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The widespread dissemination of high-fidelity fake faces created by face forgery techniques has caused serious trust concerns and
ethical issues in modern society. Consequently, face forgery detection has emerged as a prominent topic of research to prevent
technology abuse. Although, most existing face forgery detectors demonstrate success when evaluating high-quality faces under
intra-dataset scenarios, they often overfit manipulation-specific artifacts and lack robustness to postprocessing operations. In this
work, we design an innovative dual-branch collaboration framework that leverages the strengths of the transformer and CNN to
thoroughly dig into the multimodal forgery artifacts from both a global and local perspective. Specifically, a novel adaptive noise
trace enhancement module (ANTEM) is proposed to remove high-level face content while amplifying more generalized forgery
artifacts in the noise domain. Then, the transformer-based branch can track long-range noise features. Meanwhile, considering that
subtle forgery artifacts could be described in the frequency domain even in a compression scenario, a multilevel frequency-aware
module (MFAM) is developed and further applied to the CNN-based branch to extract complementary frequency-aware clues.
Besides, we incorporate a collaboration strategy involving cross-entropy loss and single center loss to enhance the learning of more
generalized representations by optimizing the fusion features of the dual branch. Extensive experiments on various benchmark
datasets substantiate the superior generalization and robustness of our framework when compared to the competing approaches.

1. Introduction

Face forgery refers to a series of computer graphics-based or
deep learning-based techniques that can reenact the expres-
sion or swap the identity of the source face in an image to the
target face [1, 2]. The advent of face forgery techniques has
brought about revolutionary transformations in the enter-
tainment industry and visual arts. Nonetheless, the potential
for unscrupulous abuse of these techniques, e.g., creating
fake news and spreading false political propaganda, which
poses grave threats to personal privacy and information
security [3]. Against this background, the development of
effective methods for detecting facial forgery holds para-
mount significance, particularly within real-world scenarios,
as they play a critical role in enhancing the trustworthiness of
digital facial media.

In the current period, many face manipulation detection
works [4–8] rely on convolutional neural networks (CNN) to

extract forgery traces and distinguish manipulated faces.
Unfortunately, these works suffer a severe performance
drop when evaluating cross-dataset or cross-quality scenar-
ios. Although, other CNN-based approaches alleviate these
issues by introducing different prior knowledge into the
backbone network [9, 10] and improving the representation
learning paradigm [11–13], the extracted features still overfit
to manipulation-specific artifacts. This is because CNN-
based architectures have a limited receptive field, making it
challenging to capture the global representation and easier to
be disturbed by manipulation-specific inductive bias [14, 15].
Meanwhile, inspired by the advantage of the visual trans-
former in capturing long-range interregion relationships in
the visual task, some methods combine the self-attention
mechanism with CNN-based architectures or insert a few
transformer layers into CNNs for face forgery detection
[16, 17]. However, extracting global content information in
RGB space through vision transformers is not optimal for
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forgery detection, as regional differential features in high-fidelity
forged faces are difficult to expose in RGB space. Furthermore,
the transformer-based architecture presents limitations in
capturing local forgery clues since the self-attention mech-
anism emphasizes global context information while ignor-
ing fine-grained features [18]. To this end, extracting forgery
clues from both local and global perspectives is complemen-
tary and critically essential for face forgery detection.

Our work is motivated by two primary considerations. On
the one hand, capturing interregion relationships in the noise
domain from a global perspective contributes to improving the
generalization ability of the detector. As clarified by recent
approaches [9, 19], image noises can remove high-level seman-
tic content while amplifying forgery artifacts. We show some
examples in Figure 1 where the forged faces would expose noise
differences between certain artifact regions and the remaining
regions in the face. In contrast, the noise distribution of an
authentic image remains continuous across the whole face.
On the other hand, in the scenario where the visual quality
of the manipulated face degrades, subtle forgery artifacts can
be described within the frequency domain. As illustrated in
Figure 2, the low-frequency components primarily capture
the face content information, which easily causes confusion
in discriminating between authentic and forged images. Con-
versely, the middle and high-frequency components can
describe fine-grained forged details in multiple scales. There-
fore, our study would emphasize both long-range noise trace
andmultilevel frequency-aware clues, as they play a crucial role
in generalization and robustness.

Under these two motivations, we devise an innovative
dual-branch collaboration framework that leverages the
strengths of the transformers and CNNs to fully explore
multimodal forgery artifacts from both global and local per-
spectives. Specifically, we design a novel adaptive noise trace
enhancement module (ANTEM) to extract tampering arti-
facts from the noise domain for the transformer-based
branch. The ANTEM casts off incomprehensive prior

knowledge by introducing the restrictedly learnable stegana-
lysis rich model (RSRM) filters and further reinforces the
forged traces in the noise domain with a feature reuse block
(FRB). Subsequently, the enhanced noise features are split into
patches to extract long-range noise features by transformer-
based branch. In the CNN-based branch, we devise amultilevel
frequency-aware module (MFAM) consisting of data prepro-
cessing and a multilevel feature refinement block (MFRB). The
data preprocessing aims to decompose faces in the frequency
domain and extract forgery clues from the middle and high-
frequency components. Considering that middle and high-
frequency components contain forged clues of different scales,
the MFRB set convolutions with different dilation ratios to
refine the multiscale frequency-aware clues. Then, the CNN-
based branch thoroughly extracted the frequency-aware forged
clues from the local perspective. Finally, the multimodal fea-
tures of the dual branches are further fuzed and projected into a
compact embedding space. Through the supervision of a col-
laborative strategy involving cross-entropy loss and single-
center loss [21], our framework acquires a more generalized
and robust representation of forged clues.

In order to validate the effectiveness of our framework, we
perform thorough evaluations on diverse benchmark datasets,
encompassing FaceForensics++ [20], Celeb-DF [22], and
DFDC [23]. The experimental outcomes clearly indicate
that our framework surpasses the performance of competing
approaches. The main contributions of our work can be suc-
cinctly outlined as follows:

(1) There are two key features for detecting forged faces:
long-range noise features and multilevel frequency-
aware clues. A novel dual-branch collaboration frame-
work is proposed that takes full advantage of both the
transformer and CNN to mine the multimodal forgery
artifacts from a global and local perspective.

(2) To cast off introducing incomprehensive prior knowl-
edge, we design an ANTEM, which extracts and

Real DeepFake FaceSwap Face2Face NeuralTexture

FIGURE 1: Visualization examples of SRM noise maps for real face and four manipulation scenes in the FF++ [20] low-compression
subdatasets. Red boxes mark the disparities in noise domain between certain artifact regions and the remaining regions in the face.

2 IET Biometrics



reinforces the generalized noise features fitting the
forged clues in a data-driven fashion.

(3) We propose an MFAM to decompose faces and refine
forgery clues from the middle and high-frequency
components, fully leveraging robust frequency-aware
features to escape the vulnerability of spatial artifacts.

(4) Extensive experiments on a range of benchmark
datasets confirm the outstanding performance of
our framework compared to that of competitors.

2. Related Work

2.1. CNN-Based Face Forgery Detection. Given the rapid evo-
lution of deep learning, the majority of face forgery detection
methods rely on CNNs to detect manipulated faces. Early
methods attempted to capture forgery discriminant features
directly in the spatial domain. Afchar et al. [4] proposed
Meso-4 and Meso-Inception-4, which are shallow neural
networks designed to extract mesoscopic features. Nguyen
et al. [5] utilized the power representation of the capsule
network and combined it with the pretrained VGG19 for

face forensics. Rössler et al. [20] are the first to introduce
the Xception network into deepfake detection, achieving
superior performance at that time. Furthermore, some meth-
ods have incorporated spatial attention mechanisms to cap-
ture local forgery artifacts. For instance, Dang et al. [6]
proposed three supervised intensity strategies to train atten-
tion maps that direct the network’s attention toward tam-
pered regions [7]. have integrated texture features with
multiple attention maps to steer the network’s attention
toward fine-grained features in distinct local regions. How-
ever, these approaches tend to overfit to specific forgery
methods, and the distinctive features extracted from the spa-
tial domain may deteriorate as the quality of the manipulated
faces decreases.

Subsequent studies have noticed these problems and
attempted to address them by incorporating different prior
knowledge and improving the representation learning para-
digm within the backbone networks to extract generalized
and robust forgery detection features. For the former, several
approaches [9, 19, 24] integrated steganalysis rich model
(SRM) filters into the analysis framework, enabling the
exploration of generalized forgery features in the noise

Real DeepFake FaceSwap Face2Face NeuralTexture

Low
frequency

Middle
frequency

High
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FIGURE 2: Visualization examples of frequency decomposed components for the real and four manipulation scenes in the FF++ [20] high-
compression subdatasets. Capturing the differences between the real and forged images is challenging within the low-frequency component.
Two face-swapping methods expose subtle differences in facial textures within the middle-frequency component. Meanwhile, four tampering
methods expose subtle manipulation traces in different facial regions within the high-frequency component.
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domain. Zhao et al. [25] proposed a cross-modality feature
pyramid block interacting shallow subtle noise features with
deep semantic features to obtain generalized forgery detection
representation. Yang et al. [26] identified that the multiscale
texture diversity exists between real and manipulated faces,
and they introduced the central difference convolution tomodel
the texture difference descriptor. Besides, certain studies have
incorporated frequency information in an effort to enhance the
robustness of low-quality data. In [10], two complementary
branches, namely the frequency-aware decomposition (FAD)
and local frequency statistics (LFS), were introduced to detect
forged patterns in the frequency domain atmultiple scales. SPSL
[27] also integrated RGB images with phase spectra to extract
the upsampling anomalies of forged faces, thereby enhancing
the transferability of the detection model. As for the latter,
inspired by the application of transfer learning in computer
vision applications, Kim et al. [28] have proposed an innovative
method called feature representation transfer adaptation learn-
ing (FReTAL) that combines knowledge distillationwith a long-
life learning strategy to extract generalized features. Taking
inspiration from the contrastive learning, Wang et al. [29]
introduced a novel approach called the localization invariance
Siamese network (LiSiam). This network was designed to
enforce localization invariance against a variety of image
degradations for the purpose of deepfake detection. Their
framework utilized pairwise images of varying qualities and
a localization consistency loss was proposed to ensure consis-
tent localization between the two segmentation maps. How-
ever, owing to the restricted receptive field inherent in CNN-
based architectures, the above-mentioned methods have lim-
itations in capturing global representations and are easily dis-
turbed by manipulation-specific inductive bias.

2.2. Transformer-Based Face Forgery Detection. The trans-
former architecture initially showcased its outstanding perfor-
mance in various natural language processing tasks [30, 31]. Its
remarkable capability to capture extensive long-range and
global contextual information has stimulated the adaptation
of transformer to computer vision (CV) tasks [15, 32] and
derived a series of architectures called vision transformers
(ViTs). For face forgery detection, some works have [17, 33]
directly reshaped the features extracted by CNN into a series of
low-dimensional patches and passed them to VITs encoder,
achieving certain levels of generalization performance. M2TR
[34] operated patches of different sizes to model a multiscale
transformer. They further combined the frequency informa-
tion with RGB features using a cross-modality fusion module
to detect local inconsistency. However, the transformer-based
architecture has limitations in capturing local forgery clues
due to the inherent nature of its self-attention mechanism,
which emphasizes global context information while potentially
ignoring fine-grained features. Therefore, Trans-FCA [35]
proposes a local adjustment block containing a global-–local
cross-attention that focuses on fuzing local convolution and
global features at each stage of the transformer backbone.
F2Trans [36] designed an innovative high-frequency fine-
grained transformer. They enhance fine-grained representa-
tion ability by replacing the basic self-attention mechanism

with the central differential attention mechanism, which
aggregates pixel intensity and gradient information. However,
extracting global content information in RGB space through
vision transformers is not optimal for forgery detection, as
regional differential features in high-fidelity forged faces are
difficult to expose in RGB space.

3. Methods

In this section, we first introduce the ANTEM in Section 3.1.
In Section 3.2, the MFAM is devised, which comprises data
preprocessing and anMFRB. Section 3.3 introduces the dual-
branch collaborative learning framework to comprehensively
dig into the multimodal forgery artifacts from both a global
and local perspective.

3.1. Adaptive Noise Trace Enhancement Module.As the visual
quality of forged faces continues to improve, extracting visual
forgery clues within the RGB domain poses a greater chal-
lenge. Nevertheless, the hidden traces caused by tampering
can still be captured in the noise domain [9, 19, 37]. Given
such a situation, an ANTEM is proposed to remove face
semantic content and amplify more generalized forgery clues.

The structure of ANTEM is shown in the bottom left of
Figure 3. ANTEM introduces the RSRM filters within its
first layer. SRM is commonly acknowledged as a form of
residual extractor utilized in steganalysis tasks, with the
goal of suppressing the semantic components of images and
constructing a more robust and compact statistical descriptor.
The procedure for calculating the residual Rij is outlined as
follows:

Rij ¼cXij Nij

À Á
− cXij

Rij Àtrunc round
Rij

q

� �� �
8><
>: ; ð1Þ

where Nij denotes the neighboring pixels of pixel Xij and bXij
is defined as a predictor of cXij. This predictor acts as the
weights of the SRM filter in collaboration with the residual
order c. The parameter q is introduced to enhance the sensi-
tivity of residuals to spatial inconsistencies. The application
of truncation and round functions aims to compute co-
occurrence matrices in subsequent steganalysis steps. Diverse
weights of SRM filters can be meticulously designed to cap-
ture diverse relationships between the central pixel and its
neighboring pixels. For example, a second-order residual can
be defined as follows: Rij¼Xi;j−1þXi;jþ1 − 2×Xijþ 0×cNij .

Although some studies have applied SRM filters with
manually defined weights to capture manipulated artifacts
[9, 19], these approaches introduce incomprehensive prior
knowledge and have limitations in adapting to different
manipulated methods. In response to these issues, we gener-
alize the residual extractors to learning-based convolutional
filters, allowing for trainable weights within the SRM filter.
Initially, within the entire residual calculation process, the
truncation function is employed for co-occurrence matrix
calculations, a feature not utilized within our framework.
Moreover, with the introduction of learnability, the round
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function and parameter q become redundant. Consequently,
we have abandoned the truncation and round functions as
well as the parameter q in Equation (1) while ensuring that all
operations during the learning process remain differentiable.

After that, in order to prevent the disruption of the orig-
inal characteristics of SRM filter kernels used for noise com-
putation during the learning process, we have introduced a
constrained learning strategy. Specifically, following Zhou
et al. [19], we select three SRM kernels that achieved decent
performance in the image manipulation detection task and
then extend them to 5× 5× 3 as the base kernels Wb 2
R5×5×3. The base kernels are shown in Figure 4. Subse-
quently, we employ three learnable matrices with dimensions
matching the base kernel as the learnable kernelWl 2R5×5×3.
The parameters of all three kernels within Wl are

individually initialized to 1=2, 1=4, and 1=12, respectively.
Consequently, we modify Equation (1), and the definition of
RSRM residual is as follows:

R¼ I∗ Wb ⊙Wlð Þ; ð2Þ

where ⊙ denotes element-wise product, R2RH×W×C repre-
sents the residual maps produced by the convolution opera-
tion ∗ applied to input image I 2RH×W×C with both base
kernels Wb 2R5×5×3, and learnable kernels Wl 2R5×5×3.
Under this strategy, the zero-values within the base kernels
remain constant throughout the training process to preserve
the originally designed characteristics of these three SRM
filter kernels for detecting image manipulation.
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FIGURE 3: The pipeline of the proposed framework. We design a dual-branch collaborative learning framework to comprehensively dig into
the long-range noise features and multilevel frequency-aware clues. ANTEM represents the adaptive noise trace enhancement module.
MFAM represents the multilevel frequency-aware module. The collaboration strategy of single center loss Lsc and cross-entropy loss Lce
supervise the framework to learn more generalized and robust features.
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Given the fragility of features extracted by the RSRM
layer, utilizing them directly might lead to training instabil-
ity. Drawing inspiration from Huang et al. [38], we devise a
FRB to further enhance the noise features. As depicted in the
bottom left portion of Figure 3, the FRB comprises two con-
volutional layers, each consisting of a 1× 1 convolution (ker-
nels= 3, stride= 1, padding= 0) and a 3× 3 convolution
(kernels= 3, stride= 1, padding= 1). We define Hið∙Þ : as the
composite function of the i convolution layer and ½α1; α2;…; αn� :

denote the concatenation of the n feature maps. The process
can be formulated as follows:

Freu ¼ R;H1 Rð Þ;H2 H1 Rð Þ;R½ �ð Þ½ �; ð3Þ

where Freu 2RH×W×3C is the enhanced noise feature maps
obtained from the FRB. It is worth noting that the FRB does
not incorporate a nonlinear layer, as nonlinear operations
could potentially distort the manipulated clues within the noise
feature maps. AMTEN, in an adaptive manner, acquires and
amplifies manipulation traces within the noise domain, a more
appropriate approach for effective face forgery detection.

3.2. Multilevel Frequency-Aware Module. In real-world sce-
narios, forged faces may undergo compression before being
shared on social media. Therefore, maintaining robustness to
compression is crucial for face forgery detectors. As stated in
prior studies [10, 34], subtle forgery artifacts could be cap-
tured in the frequency domain even in compressed scenarios.
To this end, we have devised an MFAM comprising data
preprocessing and an MFRB to extract subtle forgery arti-
facts from the frequency domain.

As illustrated in the bottom right of Figure 3, the data
preprocessing step initially utilizes discrete cosine transform
(DCT) to convert the input image channel-wise from RGB to
the frequency domain DðXÞ :2RH×W×3. According to the
spectrum characteristics of DCT, the low frequency to high-
frequency components progressively distribute from the
upper-left corner to the bottom-right corner of the spectrum.
Following the approach in [10], we partition the spectrum
into low, middle, and high-frequency bands using three
hand-crafted binary base filters f f ib∣1≤ i≤ 3g: based on a
roughly equal energy principle. To be specific, the entire spec-
trum is empirically divided into three parts: (1) The low-
frequency band encompasses the initial 1/16 of the entire
spectrum. (2) The middle-frequency band spans from 1/16
to 1/8 of the entire spectrum. (3) The high-frequency band
encompasses the remaining 7/8 of the entire spectrum. Given
that forgery artifacts typically appear in the middle to high-
frequency portions, we utilize two binary base filters f f 1b ; f 2b g:

to capture the middle and high-frequency information. Sub-
sequently, two learnable filters f f 1l ; f 2l g: are incorporated
alongside these two binary base filters. These learnable filters
serve the purpose of adaptively selecting frequencies of inter-
est beyond the fixed base filters. The resulting decomposed
frequency components are defined as follows:

Ci ¼ D Xð Þ⊙ f ib þ θ f il
À ÁÀ Á

; i¼ 1; 2f g; ð4Þ

where D is DCT, the θð f Þ:¼ 1−expð−f Þ
1þexpð−f Þ is used for normalizing

the value of f between − 1 and þ 1. To maintain the local
consistency and shift-invariance of natural images, we
reverse the decomposed components Ci 2RH×W×3 back into
the RGB domain using IDCT and reassemble them along the
channel axis to obtain the desired representation C−1 2
RH×W×6. The process can be calculated as per the equation:

C−1 ¼ D−1 C1ð Þ;D−1 C2ð Þ½ �: ð5Þ

After data preprocessing, the CNN-compatible frequency
representations contain forged clues within the middle to
high-frequency range. The MFRB processes C−1 using three
parallel dilated convolution layers with different dilation rates
(2, 3, and 4) to extract multiscale frequency-aware clues. Each
dilated convolution layer comprises of a 1× 1 convolution
(kernel= 3, stride= 1, padding= 0) and a 3× 3 dilated con-
volution (kernel= 3, stride= 1, padding= i, dilation= i, i= 2,
3, 4). Furthermore, an extra 1× 1 convolution (kernel= 3,
stride= 1, padding= 0) acts as a skip connection between
consecutive blocks. Subsequently, we concatenate these fea-
ture maps and apply BatchNormalization and ReLU nonline-
arity to integrate multiscale frequency-aware feature maps
C−10 2RH×W×12. Finally, a spatial attention layer is adopted
to refine and highlight the manipulation traces in the C−10 , as
follows:

Fref ¼ σ f 7×7 AvgPool C−10
À Á

; MaxPool C−10
À ÁÂ ÃÀ ÁÀ Á

;

ð6Þ

here, f 7×7 denotes convolution with a 7× 7 filter. AvgPool()
and MaxPool() refer to average and maximum pooling,
respectively.

3.3. Dual-Branch Collaborative Learning Framework. The
two kinds of forgery clues, namely long-range noise features
and multilevel frequency-aware clues, are pivotal in improv-
ing generalization and robustness. Considering the distinct
characteristics of these two forgery features, we implement a
dual-branch collaborative learning framework as shown in
Figure 3. This framework is designed to leverage the strengths
of both the transformer and CNN, enabling comprehensive
exploration of these multimodal forgery clues from both
global and local perspectives.

To be specific, for the transformer-based branch, we have
employed Swin-B [32] as the backbone of the encoder. The
enhanced noise feature maps Freu 2RH×W×3C obtained from
the ANTEM are subdivided into nonoverlapping regions of
size 4× 4× 3 to transform the Freu into sequence embed-
dings. Then, a linear embedding layer is utilized to convert
the embedded dimension into 128. Following this, the fea-
tures are passed through four consecutive Swin transformer
layers, forming hierarchical feature maps that begin with
smaller patches and progressively merge them as the network
gets deeper in layers. Figure 5 illustrates the two sequential
Swin blocks of the Swin transformer layer. Each Swin block is
of a layer normalization (LN), a multihead self-attention
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(MSA) unit, residual connections, and a 2-layerMLP employ-
ing GELU nonlinearity. The window-basedMHSA (W-MSA)
unit and the shifted window-based MHSA (SW-MSA) unit
are alternately applied to two consecutive Swin-transformer
blocks. Both units perform self-attention within nonoverlap-
ping windows, leading linear computation complexity.
Meanwhile, the SW-MHSA unit promotes cross–window
interaction without incurring additional computational costs.
Compared with the VIT architecture, the Swin-transformer
can effectively integrate hierarchical local features while cap-
turing long-range dependencies of noise features.

For the CNN-based branch, we adopt EfficientNetB4 [39]
as the encoder’s backbone due to its remarkable classification
performance with fewer parameters and low-FLOPs costs. As
depicted in Figure 2, the refined frequency feature maps Fref
obtained from the MFAM are fed into seven consecutive
layers, comprising 2 MBConv1 blocks and 30 MBConv6
blocks. The architecture of MBConv1 block and MBConv6
block are illustrated in Figure 6. The MBConv1 block consists
of depthwise convolution, batch normalization (BN),
squeeze-and-excitation module (SE) [40], and pointwise con-
volution with a BN layer. In contrast, the MBConv6 block
incorporates an additional pointwise convolution and BN
layer when compared to the MBConv1 block. Unlike the
vision transformer-based architecture, CNNs still maintain
their advantage in extracting spatial local features, which is
crucial for capturing subtle forged artifacts.

As described above, the input image I 2RH×W×C is pro-
cessed through a dual-branch network, getting long-range noise
features Fnoi 2RH=32×W=32×1;024 and multilevel frequency-aware
features Ffre 2RH=32×W=32×1;792, respectively. We concatenate
them and apply the channel attention on the connected features
Fc 2RH=32×W=32×2;816 to strengthen the pertinent discriminant
features based on data characteristics. The process is defined as
follows:

Fm ¼ δ W1 W0 AvgPool Fcð Þð Þð Þð
þW1 W0 MaxPool Fcð Þð Þð Þ ; ð7Þ

where W0 2RC×C=r and W1 2RC=r×C are the MLP weights.
Subsequently, the multimodal fusion feature, generated by
applying a global average and a dense layer, is utilized for
binary class prediction. Considering that the cross-entropy

loss primarily guides the network in distinguishing between
two specified data distributions in binary classification tasks,
this potentially leading to overfitting to data specific to certain
forgery methods in the face forgery detection task. Inspired by
the insight that the single-center loss [21] can learn decision
boundaries suitable for both forged and authentic faces in the
face forgery detection task, we have employed a collaborative
strategy involving cross-entropy loss and single-center loss to
acquire more generalized forgery representations. In detail,
given the diverse feature distributions of manipulated faces
created by different manipulation methods, aggregating all
manipulated faces usually leads to erroneous optimization
directions for the network. The single-center loss compresses
intra-class variations of real faces within the embedding space,
while also promoting interclass differences between fake and
real faces. The single-center loss is formulated as follows:

Lsc ¼Mr þmax Mr −Mf þm
ffiffiffi
L
p

; 0
À Á

; ð8Þ

where Mr and Mf represent the mean Euclidean distance
from features of real faces and fake faces, respectively, to
the center point C within a batch. The margin is designed
asm

ffiffiffi
L
p

, wherem controls the margin and L is the dimension
of features. The mean Euclidean distance function between
the two is formulated as follows:

Mr ¼
1
Ωrj j

∑
i2Ωi

fi − Ck k2

Mf ¼
1

Ωf

�� �� ∑
i2Ωf

fi − Ck k2
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>>>: ; ð9Þ
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FIGURE 6: The architectural design of the MBConv1 block and
MBConv6 block employed within the MBConv layers.
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whereΩr and Ωf represent the set of real faces and fake faces
within a batch, respectively. Therefore, the total loss function
equation can be expressed as follows:

Ltotal ¼ Lce þ λLsc; ð10Þ

where λ serves to control the balance between the collabora-
tive supervised loss functions.

4. Experiments

In this section, we initially outline the experimental setups
and offer implementation specifics. Subsequently, we will
present thorough experimental results to validate the super-
ior performance of our proposed approach.

4.1. Experimental Settings

4.1.1. Datasets. For a comprehensive evaluation of the per-
formance of our framework in detecting manipulated faces,
as well as its generalization across datasets and robustness in
different perturbation scenarios, we conduct comprehensive
experiments on three widely used face forgery benchmark
databases.

(1) FaceForensic++ (FF++) [20] is a widely used facial
manipulation database and currently serves as a
benchmark for face forgery detection tasks. FF++
comprises 1,000 original videos sourced from You-
Tube, along with 4,000 videos subjected to manipu-
lation using four distinct methods. These
manipulation techniques include two graphics-based
approaches, namely FaceSwap and Face2Face, as well
as two deep learning-based methods, DeepFakes and
NeuralTextures. The database categorizes videos into
three quality levels based on their compression levels:
c0 (RAW), lightly compressed c23 (HQ), and heavily
compressed c40 (LQ). Following the settings outlined
in previous work [20], out of the 1,000 videos for
each category, 720 videos are used as the training
set, and the remaining 280 videos are equally divided
for the validation and test sets. During the training
process, we address category imbalance between original
and manipulated data by augmenting original videos
four times. We sample 270 frames from each training
video and 100 frames from each video in the validation
and testing sets. Given that forgeries encounter in real-
world scenarios often exhibit restricted quality, we
present the performance metrics for both the lightly
compressed and heavily compressed versions of the
database.

(2) Celeb-DF [22]: Celeb-DF is a challenging new dataset
centered around deepfake-based videos, meticulously
crafted using advanced deepfake algorithms to pro-
duce high-quality fake videos. This dataset encom-
passes 590 authentic videos sourced from YouTube
and an additional 5,639 fake videos. We utilize the
officially disclosed Celeb-DF test set to assess the
cross-database generalization performance of our

method. From each video within this test set, we
sample a total of 32 frames for our evaluation.

(3) DFDC [23]: DFDC is a large-scale dataset initially
introduced for the deepfake detection challenge. The
DFDC comprises 19,154 authentic videos and 100,000
synthetic videos. The authentic videos exhibit a wide
array of subjects and backgrounds, simulating real-
world scenarios and encompassing diversity in factors
such as skin tone, gender, and lighting conditions. On
the other hand, the forged videos are generated using
various deepfake techniques, further amplifying the
complexity of the detection task. In our experiments,
we follow the partitioning scheme in prior research
[41]. For evaluating cross-database generalization, we
employ the folders designated from 40 to 49 as our test
set and sample 32 frames for each video.

4.1.2. Implement Details. For video processing and the exe-
cution of frame-level experiments, we employ the open-
source face detector DLIB [42] to detect and extract faces
from each frame. The detected face region is then expanded
by a factor of 1:3 around the center of the detected face.
Subsequently, the detected faces are resized to 224× 224.
In our experiments, we utilize Swin-B, pretrained on Ima-
geNet, as the backbone network for the transformer-based
branch and EfficientNetB4, pretrained on ImageNet, as the
backbone network for the CNN-based branch. The parame-
ter m in Equation (8) is set to 0:3. The parameter λ in the
Equation (10) is set to 0:5 to control the tradeoff between Lsc
and Lce. During the training process, the framework is opti-
mized using the Adam [43] optimizer with the specified
hyperparameter settings ðβ1¼ 0:9; β2¼ 0:999; ε¼ 10−8Þ :. The
framework was trained for 30; 000 iterations, with a batch size
of 32. The initial learning rate is halved if the validation loss
does not decrease for three consecutive validation iterations
(validation is conducted every 500 iterations). Training is
terminatedwhen the learning rate reach 1× 10−12. Our experi-
ments are implemented using the open-source PyTorch plat-
form on a workstation equipped with an Intel (R) i7-10700k
CPU and a single NVIDIA RTX 3090 GPU.

4.1.3. Evaluation Metrics. To evaluate our proposed method
and compare it with other state-of-the-art facial forgery detec-
tion approaches, we employ the evaluation metrics of accuracy
(Acc) and the area under receiver operating characteristic
curve (AUC), consistent with recent research [7, 9, 34]. (1)
Acc: We utilize the frame-level Acc the most direct metric to
assess the detection performance within the intra-class scene of
FaceForensic++. (2) AUC: Frame-level AUC is employed as
an additional metric to assess the effectiveness within the intra-
dataset scenario and evaluate the generalization performance
across different benchmarks, including Celeb-DF and DFDC.

4.2. Comparison with Previous Methods. In this subsection,
we perform a series of comparative experiments with prior
face forgery detection methods on the three aforementioned
datasets to validate the effectiveness, generalization, and
robustness of our method.
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4.2.1. Evaluation and Comparison on FF++.
(1) Different Video Quality Settings. We conduct a compara-
tive analysis of our framework with previous detection meth-
ods on both the high quality (c23) and low quality (c40)
versions of FF++. The results of the comparison are listed
in Table 1, with the best results highlighted in bold font. Our
approach obviously surpasses the previously referenced meth-
ods, including Steg.Features [44], LD-CNN [45], constrained
Conv [46], and MesoNet [4], in terms of both Acc and AUC
metrics. Xception and EfficientNetB4 are two potent CNN-
based backbone networks commonly used in current state-
of-the-art face forgery detectors. Under two quality versions,
the proposed method achieves a 2:02% and 3:82% improve-
ment in AUC compared to Xception, and a 1:03% and 2:72%
improvement compared to EfficientNetB4, respectively. Simi-
larly, compared to transformer-based backbone networks, our
approach outperforms ViT by 11:61% and 10:03% and Swin-B
by 7:02% and 6:1% in terms of AUC under the two quality
versions. Our method also outperforms top-performing meth-
ods, including Face X-ray [48] and SPSL [27]. Face X-ray relies
on distinguishing differences around mixed boundaries, which
can lead to the disruption of mixed traces in high-compression
scenarios, limiting its detection performance. On the other

hand, SPSL suppresses face semantic content by discarding
several convolutional blocks and focusing on local textures.
While this direct approach improves generalization, it simulta-
neously constrains the network’s feature extraction capability.
Furthermore, compared with the open-source methods GFFD
andMADD,we reproduce them in our experimental conditions
for a fair comparison. GFFD andMADD can achieve promising
performance in the c23 version due to the introduction of
different prior knowledge. Nonetheless, the features learned
by these two approaches are sensitive to high-compression
rates. In contrast, our framework achieves a leading position
in both c23 and c40 scenarios. This can be attributed to the
introduction of multimodal features from both global and
local perspectives, which enhance the effectiveness of intra-
dataset scene detection. Additionally, the incorporation of
multilevel frequency-aware clues enhances the robustness of
our framework in the high-compression scenarios.

(2) DifferentManipulationMethods. Furthermore, we also
assess our framework against four different manipulation
methods in FF++. For each manipulation method, the pro-
posed framework is trained and tested on the LQ version to
validate the robustness of our framework to compression. The
test results are listed in Table 2. It is evident that our approach

TABLE 1: Quantitative comparison results for different quality settings in FF++ dataset.

Methods
Level HQ (c23) LQ (c40)

Metric Acc AUC Acc AUC

Steg. Features [44] 70.97 — 55.98 —

LD-CNN [45] 78.45 — 58.69 —

Constrained Conv [46] 82.97 — 66.84 —

MesoNet [4] 83.1 — 70.47 —

DSP-FWA [47] — 57.49 — 62.34
Face X-ray [48] — 87.4 — 61.6
Xception [20] 94.93 97.32 83.52 86.02
EfficientNetB4 [39] 95.84 98.31 85.14 87.12
Vit [15] 84.32 87.73 76.53 79.81
Swin-B [32] 90.64 92.32 81.68 83.74
SPSL [27] 91.5 95.32 81.57 82.82
GFFD [9] 96.18 98.56 86.16 87.94
MADD [7] 97.12 99.05 85.78 87.31
Our 97.37 99.34 88.21 89.84

The best results are marked in bold fonts.

TABLE 2: Quantitative comparison results in terms of Acc and AUC on FF++ dataset with four manipulation methods.

Methods
Manipulations (LQ) Deepfake Face2Face FaceSwap NeuralTexture

Metrics Acc AUC Acc AUC Acc AUC Acc AUC

Xception [20] 92.81 94.32 85.21 87.04 91.84 93.83 75.21 77.67
EfficientNet [39] 93.12 95.64 85.32 87.21 92.38 94.23 76.41 79.13
Vit [15] 79.86 82.78 67.91 69.34 76.65 79.18 65.43 68.78
Swin-B [32] 85.25 88.32 76.68 78.12 83.43 85.16 72.31 75.14
GFFD [9] 94.02 96.01 86.02 88.23 92.52 94.22 79.21 82.97
MADD [7] 94.47 96.43 86.87 89.42 93.66 95.45 81.21 83.61
Ours 95.58 97.01 88.23 90.81 94.74 96.16 83.46 86.02

The best results are marked in bold fonts.
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surpasses the CNN-based backbone networks, including
Xception and EfficientNet, as well as the transformer-based
backbones, such as ViT and Swin-B, for each manipulation
type. GFFD enhances generalization by extracting multiscale
noise features and suppressing method-specific textures.
However, when detecting local manipulation types, such as
Face2Face and NeuralTexture, its performance improvement
is limited. Noting that NeuralTextures pose the greatest chal-
lenge, as they only modify the pixels in the lip region corre-
sponding to facial expressions, leaving behind synthesized
realistic faces without noticeable forgery artifacts. While
MADD has improved its ability to detect local artifacts by
using multiple attention maps and enhancing shallow texture
features, it still struggles to capture texture differences effec-
tively in high compression scenarios. Therefore, MADD also
achieved limited improvements in the detection of local
manipulation types. As shown in Table 2, the test results
demonstrate the robustness of our proposed framework.
Compared toMADD, our method achieves a 2:26% improve-
ment in AUC for detecting NeuralTexture manipulation. This
performance improvement can be primarily attributed to
MFAM, which captures multiscale local forgery artifacts in
the frequency domain.

4.2.2. Evaluation and Comparison on Cross-Dataset. In real-
world scenarios, many manipulated facial data remain entirely
unknown, as they are generated through Unspecified forgery
methods based on undisclosed source faces. Therefore, the
generalization performance is crucial for deepfake detection
tasks. To assess the generalization capability of our framework
in real-world scenes, we conduct cross-dataset evaluation
experiments. In particular, the models are trained using four
manipulations from FF++ (c23) and tested on the high-quality
dataset Celeb-DF, as well as the large-scale dataset DFDC. As
shown in Table 3, we highlighted the best results in bold font,
and also underlined the second-best results among all the
approaches listed. All methods exhibit a noticeable drop in
performance when evaluated on unseen datasets compared
to the intra-dataset evaluation. The transformer-based back-
bone networks achieve better generalization performance com-
pared to CNN-based backbone networks, especially ViT. This

indicates that the long-range dependent features improve
generalization in deepfake detection tasks. Our framework
achieves an AUC performance improvement of 6:85% and
5:44% compared to EfficientNetB4 on the Celeb-DF and
DFDC datasets, respectively. Similarly, on the Celeb-DF
and DFDC datasets, our AUC performance is 5:02% and 4:6%
higher than that of Swin-B. Furthermore, in most instances, our
method achieves leading-edge performance when contrasted
with recent face forgery detectors. This can be attributed to
the utilization of long-range noise features and cooperative
supervision strategies, which have been discussed in the abla-
tion study. It is worth noting that while SPSL exhibits better
generalization performance on Celeb-DF compared to our
method, its shallow network architecture comes at the cost of
significantly lower AUC scores within the intra-dataset scene.

4.3. Ablation Study. In this subsection, we conduct thorough
experiments to analyze the effectiveness of various compo-
nents of our framework in both intra-dataset (FF++ (c40))
and cross-dataset (Celeb-DF) scenarios. Note that our frame-
work and its variants are trained on the FF++ (c40) train set
and evaluated on both the intra-dataset (FF++ (c40) test set)
and cross-dataset (Celeb-DF test set) scenarios. All ablation
experiments are evaluated using AUC and Acc metrics.

4.3.1. Analysis on Different Components.We conduct experi-
ments to analyze the proposed modules, including ANTEM,
MFAM, the dual-branch network, and the collaboration
strategy of single center loss and cross-entropy loss. The
experimental results are shown in Table 4. First, we
observed in Variant 3 that combining the CNN-based and
transformer-based branches improves performance in the
cross-dataset scenario, suggesting that integrating both local
and global features can enhance the generalization capability
of the deepfake detector. Simultaneously, the nearly
unchanged performance in FF++ (c40) indicates that the
features extracted from the RGB spatial domain lack
robustness under high compression. Then, the Variant 4
and Variant 5 further validate that the long-range noise
features extracted by the transformer-based branch and the
multilevel frequency-aware clues extracted by the CNN-based

TABLE 3: Quantitative cross-dataset comparison results for AUC metric on Celeb-DF and DFDC, with training on FF++(c23).

Methods Training Set Celeb-DF DFDC

Xception [20] FF++(c23) 65.23 68.21
EfficientNetB4 [39] FF++(c23) 66.31 69.45
Vit [15] FF++(c23) 69.14 70.31
Swin-B [32] FF++(c23) 68.13 70.29
M2TR [34] FF++(c23) 65.70 —

SPSL [27] FF++(c23) 76.88 66.16
MD-CSDNet [49] FF++(c23) 68.77 —

F3-Net [10] FF++(c23) 65.17 —

MTD-Net [26] FF++(c23) 70.12 —

MADD [7] FF++(c23) 68.21 71.02
GFDD [9] FF++(c23) 70.13 72.17
Ours FF++(c23) 73.16 74.89

The best results are denoted in bold, and the second-best results are underlined.
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branch individually enhance the model’s generalization
capability in deepfake forgery detection and its robustness
in compressed scenarios. Furthermore, the simultaneous
utilization of ANTEM and MFAM leads to a notable
improvement in the framework’s capacity for facial forgery
detection, as shown in Variant 6. Specifically, when compared
to EfficientNetB4, there is an improvement of approximately
1:49% in AUC in the intra-dataset scenario and a 5:6% increase
in generalization performance on the AUC score in the cross-
dataset scenario. Similarly, compared to Swin-B, there is an
improvement of approximately 4:87% in AUC in the intra-
dataset scenario and a 3:31% increase in generalization
performance on the AUC score in the cross-dataset scenario.
These improvements validate the complementary nature of
long-range noise features and multilevel frequency-aware
clues. Furthermore, our framework achieves state-of-the-art
performance when the single center (SC) loss is introduced.
This indicates that the SC loss compels the framework to
learn classification boundaries within the fuzed feature
embedding that are more suitable for deepfake detection
tasks, thus avoiding overfitting specific data distributions.

4.3.2. Analysis on ANTEM. To validate the effectiveness of the
ANTEM, we analyzed the effect of each component in the
ANTEM module, including the RSRM filters and FRB.
Experiments are conducted on the transformer-based branch,
supervised by cross-entropy loss alone. The experimental
results are presented in Table 5. From Variant 2 to Variant 3,
it can be observed that long-range noise features, as opposed to
long-range dependencies extracted from the RGB domain,
contribute to enhancing the model’s generalization capability
in the deepfake detection task. Compared to hand-crafted SRM
filters [9] (denoted as SRM-Fix), RSRM learns to fit forged

clues more effectively without compromising the essence of
noise feature extraction. The results demonstrate that RSRM,
by avoiding the introduction of insufficient prior knowledge,
exhibits enhanced robustness not only in the FF++ (c40)
scenario but also superior generalization in the cross-dataset
scenario (Celeb-DF). Furthermore, with the introduction of the
FRB in Variant 4, there is an improvement of approximately
0:36% in AUC in the intra-dataset scenario and a 0:71%
increase in generalization capability on the AUC score in the
cross-dataset scenario compare to Variant 3. This suggests that
the FRB further strengthens the noise features extracted
by RSRM.

4.3.3. Analysis on MFAM.MFAM involves a data preproces-
sing step to decompose different frequency components and
the MFRB for enhancing multilevel frequency-aware clues.
Ablation experiments are conducted to assess the impact of
different decomposed frequency components and MFRB.
We referred to the low, middle, and high-frequency compo-
nents as LF, MF, and HF. These experiments were performed
on the CNN-based branch, with supervision solely by the
cross-entropy loss. The experimental results are presented
in Table 6. The results from Variant 2 to Variant 3 indicate
that extracting forgery clues from mid to high-frequency
components contributes to improving the model’s detection
performance under the high-compression scenario. However,
when considering low, mid, and high-frequency information
simultaneously in Variant 4, the model’s performance even
decreased by 0:15% in terms of AUC in the FF++ (c40)
scenario and by 1:59% in Celeb-DF compared to Variant 3.
This implies that low-frequency components introduce con-
tent information unrelated to forgery, thereby confusing
the model’s ability to distinguish between authentic and

TABLE 4: Ablation studies on different branches and proposed components.

Methods
Variant FF++(c40) Celeb-DF

EfficientNetB4 Swin-B ANTEM MFAM SC+CE Acc AUC AUC

1 ✓ 85.14 87.12 64.12
2 ✓ 81.68 83.74 66.41
3 ✓ ✓ 86.21 87.34 67.11
4 ✓ ✓ ✓ 86.23 87.32 68.78
5 ✓ ✓ ✓ 87.27 88.46 67.43
6 ✓ ✓ ✓ ✓ 87.45 88.61 69.72
7 ✓ ✓ ✓ ✓ ✓ 88.21 89.84 71.02

We progressively add each component and compare the detection performance in the intra-dataset (FF++(c40)) and cross-dataset (Celeb-DF) scenarios. The
best performances are marked with bold fonts.

TABLE 5: Ablation studies of ANTEM were carried out in the transformer-based branch within intra-dataset (FF++(40)) and cross-dataset
(Celeb-DF) scenarios.

ID Variant
FF++(c40) Celeb-DF

Acc AUC AUC

1 Swin-B 81.68 83.74 66.41
2 Swin-B+ SRM-Fix 80.21 82.17 67.02
3 Swin-B+RSRM 82.51 84.66 67.42
4 Swin-B+RSRM+ FRB 83.42 85.02 68.13

The best performances are marked with bold fonts.
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manipulated faces. Furthermore, with the introduction of
MFRB in Variant 5, there is a noticeable enhancement in
robustness under FF++ (c40) and generalization perfor-
mance in Celeb-DF compared to Variant 3. This suggests
that MFRB further refines and aggregates multilevel
frequency-aware clues, allowing the backbone network to
extract forgery clues more effectively from the local regions.

4.4. Visualization Experiments. To gain deeper insights into
the proposed framework, we conducted a comparative anal-
ysis of the feature maps learned by our framework and the
baseline models (EfficientNetB4 and Swin-B) under different
quality settings, as depicted in Figure 7. We utilized gradient-
weighted class activation mapping (Grad-CAM) [50], an
advanced visualization technique that generates heatmaps
to enhance visual explanations of network behavior. More-
over, we separately added ground truth masks in the second
column for scenes c23 and c40. In the ground truth masks,
white portions represent tampered areas, while black por-
tions indicate unaltered background regions. We observe

that, compared to the ground truth, EfficientNetB4 localizes
distinct specific areas for various forgery methods. This indi-
cates that CNN-based approaches are prone to introducing
method-specific inductive biases, leading to overfitting on
particular forgery methods. In contrast to CNNs, it can be
observed that Swin-B have a notable capacity to capture
long-range relationships through a self-attention mechanism
among image patch tokens. However, Swin-B ignores crucial
artifacts in the facial region while learning coarse-grained
global information. Furthermore, as mentioned in Section
4.3.1, forged artifacts in the RGB spatial domain exhibit vul-
nerability in high compression scenarios. Therefore, com-
pared to the c23 scenario, both EfficientNet and Swin-B
extract fewer informative discriminative features in the c40
scenario. Compared with EfficientNetB4 and Swin-B, our
framework not only extracts global features but also prevents
the disappearance of subtle facial forgery discriminative fea-
tures. For example, in the c23 scenario, our framework can
capture the blending traces of face-swapping manipulation
methods compared to the ground truth, and even in the c40

TABLE 6: Ablation studies of MFAM were carried out in the CNN-based branch within intra-dataset (FF++(40)) and cross-dataset (Celeb-
DF) scenarios.

ID
Variant FF++(c40) Celeb-DF

EfficientNetB4 Data preprocessing MFRB Acc AUC AUC

1 ✓ 85.14 87.12 64.12
2 ✓ HF 86.52 88.13 65.23
3 ✓ HF+MF 86.65 88.31 65.81
4 ✓ HF+MF+ LF 85.71 87.16 64.22
5 ✓ HF+MF ✓ 87.22 88.41 66.32

The best performances are marked with bold fonts.

DeepFake

FaceSwap

Face2Face

NeuralTexture

Real

EfficientNetB4 Swin-B OurGround-truth EfficientNetB4 Swin-B OurGround-truth

FIGURE 7: The visualization includes ground-truth, Grad-CAM visualizations of feature maps learned by the baseline models (EfficientNetB4
and Swin-B), and our framework, corresponding to different columns. We separately display the Grad-CAM visualizations of real and four
different forgery methods in each row for scenarios c23 and c40. Note that the models are trained on different methods under two
compression rates in FF++.
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scenario, our method can still capture local manipulation
clues in the lip area of facial reenactment methods. This is
attributed to our framework’s comprehensive utilization of
multimodal forgery features from both global and local
perspectives.

5. Conclusion

In this paper, we have proposed an innovative dual-branch
collaboration framework that leverages the strengths of both
transformer and CNN to thoroughly explore multimodal
forgery artifacts from both global and local perspectives. Spe-
cifically, a novel ANTEM is proposed in the transformer-
based branch to remove high-level face content while ampli-
fying more generalized forgery artifacts in the noise domain.
An MFAM is developed and further applied to the CNN-
based branch to extract complementary frequency-aware
clues in middle and high components. Additionally, a collab-
oration strategy involving cross-entropy loss and single center
loss is introduced to enhance the learning of more generalized
and robust representations by optimizing the fusion features
of the dual branch. Extensive ablation experiments confirm
the effectiveness of each component and comprehensive com-
parative experiments demonstrate the generalization and
robustness of our framework.

In our upcoming research, we will explore how to inte-
grate multimodal clues with mask information. We aim to
locate the manipulated regions, extract forgery-relevant fea-
tures with higher precision, and filter out forgery-irrelevant
features.
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