoring high resolution to
obtain a high-resolution feature map with strong semantic
information. Compared with other networks, HRnet has two
advantages: (1) HRnet connects multiple high resolutions with
low-resolution branches in parallel, instead of in series, and
improves interaction between branches with different resolu-
tions. Therefore, the HRnet approach can maintain high reso-
lution, instead of recovering high-resolution information
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FIGURE 2: Shooting equipment and operating procedures.
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through low-to-high process, and the output heatmap may be
more spatially accurate. (2) Most other methods directly fuse
low- and high-level feature maps. In contrast, HRnet performs
repetitive multiscale fusion to enhance the high-resolution fea-
tures and the high-resolution features are abundant enough to
achieve pose estimation.

The network structure of HRnet was divided into two
phases: the low-resolution phase and the high-resolution phase.
The low-resolution phase generates feature maps at multiple
resolutions, including original resolution, 1/2 resolution, 1/4
resolution, and 1/8 resolution. The high-resolution phase fuses
the feature maps generated in the low-resolution phase to gen-
erate the high-resolution feature maps. A schematic diagram of
theHRnet algorithm is shown in Figure 7. The bottleneck block
was the bottleneck layer of ResNet, which was used to deepen
the network, and the basic block was the general ResNet struc-
ture. Each basic convolutional block includes a batch normali-
zation layer and an rectified linear unit (ReLU) layer, with

up and down representing upsampling and downsampling,
respectively. The entire network generates reliable and location-
sensitive high-resolution feature maps by iteratively fusing multi-
resolution stream representations, and finally the number of fea-
ture map channels was determined according to the number of
detected keypoint.

For training, the mean-square error was used as the loss
function. The calculation formula was as follows:

MSE¼ ∑n
i¼1 yi − y0ið Þ2

n
; ð1Þ

where yi denotes the true value and y0i denotes the predicted
value. The mean-square-error loss function was a smooth
function that was capable of minimizing the loss function
using the gradient descent method. In the prediction part of
the keypoints, a heat map was generated. The confidence
level of whether there was a keypoint at that location was
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FIGURE 3: Two public palm vein dataset images, CASIA and TJU-PV.

FIGURE 4: Image labeling effect.
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output. The exact location of the keypoint was finally deter-
mined by setting a threshold value.

3.2. Improved HRnet Network. HRnet outperforms numer-
ous target detection algorithms for keypoints detection tasks
due to repetitive stacked multiresolution fusion, but such a
network structure brings huge computational overhead and
time overhead. It is unsuitable for real-time applications in
embedded systems with limited computing power and stor-
age capacity. To accelerate the palm vein ROI localization,
the original HRnet was modified and used to detect the key-
points of palm vein image by the following methods:

(1) The number of multiresolution fuse stacks was reduced
and high-resolution features were maintained by fusing
high-resolution features in the first two stages and low-
resolution features in the last two stages.

(2) Downsampling was achieved by controlling the convo-
lution stride and pooling operation (MaxPool, Average-
Pool), whereas upsampling was achieved by transposed
convolution (Transposed Conv) operation.

(3) The standard convolution of the original HRnet
residual module was replaced by the depth-separable
convolution (DSC).

The modified network architecture is shown in Figure 8.

3.3. Deeply Separable Convolution. Due to the standard con-
volution in which the convolution kernel acts on each chan-
nel of the input feature map, the computational amount is
large. In this paper, the DSC was used to replace the standard
convolution at the residual connection to reduce the number
of network parameters. The DSC was a decomposable con-
volution structure, which can decompose the normalized

convolution into depth convolution and point-by-point con-
volution. This process can effectively reduce model parame-
ters and computation. For a feature map with input size H ×
W, the convolution kernel size was K ×K , Cin was
the number of input feature map channels, and Cout was the
number of output feature map channels. The standard con-
volution and DSC computation volume equations are

F1 ¼ H ×W × K2 × Cin × Cout ð2Þ

F2 ¼ H ×W × K2 × Cin þ H ×W × Cin × Cout ð3Þ

The ratio of the DSC to the standard convolution
computation is

F2
F1

¼ 1
Cout

þ 1
K2

� �
ð4Þ

According to Equation (4), when an image input size was
12× 12, the number of input channels was three, the number
of output channels was 128, and the convolution kernel size
was 5× 5, as shown in Figure 9. The computation of the deep
separable convolution was only 5% of the number parame-
ters computed by the standard convolution.

3.4. Palm Vein ROI Extraction Based on Keypoints. The
extraction of ROI was a critical step. To eliminate the effect
of translation, rotation, and scaling, a normalization process
for palm vein images ROI extraction based on keypoints was
proposed in this paper. The proposed ROI extraction scheme
(Algorithm 1) in the paper was as follows:

The selection process is shown in Figure 10.
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4. Experimental

4.1. Experimental Environment. The experiments were con-
ducted in Ubuntu operating system, Python distribution,
Anaconda (Python 3.7), Pytorch 1.8.2 deep learning frame-
work, and cuda 10.2 accelerator. The CPU used in the experi-
ments was Intel model i7-9,700 F, the GPU was NVIDIA
Geforce RTX 3080 in the process of training the improved
HRnet keypoints detection model, SGD was chosen as the
optimizer of the network, the beta1 parameter was adjusted
to 0.5, the beta2 was adjusted to 0.999, the batchsize was set to
32, the initial learning rate was set to 0.001, and the learning
rate was adjusted by exponential decay. The details in self-
built dataset and two public palm vein datasets are shown in
Table 1. The self-built dataset was expanded to 4,500 images
through the data enhancement.

4.2. Evaluation Indicators. The keypoints detection evalua-
tion indicators differ from the target detection evaluation

indicators intersection over union. First, the Euclidean dis-
tance between the predicted point coordinate and the real
label was calculated as follows:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xdt − xgt

� �
2 þ ydt − ygt

� �
2

r
ð5Þ

In the above equation, (xdt , ydt) are the predicted coor-
dinates and (xgt , xgt) are the true label coordinates

P xð Þ ¼ 1d<threshold

0d>threshold

(
ð6Þ

when d is greater than the given threshold, P(x) is 1; other-
wise, it was 0

1. Obtain three keypoints P1, P2, and P4;

2. Set the line through P2P4 as the X-axis;

3. Set the direction perpendicular to P2P4 and P1 as the positive direction of the Y-axis;

4. Set the midpoint Q of P2P4 as the origin (x0; y0);
5. Take |P2P4| as the unit length of axis;

6. Construct the local coordinate system;

7. Obtain coordinate A of the ROI as (x0 À 1
2|P2P4|,y0 þ 1

4|P2P4|),

Obtain coordinate A of the ROI as (x0 þ 1
2|P2P4|,y0 þ 1

4|P2P4|),

Obtain coordinate A of the ROI as (x0 þ 1
2|P2P4|,y0 þ 5

4|P2P4|),

Obtain coordinate A of the ROI as (x0 À 1
2|P2P4|,y0 þ 5

4|P2P4|),

8. Connect ABCD in turn to get ROI.

ALGORITHM 1. ROI Extraction
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Accuracy ¼ ∑n
i¼1P xð Þ
n

ð7Þ

The ratio of the sum of the predicted correct keypoints to
the number of all keypoints is recorded as accuracy.

4.3. Experimental Results of Keypoints Detection. The train-
ing set loss curve and the test set accuracy curve on the self-
built dataset for 150 epochs are shown in Figure 11. The first
step was to train the dataset from scratch using the original
HRnet network. The second step was to initialize the improved
HRnet model using the weights obtained from the initial train-
ing of the original HRnet network on the self-built dataset. The
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FIGURE 10: (a, b) Palm vein ROI extraction process.

TABLE 1: Experimental data setting.

Database Train Test Total

CASIA 1,600 400 2,000
TJU-PV 4,800 1,200 6,000
Self-data 3,600 900 4,500
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keypoints training loss of the proposed model and the original
HRnet model is shown in Figure 11(a), and the keypoints
detection accuracy of the test set (with a threshold value of
five) is shown in Figure 11(b). It can be seen that the conver-
gence of the HRnet was faster than the improved HRnet due to
the deeper andmore complex layers, but the improved network
achieved the same prediction effect with much smaller param-
eter quantities.

Because the accuracy of palm vein keypoints detection
was related to the value of the threshold, the keypoints local-
ization accuracy according to different thresholds is provided
in Table 2. The higher value the threshold was set, the more
keypoints were considered valid and the higher accuracy
would be achieved.

Regardless of the threshold setting, the keypoints locali-
zation model performed best in TJU-PV dataset due to its
pure background. To determine the most appropriate thresh-
old value, the effectiveness of the improved HRnet network
for actual ROI extraction at different threshold values was
verified. In Figure 12, it can be seen that the ROI region can
be extracted accurately when threshold was 3, 4, and 5. When
threshold was 6, the extraction effect was not so good because
the no. 4 keypoint has a large deviation, which causes the
whole ROI region to be shifted to the right. Finally, the thresh-
old was set to 5 for calculating the keypoints localization of the
palm vein images.

4.4. Comparison Experiments

4.4.1. Ablation Experiments for Keypoints Localization. The
effects of different improvement methods were validated on
keypoints detection, as shown in Table 3. From Table 3, it
can be seen that the fusion of two layers of high-resolution
and low-resolution features performed much better than the
direct fusion of one layer of high-resolution and low-resolution
features. Similarly, transpose convolution upsampling could also
bring about an increase in accuracy. Through fusing two layer
features and adopting transpose convolution upsampling, the
keypoints detection accuracy reaches 98.24%. Furthermore, to
further compress the model parameter size, depthwise separable
convolution could be employed, resulting in 0.88% accuracy loss
and 35% model size reduction

4.4.2. Comparison of Proposed Method and Traditional
Machine Learning Methods for Keypoints Localization. Gen-
erally speaking, for traditional palm vein ROI extraction, the
steps include image thresholding, manual segmentation,
contour detection, keypoints localization, and ROI extrac-
tion. For the palm vein images with clean background, the
ROI extraction comparison between the traditional methods
and the proposed improved HRnet algorithm is shown in
Figure 13. Both of them could perform well.

However, for palm vein images with complex backgrounds,
the method of hand segmentation and hand boundary tracking
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FIGURE 11: Model training loss and test accuracy curves: (a) training loss curve and (b) test accuracy curve.

TABLE 2: Accuracy of keypoint detection under different thresholds.

Threshold/class CASIA TJU-PV Self-data

Threshold= 3 93.25% 96.27% 92.87%
Threshold= 4 95.43% 97.77% 94.39%
Threshold= 5 98.23% 98.74% 97.36%
Threshold= 6 99.26% 99.34% 98.72%
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FIGURE 12: ROI extraction effect under different thresholds.

TABLE 3: Effect of different improvement methods on the accuracy of critical point detection.

Fusion of one-layer high and
low resolutions

Fusions of two-layer high and
low resolutions

Transpose convolution Deeply separable convolution Accuracy

√ — √ — 94.35%
√ — — √ 92.77%
√ — √ √ 93.17%
— √ √ — 98.24%
— √ — √ 96.83%
— √ √ √ 97.36%

(a1) (a2) (a3) (a4)

ðaÞ

(b1) (b2) (b3)

ðbÞ
FIGURE 13: Comparison of ROI extraction effects in simple background. (a) Effect of traditional method of extraction: (a1) original image, (a2)
binarization, (a3) valley point positioning, and (a4) ROI extraction. (b) Improved HRnet algorithm extraction effect: (b1) original image, (b2)
keypoint positioning, and (b3) ROI extraction.
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using OTSU thresholding method did not work well. This
would lead to runaway of keypoints locations and make the
subsequent palm vein ROI inaccurately localized, as shown in
Figure 14.

4.4.3. Comparison of Proposed Method and Other Deep
Learning Methods for Keypoints Localization. In Table 4,
the proposed model was compared with the original HRNet
as well as three other network models: VGG16, ResNet-18,
and ResNet-50. It could be observed that when the input
image size was fixed at 512× 512, the proposed network
could achieve the accuracy of 97.36% with a model size of
only 0.45M and a runtime of only 0.029 s. In addition, the
state-of-the-art vein ROI extraction algorithms, improved
U-Net [26], and proposed method were compared in differ-
ent datasets, as shown in Table 5.

4.4.4. Keypoints Detection for Irregular Hand Gestures. Irreg-
ular hand gesture, such as finger bending, finger closure, and
wearing objects on hands could be seen in the palm vein
datasets. In these three cases, the proposed HRnet algorithm

can also successfully extract the ROI of palm veins. The
verification results are shown in Figure 15. In addition, the
detection effect was verified under rotation, scaling, and fluo-
rescent light backgrounds, as shown in Figure 16. These
results provided important reference value for the practical
application of palm vein recognition technology and help to
improve the accuracy and stability of palm vein recognition.

4.5. Palm Vein Recognition Performance Experiment. After
the extraction of ROI, the palm vein recognition was con-
ducted in self-built dataset and two public datasets (CASIA
and TJU-PV). The dataset was divided into training set and
test set in 8 : 2 ratio. MobileFaceNet [27] was chosen as the
network for feature extraction. Using cosine distance to cal-
culate the similarity between feature vectors, followed by
performing feature matching. The test results are shown in
Figure 17.

Experiments were also conducted on the impact of dif-
ferent ROI sizes on palm vein recognition results in self-built
dataset. By adjusting the size of the L parameter of the ROI
extraction algorithm in Section 3.4, three different sizes of

(a1) (a2) (a3) (a4)

ðaÞ

(b1) (b2) (b3)

ðbÞ
FIGURE 14: Comparison of ROI extraction effects in complex background. (a) Effect of traditional method of extraction: (a1) original image,
(a2) binarization, (a3) valley point positioning, and (a4) ROI extraction. (b) Improved HRnet algorithm extraction effect: (b1) original image,
(b2) keypoint positioning, and (b3) ROI extraction.

TABLE 4: Performance comparison of several target detection algorithms.

Algorithm Image size Params (M) Accuracy Speed (s)

VGG16 512× 512 49.2 79.46% 0.5
Resnet-18 512× 512 42.7 78.64% 0.23
Resnet-50 512× 512 90.2 96.75% 0.7
HRnet 512× 512 109 98.87% 1.3
Proposed 512× 512 0.45 97.36% 0.0029

TABLE 5: Comparison with advanced vein ROI algorithms.

ROI algorithm CASIA accuracy TJU-PV accuracy Self-data accuracy Params (M)

Improved U-Net 97.78% 98.93% 97.25% 1.16
Proposed 98.23% 98.74% 97.36% 0.45
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FIGURE 18: Palm vein ROI of three different sizes.
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vein regions were selected, 256× 256, 128× 128, and 64× 64,
respectively, as shown in Figure 18. In Table 6, the best
performance was 256× 256, with an equal error rate (EER)
of 0.00036%, when the vein region was adjusted downward
to 64× 64 due to the inclusion of smaller vein regions and
large differences in vein characteristics between intraclass
images, the EER was 1.11291%.

5. Conclusion

Fast and accurate extraction of the noncontact palm vein
images ROI was the basis for subsequent palm vein recogni-
tion applications. In this paper, a lightweight ROI extraction
algorithm was proposed based on improved HRnet for non-
contact palm vein images, in which irregular gesture, com-
plex backgrounds, and the problem of having items on the
hands could be included. The experimental results showed
that the method had good extraction accuracy, while the
network model size was only 0.45M and the running speed
was only 0.029 s on a CPU with a clock speed of 3GHz. The
accuracy of keypoints detection reaches 97.36% on the self-
built palm vein dataset and 98.23% and 98.74% on two public
palm vein datasets, respectively. The EER of palm vein rec-
ognition was 0.000362%, 0.014541%, and 0.005951% and the
false nonmatch rate (FNMR) was 0.000001%, 11.034725%,
and 4.613714% (false match rate (FMR): 0.01%) in the self-
built dataset, TJU-PV, and CASIA, respectively.

Experimental analysis showed that this method con-
verged slowly during the training process, mainly due to
the small differences in several target keypoints, the output
error of the heat map, and the use of fewer convolutional
channels. Future research will further consider the issue of
balancing model parameter size. In addition, we will also
study the resistance of spoofing attacks on palm vein recog-
nition and the detection of finger defects and carry out sub-
sequent palm vein recognition work.
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