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The quality of people’s lives is closely related to their emotional state. Positive emotions can boost confidence and help overcome
difficulties, while negative emotions can harm both physical and mental health. Research has shown that people’s handwriting is
associated with their emotions. In this study, audio-visual media were used to induce emotions, and a dot-matrix digital pen was
used to collect neutral text data written by participants in three emotional states: calm, happy, and sad. To address the challenge of
limited samples, a novel conditional table generative adversarial network called conditional tabular-generative adversarial network
(CTAB-GAN) was used to increase the number of task samples, and the recognition accuracy of task samples improved by 4.18%.
The TabNet (a neural network designed for tabular data) with SimAM (a simple, parameter-free attention module) was employed
and compared with the original TabNet and traditional machine learning models; the incorporation of the SimAm attention
mechanism led to a 1.35% improvement in classification accuracy. Experimental results revealed significant differences between
negative (sad) and nonnegative (calm and happy) emotions, with a recognition accuracy of 80.67%. Overall, this study demon-
strated the feasibility of emotion recognition based on handwriting with the assistance of CTAB-GAN and SimAm-TabNet. It
provides guidance for further research on emotion recognition or other handwriting-based applications.

1. Introduction

Among negative emotions, sadness is a pervasive and common
everyday emotion. Negative emotions can drain individuals of
their talents, damage their physical and mental health, and hin-
der their careers. Prolonged negative emotional states can lead
to excessive mental stress, reduced productivity, compromised
immunity, and even suicide [1, 2]. Several researchers have
focused on identifying negative emotions and studying their
impact on mental health [3, 4, 5, 6, 7].

Handwriting, as a unique trace left by the writer during
the writing process, reflects the interplay between subjective
factors and objective conditions. Handwriting is a natural and
authentic mark that retains individuality, unaffected by artifi-
cial influences [8, 9]. It is a reflex activity of the brain in

response to external stimuli related to our internal conditions,
including emotional and psychological factors [10, 11, 12].

Handwriting analysis, also known as graphology, is a
scientific method of determining, assessing, and understand-
ing personality traits based on the strokes and patterns
revealed by handwriting. It can provide insights into the wri-
ter’s mental state, including emotional expressions, anxieties,
and honesty, among other feelings [13]. Handwriting is fre-
quently utilized to determine various traits of a person, such
as personality, neurodegenerative diseases, emotional states,
gender, age, nationality, and more [14, 15, 16, 17, 18, 19, 20].
Handwriting is a distinctive feature of each individual, offer-
ing as much uniqueness as fingerprints [21]. For instance, an
analyzed handwriting sample may indicate a high possibility
that the author was under stress during writing, which can be
helpful in investigations. While the suggested methodologies
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may not discriminate between different types of stress (e.g.,
self-imposed or explicit threats), they can provide quantifiable
and reproducible indicators for the level of stress a user is
experiencing, thereby providing crucial, though not always
absolute, evidence [22]. Researchers like Sen and Jing-Xiao
[10] have analyzed handwriting samples collected from indi-
viduals in various emotional states, such as happiness, anger,
sadness, fear, and calmness, and discovered significant differ-
ences and patterns in line spacing, writing strength, font size,
and typos. Understanding the association between handwriting
and emotions assists in comprehending the emotional traces left
by writers. Other researchers, such as Nolazco-Flores et al. [23],
have combined writing and drawing features to identify anx-
iety and tension. Additionally, Kedar et al. [24] have used
handwriting features such as baseline, slant, size, pen pres-
sure, zone, and margin to determine a person’s emotional
level, aiding in the diagnosis of those who require psycho-
logical assistance due to mental distress or depression. Fur-
thermore, Cordasco et al. [25] have studied the use of
handwriting and drawing characteristics to detect negative
emotions. They collected traits from individuals experienc-
ing depression, stress, and anxiety and assessed them using
the DASS-42 scale, capturing handwriting and drawing sam-
ples with a digital tablet.

Emotion elicitation is a research technique used to induce
typical emotions in a laboratory setting through specific pro-
cedures such as viewing emotionally charged film clips, pic-
tures, or listening to emotionally charged music. Combining
audio-visual stimuli, such as film clips or music videos, can
more effectively evoke corresponding emotions in subjects
[26, 27, 28, 29]. The Self-Assessment Manikin (SAM) is com-
monly used to measure emotional arousal and assess subjects’
self-rated emotional states [30, 31]. Researchers like Fairhurst
et al. [32] have employed SAM to measure emotional states
after elicitation.

Recent advancements in deep learning have opened up
new avenues for emotion recognition, offering improved fea-
ture extraction, selection, and classification capabilities com-
pared to conventional methods. However, collecting sufficient
handwriting datasets within a limited budget can be challeng-
ing. Generative adversarial networks (GANs) have shown
promise in data synthesis and have been applied to generating
tabular data [33, 34, 35]. GAN can enhance sparse datasets
with low sample sizes and poor quality, while also providing
privacy guarantees. Additionally, TabNet, a neural network
structure, combines tree models with deep neural networks
and has been proposed for tabular data classification [36]. The
attention mechanism module SimAM allows for better flexi-
bility and effectiveness in capturing salient features [37].

Based on the above background, this study aims to explore
emotion recognition using dynamic information from hand-
writing. Negative emotion (sadness) and nonnegative emotions
(happiness and calmness) are selected for analysis. Emotion
data is collected through an emotion elicitation procedure,
followed by the synthesis of sample data using GANs. Finally,
machine learning and deep learning methods (specifically Tab-
Net with SimAM) are applied to analyze the synthesized sam-
ple data for emotion recognition.

2. Materials and Methods

2.1. Data Collection Experimental Setup

2.1.1. Experimental Equipment. The equipment used in this
experiment includes a dot-matrix pen and dot-matrix paper
(Tstudy China). The dot-matrix paper consists of several tiny
dots arranged according to a specific algorithmic pattern
(i.e., Anote’s patented dot-matrix pattern printed on regular
paper). These dots provide the digital pen with coordinate
parameters, ensuring accurate recording of handwriting dur-
ing writing. The dot-matrix digital pen is composed of a pres-
sure sensor, high-speed camera, memory, processor, battery,
and Bluetooth or USB communicationmodule.When the pen
tip is pressed, the pressure sensors are triggered, activating the
built-in high-speed camera, which captures images of the dot-
matrix at a rate of 100 frames per second as the pen tip moves.
The captured information, including dot-matrix coordinates,
stroke order, pressure data, and movement speed, is transmit-
ted to the built-in processor, which eventually outputs the
data via Bluetooth or USB communication. The dot-matrix
pen and paper used in this experiment are shown in Figure 1.

2.1.2. Subject Population. Forty-four students from Huzhou
University were randomly invited as subjects for this experi-
ment through recruitment. The 44 subjects were made up of
23 males and 21 females. These students were between 22
and 26 years old. They all had a bachelor’s degree or above.
They were healthy, with no physical or psychological ill-
nesses. They were right-handed, had normal vision or cor-
rected vision, and had normal hearing.

2.1.3. Experimental Content and Procedures. The text mate-
rial chosen for this experiment is a neutral text passage with
no particular meaning and a smooth flow of words. Each
paragraph is about 60 words, comprising two sections of
text. The text was written as follows:

Text 1: “A color screen has been added to the Xiaomi
bracelet for the naked eye. The display is detailed enough
that you cannot even see the particles when you lift your
hand to scan it. Under the color screen, some animations
give the whole bracelet a premium feel.”

Text 2: “The color screen also brings another problem
that is hard to ignore, and that is the screen brightness; the
Xiaomi bracelet has five levels of brightness settings, indoors
probably at three levels will be more comfortable; at night,
you can automatically turn on the night mode to solve.”

Each subject completes three experimental tasks on the same
day: “Natural State” (Task 1), “Inducing Happy” (Task 2), and
“Inducing Sad” (Task 3). When the subjects arrived in the labo-
ratory, they were first registered with their name, gender, and
age. Then, the research background is explained, and the experi-
mental equipment is distributed.

In Task 1, the subject was first asked to sit still for 2min
and then put in a natural state. The subject was asked to copy
Text 1 and Text 2 with a dotted pen and rate the current
emotion on a scale of 0–10 on two dimensions: happy and
sad, with 0 indicating no feeling and 10 indicating the most
intense emotional experience, Task 1 was all completed with
the subject in a calm mood.
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In the “Inducing Happy” (Task 2) and “Inducing Sad”
(Task 3) experiments, subjects watched a video material of
∼9–10min in length and transcribed Text 1 and Text 2 with
a dotted pen at the end of the video. The emotions evoked by

the video clip were rated on a scale of 0–10. The flow of the
experiment is shown in Figure 2. In Task 2, the majority of
subjects (29) scored “happy”; in Task 3, the majority of sub-
jects (28) scored “sad”; the “happy” and “sad” scores in Task 1

ðaÞ
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ðbÞ
FIGURE 1: Dot-matrix equipment: (a) dot-matrix pen diagram; (b) dot-matrix paper diagram.
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FIGURE 2: Specific details of the process for subjects to participate in the data collection tasks.
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were lower than those in Task 2 and Task 3, and the result was
a “Calm” emotional state.

2.2. Feature Extraction and Preprocessing. This experiment
was conducted by sampling the 44 subjects mentioned above
and having them write with dot-matrix paper and pen to
obtain digital handwriting. A total of 48 features were
obtained, all of which were brought by the lattice pen’s
instantaneous pressure, the point’s coordinate value, and
the time stamp. Stroke characteristics correspond to the
intermediate state of features when a stroke is completed.
The task characteristics correspond to the intermediate state
of the features at the time of writing completed the task.
Among them, the degree of continuous stroke only appears
in the task characteristics, and the other 47 features are
involved in the stroke and task. Then, a list of handwriting
features was extracted, as shown in Table 1.

The degree of consecutive strokes (Lpen) is the ratio of the
number of missing strokes to the number of strokes in the
task, which can be expressed as in Equation (1): the number
of strokes written in the whole writing task is the number of
actual strokes written by the subject (Wnum). The number
of missing strokes is the difference between the total number
of strokes in the task (Nstroke) minus the number of actual
strokes written.

Lpen ¼
Nstroke −Wnum

Nstroke
: ð1Þ

The average pressure is expressed as in Equation (2): the
writing pressure is the pressure-sensitive data obtained from
the 1,024-level pressure sensor built into the dot-matrix pen;
a higher pressure-sensitive value means a higher writing
pressure.

f ¼ 1
n
∑
n

i¼1
fi: ð2Þ

The entropy value is expressed as in Equation (3): infor-
mation entropy commonly characterizes the information’s
uncertainty. The lower the entropy value, the higher the
signal self-similarity and the lower the complexity. (PðxiÞ :)
stands for the probability that the random variable x takes
the value xi. It is a probability distribution function indicat-
ing the likelihood of each possible value occurring.

E xð Þ ¼ −∑
n

i¼1
P xið Þ log2 P xið Þð Þ: ð3Þ

The lag time for one task is as in Equation (4): (ti) is
the time between the end of one stroke and the start of the
following stroke, and the lag time (Tlag) for this task is the
sum of ti.

Tlag ¼ ∑
n

i¼1
ti: ð4Þ

The variance is expressed as in Equation (5): a measure of
the degree of dispersion when reflecting a set of data, i.e., the
degree of deviation (M) is the average.

S2 ¼ 1
n
∑
n

i¼1
xi −Mð Þ2: ð5Þ

The average speed (Vw) is expressed as in Equation (8):
reflecting the writing rate, the average speed for the whole
task. As shown in Equation (6), (Lw) is the sum of the lengths
of all strokes in the whole task. As shown in Equation (7),
(Tw) is the time it takes to complete all strokes in the whole
task.

Lw ¼ ∑
n

i¼1
li; ð6Þ

Tw ¼ ∑
n

i¼1
ti; ð7Þ

Vw ¼ Lw
Tw

: ð8Þ

Since handwritten data from different subjects are het-
erogeneous, they need to be transformed into a common
domain for further analysis. The preprocessing method
used in this experiment is z-score, and the z-score formula
is expressed as in Equation (9). Where (X∗) is the mean and
variance normalized sample of characteristics, (x) is the sam-
ple of parts, (μ) is the mean of the characteristic data, and (σ)
is the standard deviation of the typical data.

X∗ ¼ x − μ

σ
: ð9Þ

2.3. Model Construction. In total, 210 (there were 35 valid
samples, 3 tasks, and 2 segments of text among the 44 sub-
jects) task-based samples and 60,000 stroke-based samples
were obtained. Among the task-based samples, the number
of “calm” samples was 82, the number of happy pieces was
74, and the number of low samples was 54; the number of
“calm” samples was about 22,000, the number of comfortable
models was ∼21,000, and the number of familiar pieces was
about 19,000. The total number of fragments in the task-
based sample was small, and the sample size was expanded
by generating an adversarial network (conditional tabular-
GAN (CTAB-GAN)). A deep learning model based on the
attention mechanism was then constructed for emotion
classification.

2.3.1. Generating Adversarial Network Model Construction.
The GAN model selected in this paper is CTAB-GAN,
CTAB-GAN (a novel conditional table GAN), which is pro-
posed as an efficient way of synthesizing tabular data [34].
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The GAN architecture consists of three modules: the gener-
ator, the discriminator, and the auxiliary classifier. A set of
noise vectors are added to the generator to form synthetic
data. The synthetic data and the original data are judged in the
discriminator whether the data is the data in the training set,
the true data is labeled as 1, and the false data is labeled as 0.
The training stops when the discriminator cannot distinguish
the synthetic data from the original data. Real data and syn-
thetic data are subjected to additional supervision through a
classifier. To improve performance in ML applications. Con-
tinuous, categorical, and mixed variables are efficiently mod-
eled through novel data encoding and conditional vectors,
which are better suited for task-based sample expansion work.
The encoder adopts an innovative approach by systematically
encoding mixed-type variables. For the continuous part, we
employ a variational Gaussian mixture (VGM) model [38],
treating the values of mixed variables as concatenated value-
mode pairs. This approach effectively handles mixed variables,
allowing them to capture categorical characteristics while
retaining the distributional information of continuous values.
Specifically, a VGMmodel is utilized to estimate the number of
modes in the continuous part and fit a Gaussian mixture. To
encode values in the continuous part, we select the mode with
the highest probability and standardize the values. Simulta-
neously, through one-hot encoding, we retain the mode infor-
mation used for encoding, enhancing the interpretability of the
model. For categorical variables, a similar encoding strategy is
employed, representing mode values directly through one-hot
encoding. Additionally, special consideration is given tomissing
values, treating them as a distinct and independent category.
The final encoding is obtained by concatenating the encoded
continuous and categorical parts, providing the model with
comprehensive modeling capabilities for mixed-type data.
This novel data encoding method furnishes the sentiment rec-
ognition model with clearer and more effective inputs, particu-
larly well-suited for handling real-world scenarios involving
mixed-type variables. The process and detailed information of
CTAB-GAN synthesis based on original emotional data is illus-
trated in Figure 3. The generator and discriminator are imple-
mented as four and two-layer CNNs, respectively, leveraging
CNNs’ ability to capture relations between pixels in an image to
enhance semantic integrity [39]. The classifier, with seven
layers, is trained on original data to interpret semantic integrity
better. Synthetic data undergo a reverse transformation from
their encoding before being input into a classifier for class label
predictions.

2.3.2. Deep Learning Model with Attentional Mechanisms.
The deep learning model chosen for this experiment was
TabNet, a neural network specifically for tabular data that
uses the idea of sequential attention to mimic the behavior of
a decision tree [36]. It can be seen as a multistep neural
network, using two critical operations at each step: feature
transformer and attentive transformer. The attention mech-
anism is incorporated as SimAm (a simple attention module
without parameters), placed between the feature transformer
and attentive transformer in TabNet, facilitating the acquisi-
tion of an optimized weight matrix surpassing the target. The

TABLE 1: Detailed features extracted from handwriting.

Number Features

1 The degree of consecutive strokes
2 Average pressure
3 Pressure entropy value
4 Lag time
5 Variance of pressure
6 The standard deviation of pressure
7 Stroke time
8 Stroke length in x-direction
9 Stroke length in y-direction
10 Stroke length
11 x-Coordinate variance
12 y-Coordinate variance
13 The standard deviation of x-coordinate
14 y-Coordinate standard deviation
15 Average velocity
16 x-Axis mean velocity
17 The average velocity on the y-axis
18 Stroke velocity maximum
19 Stroke velocity minimum
20 Entropy of velocity
21 Number of times the rate has slowed down
22 Variance of velocity
23 The standard deviation of velocity
24 The maximum value of speed in the x-axis direction
25 The minimum value of speed in the x-axis direction
26 The maximum velocity in the y-axis
27 The minimum value of momentum in the y-direction
28 The variance of rate in the x-axis direction
29 The standard deviation of rate in the x-axis
30 y-Axis velocity variance

31
The standard deviation of velocity in the y-axis
direction

32 Average acceleration
33 Average acceleration on the x-axis
34 Average acceleration on the y-axis
35 Acceleration maximum
36 The minimum value of acceleration
37 Entropy of acceleration
38 The number of times acceleration has slowed down
39 Variance of acceleration
40 The standard deviation of acceleration

41
The maximum value of acceleration in the x-axis
direction

42
The minimum value of acceleration in the x-axis
direction

43
The maximum weight of acceleration in the y-axis
direction

44 The minimum value of acceleration in the y-direction
45 The variance of acceleration in the x-axis direction

46
The standard deviation of acceleration in the x-axis
direction

47 y-Axis acceleration variance

48
The standard deviation of acceleration in the y-axis
direction
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feature data enters the BN (batch normalization) layer for data
normalization. The result is used for feature calculation and
enters the feature selection part for weight assignment. The
essential features are filtered through the weight matrix to enter
segment the analysis again, followed by split segmentation pro-
cessing, and part of it is used as common standards after the
activation function. After all the steps are completed, the com-
mon features are used to complete the final decision. The other
part goes to the next step and learns the personality traits of each
step, and so on until all decision steps have been completed. The
model can achieve end-to-end learning while selecting and

processing the most valuable features, thus improving interpret-
ability and learning ability, and the SimAm-TabNet flowchart is
shown in Figure 4.

Feature transformer: To maintain parameter effective-
ness and robust learning, the feature transformer consists
of layers shared between decision steps and layers dedicated
to the current decision step. This design reduces parameter
quantity compared to scenarios where all parameters only
act on the current decision step, enhancing robustness. In
contrast to designs where every shared layer has identical
capabilities in each decision step, this approach allows

Feature encoder
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Real data

Synthetic
data

Generator Classifier

P0

P1
Probability vector

0 Fake

Real1

Pn

...

Conditional vector

Discriminator

PressureEmotion

1 0 0 0 0 0 0 0 0 0

Ligature level

Happy Sad

Conditional vector

PressureEmotion

1 0 0 0 0 0 0 0 0 0
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D-dimensional
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Raw tabular data

FIGURE 3: Synthesis of handwriting-based mood data via CTAB-GAN.
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parameters to possess varied feature processing capabilities
in each decision step, contributing to more effective feature
processing at each step. To stabilize the training process and
prevent drastic variance changes, each residual link is multi-
plied by√0.5. The activation function employed is the gated
linear unit (GLU) gating mechanism activation function.
GLU is a commonly used nonlinear activation function in
neural networks. The schematic diagram of the feature trans-
former is illustrated in Figure 5.

Attentive transformer: Attentive transformer achieves the
selection of features for the current decision step by learning a
weight matrix. Initially, the schematic diagram of the attentive
transformer is illustrated in Figure 6. Data (a [i–1]) passes
through a fully connected layer and batch normalization layer
(hi). The output of the h-layer is multiplied by the prior scale
of the previous decision step (P [i−1]) and then undergoes the
sparsemax activation function to generate the requiredM [i].
This process completes the feature selection. The formula for
learning the weight matrix is as follows:

M i½ � ¼ sparsemax P i − 1½ � ⋅ hi a i − 1½ �ð Þð Þ: ð10Þ

The SimAm was selected as an attention mechanism to be
used in the TabNet, which is a nonreferential attention mecha-
nism module [37]. To better implement attention, the impor-
tance of each neuron needs to be evaluated, and an energy
function is defined to minimize the energy function. The
more minor the energy, the more significant the difference
between the target neuron and other neurons, and the higher
the importance. The minimum energy formula is shown in
Equation (11). (e∗t ) is a computed energy value associated
with a target neuron, indicating the difference between the
target neuron and other neurons. A lower value signifies higher
importance. (bσ2) is an estimated variance. (λ) is a parameter
used in the energy function. (t) represents the target neuron.
(bμ) is an estimated mean.

e∗t ¼
4 bσ2 þ λð Þ

t − bμð Þ2 þ 2bσ2 þ 2λ
: ð11Þ

The importance of the neuron is (1=e∗), and after obtain-
ing the significance, the feature matrix is augmented with the
formula shown in Equation (12). (E) is the significance of a

++

Feature
transformer

FC BN G
LU FC BN G
LUFC BN G
LU FC BN

0.50.5 √√√0.5
+

G
LU

Shared across decision steps Decision step dependent

FIGURE 5: A feature transformer block example—4-layer network is shown, where 2 are shared across all decision steps and 2 are decision
step-dependent. Each layer is composed of a fully connected (FC) layer, BN, and GLU nonlinearity.
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Prior scales

FC BN

Sp
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m
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FIGURE 6: An attentive transformer block example—a single-layer mapping is modulated with a prior scale information, which aggregates
howmuch each feature has been used before the current decision step. Sparsemax is used for the normalization of the coefficients, resulting in
the sparse selection of the salient features.
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neuron, calculated as the reciprocal of e∗t . (X) is The feature
matrix. (X̃) is the augmented feature matrix after applying the
sigmoid activation function and element-wise multiplication
with the significance values.

eX ¼ sigmoid
1
E

� �
⊙ X: ð12Þ

This study used SimAm-TabNet based on the original
TabNet with the addition of the attention mechanism SimAm
between feature selection and feature calculation so that Tab-
Net gets a better weight matrix than the target from the
weights of the features. SimAm gets the feature matrix in
TabNet based on the importance of neurons, as shown in
Figure 7.

3. Results

3.1. Analysis of Data Collection Results. A total of 44 subjects
participated in this study, and handwriting data was collected
from the subjects through emotional elicitation. Among
them, 23 male students were in the age range of 21–27 years,
and 21 female students were in the age range of 20–26 years.

There were 44 self-rated scales for 44 subjects, and the
scores on the self-rated scales were the scores on the current
mood dimensions. The results of the subjects’ mood scale
scores are shown in Table 2.

The subjects were all rated on an emotion scale after the
emotion induction, ranging from 0 to 10. A score of 0 indi-
cated no emotion arose, and 10 indicated the most intense
emotional experience. As seen from Table 2, the majority of
subjects in both Task 2 and Task 3 scored results greater than
7, demonstrating that the stimulus material selected was
indeed effective in evoking the desired emotional state. How-
ever, there were still inevitably a few subjects whose emotions
were more difficult to evoke and scored lower. Therefore, the
corresponding handwriting data were not suitable for use in
emotion recognition studies, and these data were discarded.

In this study, data with scores of 0–6 on both the “hap-
piness” and “sadness” dimensions in Task 1 were regarded as
“calm.” Data with scores of 0–6 on both Task 2 and Task 3
were regarded as invalid and discarded. Only data with
scores of 7–10 were considered valid and used for subsequent
classification studies. The emotion scale scores of the correct
data were counted separately, and a total of 35 effective

samples were obtained, and the statistical results are shown
in Table 3.

As seen in Table 3, the emotionally evoked scores of Task
2 and Task 3 were higher than those of Task 1, and the
standard deviation values were smaller. This indicates that
the overall effect of the emotion elicitation experiment was
good and that the degree of emotion evocation was high.
Therefore, the handwriting data collected does contain the
required emotion-related information and can be used in the
follow-up study.

3.2. GAN Synthesis Data Results. In total, 210 pieces of origi-
nal data (82 for calm, 74 for happy, and 54 for sad) were
synthesized into 4,444 bits of data (1,487 for calm, 1,477 for
happy, and 1,480 for sad) by CTAB-GAN. A comparison was
made between original and synthetic data using two widely
adopted machine learning models and machine learning
model evaluation metrics, including accuracy, balanced
F-score, and AUC values. Both machine learnings used
default parameters in scikit-learn 0.23.2. The ML evaluation
process is illustrated in Figure 8.

The “Happy” and “Sad” data were compared with the
original and synthetic data in terms of Accuracy, balanced
F1-Score, and AUC value evaluation metrics in Random
Forest and SVM, as shown in Table 4. Sample trends for
the original and synthetic data for “Happy” are shown in
Figure 9. The assessment results in Table 4 and Figure 9
show that the difference in assessment metrics between the
synthetic and real data is slight, and the data trends are
essentially the same. Synthetic data can be used in the study
of emotion recognition.

3.3. Emotional State Prediction Results. This paper used tasks
to explore different emotional states. In the following experi-
ment, the sample size of original data with task unit was 210
(82 for calm, 74 for happy, and 54 for sad), and CTAB-GAN
generated the composite data. The synthesized task sample
data volume was 4,444 (1,487 for calm, 1,477 for happy, and
1,480 for sad). The specific experiment is as follows.

Task-based samples were used to experimentally explore
negative and nonnegative emotions. Among them, sad emo-
tion is regarded as a negative emotion; 30 and 35 samples
from calm and happy emotions are selected as nonnegative
emotions. In the original data, there were 54 negative sam-
ples and 65 nonnegative samples. In the synthetic data, there
were 1,480 negative samples and 1,477 nonnegative samples.

FusionM [i]

Generation m1

m3 m2

m5
m3

m1

m3 m2
m3

m5

Expansion

FIGURE 7: Schematic representation of the feature matrix obtained by the attention mechanism SimAm.
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The original and synthetic data on negative emotions and
nonnegative emotions were compared to machine learning
and deep learning models. The ratio of the training set to the

test set is 7 : 3. In our experiments, we employed 10-fold
cross-validation, ensuring an adequate number of training
iterations for each model on every subset to mitigate varia-
tions arising from randomness. The training and validation
steps for each model were repeated 10 times to attain more
stable and reliable performance evaluations. Regarding the
parameter configurations for SimAm-TabNet, the settings
are as follows:

Input layer neurons: The number of neurons in the input
layer, equivalent to the number of features, is set to 48 in
this study, representing the raw input features.
Output layer neurons: For the binary classification task, it
is set to 2.
Decision steps: This parameter determines the size of the
network structure steps and is set to 8 in this paper.
Predictive phase feature number: It corresponds to the
number of features inputted in each decision step. In this
study, it is set to 30.
Feature selection phase feature number: It corresponds to
the number of features outputted in each decision step,
set to 10 in this paper.
Batch sample processing (batch size): It is set to 200.
Optimizer: The optimizer is set to Adam.
Learning rate: The learning rate for SimAm-TabNet is set
to 0.001.
Epochs: It is set to 500.
The loss function: cross-entropy.

The accuracy results of the training set and test set are
shown in Table 5.

The usability of the generated adversarial network data
was tested under the machine learning and SimAm-TabNet
models by using the synthetic samples (1,480 negative sam-
ples and 1,477 nonnegative samples) and the original sam-
ples (54 negative samples and 65 nonnegative samples). The
confusion matrices for the synthetic samples and the original
samples are shown in Figure 10. By comparing the confusion
matrices of the training and testing sets, it can be observed
that the accuracy between the two sets is similar, indicating
that SimAm-TabNet did not exhibit overfitting. Addition-
ally, the presence of overfitting can also be inferred from
the behavior of the loss function. The loss curves of
SimAm-TabNet are shown in Figure 11; with an increase
in the number of training iterations, the classification perfor-
mance of both the training and testing sets stabilizes and
eventually converges to similar values. Combining this
observation with the confusion matrices of SimAm-TabNet

TABLE 2: Results of emotion scale scores.

No.

Types of emotional triggers

Happy Sad

Task 1 Task 2 Task 1 Task 3

1 6 9 6 8
2 9 10 1 8
3 2 7 1 7
4 6 8 1 9
5 6 4 5 7
6 3 9 2 9
7 2 9 2 6
8 4 7 2 8
9 10 10 1 2
10 3 8 2 9
11 6 6 1 4
12 7 9 2 3
13 3 8 2 8
14 9 10 1 8
15 3 8 1 10
16 6 8 2 5
17 2 3 2 4
18 6 6 5 9
19 2 8 1 7
20 2 9 3 7
21 8 9 2 10
22 10 10 1 5
23 3 4 1 4
24 4 7 8 7
25 6 8 3 6
26 1 2 1 2
27 2 8 1 9
28 4 7 2 7
29 1 4 1 6
30 6 6 1 6
31 2 3 5 6
32 6 8 4 6
33 3 8 2 9
34 9 10 2 6
35 5 7 5 9
36 4 5 2 8
37 2 5 1 8
38 3 8 2 7
39 3 6 1 8
40 1 2 1 2
41 3 6 2 5
42 2 5 1 9
43 6 8 2 7
44 2 9 2 9
Mean 4.386 7.068 2.182 6.795
SD 2.563 2.214 1.603 2.141

TABLE 3: Statistical results of effective scoring.

Types of emotional triggers

Happy Sad

Task 1 Task 2 Task 1 Task 3

Mean 4.343 7.857 2.314 7.429
SD 2.274 1.556 1.787 1.659
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further confirms that the model did not experience overfit-
ting. The classification results of the synthetic samples and
the original samples are shown in Table 6.

Cohen’s Kappa coefficient is a statistical measure used to
assess the level of agreement between two raters or classifiers,
taking into account the possibility of agreement occurring by
chance. It is particularly useful when evaluating classification
performance, providing a more robust metric than simple
accuracy, especially in situations with imbalanced class dis-
tributions. The formula for calculating Cohen’s Kappa is as
follows: Po represents the observed agreement, and Pe sig-
nifies the expected agreement.

K ¼ Po − Pe
1 − Pe

: ð13Þ

As can be seen through Tables 5 and 6, for negative emo-
tion detection, SimAm-TabNet outperformed the traditional
machine learning models, with the classification results of
80.67%, a Kappa value of 0.62 can be considered a relatively
good level of consistency. Synthetic data from the GAN was

used to train the model, which also tested the real dataset with
good negative emotion detection.

4. Discussion

By analyzing the results of emotion recognition using task
sample features, it can be observed that task sample features
effectively help us identify the emotional state of the writer.
This is because the task unit better reflects the overall stable
characteristics of the writer, allowing the writer’s handwrit-
ing features to more consistently reflect the changes pro-
duced by internal conditions.

The use of GANs improved the recognition accuracy of
task samples by 4.18%. GAN was used to augment the sam-
ple set of tabular data, resulting in the SimAm-TabNet model
outperforming machine learning models in terms of metrics.
GAN proves to be a successful solution for addressing the
issue of insufficient data for model training, and it helps us
generate data sets similar to the original data samples for
training models to predict emotional states. In situations
where collecting real samples is challenging, GAN can assist
in increasing the number of samples that match the experi-
mental data. By introducing the attention mechanism, the

Comparison

SVM

Random
forest

SVM

Random
forest

Train classification model Train classification model

Train
dataset

Test
dataset

Data synthesizer Synthetic
data

Original
data

Accuracy
F1-score

AUC

Accuracy
F1-score

AUC

FIGURE 8: Evaluation process of original data and synthetic data in ML.

TABLE 4: Evaluation results of original and synthetic data.

Accuracy F1-score AUC

Real
SVM 0.7672 0.7593 0.8024
Random forest 0.7912 0.7855 0.8284

Fake
SVM 0.7821 0.7754 0.8456
Random forest 0.8204 0.8122 0.8634
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original TabNet deep learning model can focus more on key
features; the incorporation of the SimAm attention mecha-
nism led to a 1.35% improvement in classification accuracy.
In comparison to other methods, such as the popular CNNs,
LSTM, and optimized LSTM deep learning algorithms [40, 41],
the TabNet model demonstrates superior performance in
handling tabular data. Tabular data may lack clear semantic
information due to context, yet the TabNet algorithm excels
in end-to-end learning while automatically selecting and pro-
cessing the most relevant features. Particularly noteworthy is
our extraction of 48 handwriting features, far surpassing the

data available in the public EMOTION database. Addition-
ally, with the incorporation of the SimAm attention mecha-
nism, the model can better select the most useful features
from the tabular data, further enhancing the performance
and generalization ability of the model.

The preliminary results of using Chinese handwriting
data to predict emotional states show feasibility. This is
because, in the emotional space model, “sadness” is posi-
tioned on the negative valence axis, representing negative
emotions, while “happiness” is positioned on the positive
valence axis, representing positive emotions, and calmness

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
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ðbÞ
FIGURE 9: “Happy” original and synthetic data trend graphs: (a) original data; (b) synthetic data.
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TABLE 5: Accuracy results of the negative and nonnegative task classification experiments.

Model Train (accuracy) (%) Test (accuracy) (%)

Logistic regression 78.31 77.78
SVM 68.67 66.67
Random forest 77.11 75.00
XGBoost 77.11 75.00
TabNet 67.47 66.67
SimAm-TabNet 61.45 61.11
Logistic regression+GAN 76.97 74.91
SVM+GAN 66.83 64.37
Random forest+GAN 76.49 75.99
XGBoost+GAN 78.32 77.45
TabNet+GAN 80.67 80.61
SimAm-TabNet+GAN 81.97 81.96
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FIGURE 10: Detailed confusion matrix information: (a) the synthetic samples predicted by the logistic regression model trained with data
generated by generative adversarial networks (GANs); (b) the original samples predicted by the logistic regression model trained with data
generated by GANs; (c) the synthetic samples predicted by the SimAm-TabNet model trained with data generated by GANs; (d) the original
samples predicted by the SimAm-TabNet model trained with data generated by GANs.
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also represents nonnegative emotions. The distinction between
these two emotions is more pronounced and is reflected in
handwriting.

5. Conclusions

In this study, a combination of audio-visual stimuli was used
to induce happy and sad emotions in 44 participants. The
collected handwriting features were organized into task sam-
ples. Machine learning models, the original TabNet deep
learning model, and the TabNet deep learning model with
the SimAm attention mechanism were employed for recog-
nizing negative and nonnegative emotions. By using the
CTAB-GAN, the quantity of task samples was increased,
enhancing the generalization ability and reliability of the emo-
tion recognition models. The recognition accuracy of task
samples improved by 4.18%. Additionally, the incorporation
of the SimAm attention mechanism led to a 1.35% improve-
ment in classification accuracy. Ultimately, the recognition
accuracy reached 80.67% on the original dataset. The findings
indicate that negative and nonnegative emotions exhibit dis-
tinguishable characteristics in handwriting, and utilizing the
handwriting features of writers effectively enables the recog-
nition of negative and nonnegative emotional states.

The classification results of the emotion recognition
scheme are not sufficiently high. Individual differences

significantly influence emotion recognition, with higher accu-
racy observed for recognizing different emotions within the
same individual compared to different individuals. It is
recommended to increase data collection to optimize the clas-
sification models and consider integrating physiological sig-
nals with emotion-related information such as speech and
facial expressions to form a multifeature fusion emotion rec-
ognition scheme, thereby improving accuracy and robustness.
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TABLE 6: Accuracy and Kappa results of models predicting the synthetic samples and the original samples in negative and nonnegative
classification experiment.

Model The synthetic samples (accuracy/Kappa) The original samples (accuracy/Kappa)

Logistic regression 75.00% 0.49 75.63% 0.43
SVM 66.82% 0.38 66.39% 0.32
Random forest 76.50% 0.51 73.95% 0.44
XGBoost 76.60% 0.51 76.47% 0.49
Tabnet 78.32% 0.58 78.99% 0.59
SimAm-TabNet 81.10% 0.63 80.67% 0.62
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