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Text-independent speaker verification (TI-SV) is a crucial task in speaker recognition, as it involves verifying an individual’s claimed
identity from speech of arbitrary content without any human intervention. The target for TI-SV is to design a discriminative network
to learn deep speaker embedding for speaker idiosyncrasy. In this paper, we propose a deep speaker embedding learning approach of
a hybrid deep neural network (DNN) for TI-SV in FM broadcasting. Not only acoustic features are utilized, but also phoneme
features are introduced as prior knowledge to collectively learn deep speaker embedding. The hybridDNN consists of a convolutional
neural network architecture for generating acoustic features and a multilayer perceptron architecture for extracting phoneme
features sequentially, which represent significant pronunciation attributes. The extracted acoustic and phoneme features are
concatenated to formdeep embedding descriptors for speaker identity. The hybridDNNdemonstrates not only the complementarity
between acoustic and phoneme features but also the temporality of phoneme features in a sequence. Our experiments show that the
hybrid DNN outperforms existing methods and delivers a remarkable performance in FM broadcasting TI-SV.

1. Introduction

Speaker recognition is a process that involves identifying
individuals from their speech segments without any human
intervention. The field of speaker recognition can be catego-
rized into two main tasks: speaker identification (SI) and
speaker verification (SV). SI is focused on identifying the
speaker’s identity, while SV seeks to authenticate whether
the speaker is the target individual. As the ubiquity of smart
devices increases, SV has become a crucial technology in
many applications, such as identity verification [1], criminal
investigation [2], and financial services [3]. For example, in
terms of identity verification, SV can be applied to personal
smart devices such as mobile phones, vehicles, and laptops,
ensuring the security of bank transactions and remote pay-
ments. SV can be divided into two categories [4]: text-
dependent SV (TD-SV) and text-independent SV (TI-SV).
TD-SV restrains speech content, e.g., Google devices adopt
the fixed “ok, google” as a voice password, and TI-SV does
not have such restriction. As speech content is not taken into

account, the variation of speech in TI-SV is much larger than
that in TD-SV, making TI-SV a challenging task. In general,
the TI-SV can be categorized into two-stage and end-to-end
implementations. The two-stage TI-SV systems consist of a
front-end for extracting embedding descriptors and a back-
end for calculating the similarity score between a pair of
embedding descriptors, while the end-to-end TI-SV systems
combine the two ends together and calculate the similarity
score directly for two embedding descriptors. In this paper,
we focus on the deep speaker embedding learning for the
two-stage TI-SV.

Traditional TI-SV approaches utilize an unsupervisedGauss-
ian mixture model-universal background model (GMM-UBM)
framework [5] since 2000, and GMM-UBM-based i-vector [6]
demonstrates effectiveness as well for TI-SV. Though the afore-
mentioned approaches have proven to be effective, the main
issue is the drawback of unsupervised approaches, where mod-
els are not necessarily supervised by speaker discriminative
features. Several supervised GMM-UBM-based TI-SV
approaches have been developed, e.g., the approach [7] of
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GMM-UBM-based i-vector front-end with probabilistic linear
discriminant analysis back-end is superior for TI-SV. The super-
vised approaches have been developed as discriminative models
for supervising the generative frameworks and demonstrated
promising results. However, these GMM-UBM-based i-vector
approaches suffer from sensitivity to lexical variability for short
speech utterances. Due to the remarkable success of deep neural
network (DNN) [8–10] and the easy availability of large corpus
[11–13], recent TI-SV studies have shifted from GMM-UBM-
based i-vector systems towards DNN-based paradigms, in which
long short-term memory network (LSTM), convolution neural
network (CNN), as well as time-delay neural network (TDNN)
are employed as front-end for learning deep speaker embedding
from acoustic features of speech segments. The DNNs consider
and process the input acoustic features as a grayscale image,
which has three dimensions for frequency, time, and channel,
respectively. As the acoustic features propagate on the front-end
DNNs, speaker identity-related information is extracted layer by
layer. The DNN-based front-end TI-SV paradigms can be cate-
gorized into frame-level and utterance-level methods for proces-
sing acoustic features. Frame-level methods adopt DNNs for
extracting deep speaker embedding from acoustic features of a
frame to represent the speaker, and d-vector [14] is a typical
frame-level approach. Differently, utterance-level methods uti-
lize DNNs for learning deep speaker embedding from acoustic
features of an utterance to represent the speaker, in which tem-
poral average pooling or one of other advanced pooling is intro-
duced for feature aggregation. x-vector [15] and r-vector [16] are
two famous utterance-level methods, which outperform both i-
vector and d-vector, making utterance-level methods the main-
stream in TI-SV.

In the past years, phoneme has been successfully applied
in speech recognition (speech-to-text), and phoneme fea-
tures are abstract classes describing the movements or posi-
tions of different phonetic units during speech production.
The features are rarely investigated in deep speaker embed-
ding learning for TI-SV. Intuitively, phoneme is regarded as
a nuisance for TI-SV since the speaker embedding should be
independent for speech content. However, phoneme features
have been tried to be integrated into embedding learning for
performance boost, e.g., it is shown that the performance of
the x-vector-based system [17] composed of speaker classifi-
cation and phoneme unit recognition is improved signifi-
cantly. The counter-intuitive result is that the multitask
learning mechanism can instead focus on the specific pho-
nemes that contain rich speaker information, improving the
discriminability of the speaker embedding descriptors for
speaker identity. Related works [18, 19] also prove that in
multitask models, it is effective to adopt phoneme unit rec-
ognition as an auxiliary task to learn deep speaker embed-
ding descriptors for TI-SV. A reasonable explanation for this
situation is that phoneme unit recognition in TI-SV is bene-
ficial to capture the important speaker pronunciation attri-
butes, which may contain discriminative phonetic units for
encouraging interclass separability and intraclass compact-
ness in a series of speakers. These above methods treat pho-
neme feature learning as an auxiliary task for multitask
networks; that is, the extracted deep speaker embedding

descriptors are still extracted only from acoustic information,
which motivates us that it may be meaningful to introduce
phoneme information as prior rather than posterior knowl-
edge into deep speaker embedding learning.

In this paper, we propose a deep speaker embedding
learning approach, which integrates both acoustic and pho-
neme information for speaker identity. Introducing pho-
neme is helpful for presenting speaker pronunciation
attributes to improve TI-SV performance. First, a proposed
CNN is utilized as UBM to process acoustic features. Second,
a multilayer perceptron (MLP) structure is constructed as
phoneme feature extraction (PFE) to extract phoneme fea-
tures. Third, the extracted acoustic and phoneme features are
aggregated into embedding descriptors for speaker idiosyn-
crasy. Open-source English corpus Voxceleb1 and Mandarin
corpus Aishell1 are, respectively, employed to evaluate our
hybrid network. The two corpora are well-known and large-
scale, widely used in TI-SV studies. Self-collected Mandarin
corpus FMAudio_v1 is used to further evaluate the network
performance in an FM broadcasting environment. Experi-
ment results indicate the learned deep speaker embedding
descriptors are more centralized to the corresponding speak-
ers. Our contributions in this paper are summarized as
follows:

(1) A deep speaker embedding learning approach using
phoneme information as prior compensation is pro-
posed, which can aggregate phoneme into acoustic
features to produce discriminative deep speaker
embedding at the utterance level.

(2) An audio dataset called FMAudio_v1 is created and
open-sourced, and its audio is collected from FM
broadcasting. In this paper, we utilize the dataset to
evaluate the performance of the proposed approach
in noised signal.

(3) Multiple losses are explored as target functions.
Experimental results on three corpora show that
the proposed approach is benefit to boost TI-SV per-
formance. The superiority of our hybrid DNN with
two subnets over existing networks is verified.

2. Related Works

Traditional TI-SV works adopt hand-crafted features to rep-
resent speaker’s time–frequency properties, such as GMM-
UBM-based i-vector [6, 7], eigenvoice-motivated vectors
[20], and Mel-frequency cepstral coefficients [21]. These
hand-crafted features are shallow-model-based features that
cannot deeply represent the differences in characteristics for
speaker identity. Simultaneously, these features are designed
for specific situations, so they lack generalization ability when
using them in other conditions. To overcome the deficiencies
of these hand-crafted features, some recent studies learn deep-
model-based features from DNNs. Existing DNN-based TI-
SV approaches are built on several architectures, such as
LSTM [22, 23], CNN [11, 16, 24], as well as TDNN
[15, 25], to extract utterance-level embedding descriptors

2 IET Biometrics



from speech signals. For example, Snyder et al. [15] exploit a
TDNN to extract utterance-level speaker embedding, and the
embedding is known as x-vector, which is the state-of-the-art
for TI-SV. Zeinali et al. [16] proposed a CNN-based TI-SV
model to extract utterance-level speaker embedding named
r-vector, which has been proven to have superior performance
compared to x-vector. In 2021, VoxCeleb Speaker Recognition
Challenge, systems with CNN architecture performed excel-
lently, proving that CNN-based approaches have great poten-
tial for TI-SV. In order to aggregate frame-level features to
utterance-level features, a series of pooling mechanisms, i.e.,
average [11, 26], statistics [15, 27], dictionary [28], as well as
attention pooling [29, 30], are employed to highlight impor-
tant frames or other components when aggregate. In the pro-
cess, irrelevant information is gradually eliminated when
acoustic features propagate on DNNs.

Recently, phoneme classification has been explored as an
additional task for multitask training [17–19, 31–34] to learn
deep speaker embedding, making phoneme information be a
posteriori probability problem similar to acoustic information
for speaker recognition. The target of phoneme classification
is to extract a phonetic vector from a DNN architecture,
which is shared for multitasking speaker and speech unit
recognition tasks. In [31], an LSTM network is used for
speaker recognition and speech unit classification simulta-
neously. In [32], a TDNN architecture is adopted as a shared
frame-level network of the speaker embedding and speech
unit learning. Related works [33, 34] also prove that the suc-
cess of one task improves the performance of the other task,
and multitask learning is less susceptible to the problem of
overfitting compared to single-task learning. Thus, multitask
learning is the mainstream to introduce phoneme informa-
tion into deep speaker embedding extraction. On the other
hand, existing studies in the field of speech-to-text [35, 36]
have introduced speaker features as prior knowledge, which
helps improve performance significantly. Similarly, the per-
formance of TD-SV is consistently better than that of TI-SV,
proving that certain prior knowledge can be a supplementary
condition to optimize embedding learning. In [37], an MLP-
based phoneme feature extractor with 120 output states is
proposed, where three output states represent one phoneme
units with a total of 39 phoneme units and one silence. In [38],
a CNN-based phoneme feature extractor is proposed, and it
consists of an encoder and context subnets for extracting
contextual phoneme feature representations. These pre-
trained single networks can be used for providing prior
knowledge. Inspired by these studies, borrowing phoneme
features as a prior knowledge rather than a posteriori proba-
bility problem may make a certain sense for deep speaker
embedding learning.

Another trend toward learning discriminative deep
speaker embedding is to reinforce the DNNs with powerful
loss functions. Softmax loss [11, 27] or one of its variants, e.g.,
angular Softmax (A-Softmax) [28], additive margin Softmax
(AM-Softmax) [27], and additive angular margin Softmax
(AAM-Softmax) [26, 39], has been employed intensively for
TI-SV. In some cases, a contrastive loss or one of the metric
losses, triplet loss, is utilized for a further performance boost.

3. Learning Framework

3.1. Description. For most existing DNN-based TI-SV, deep
speaker embedding extraction is single-task learning. The
process can be regarded as predicting the posterior probabil-
ity PðtjxÞ : of target function t based on input signals x. In this
paper, we borrow phoneme features as supplementary con-
dition s into TI-SV, so the posterior probability PðtjxÞ: calcu-
lation is converted into a marginal probability calculation, as
formulated:

P t xjð Þ¼∑
s
P t x; sjð ÞP s xjð Þ; ð1Þ

where PðsjxÞ: denotes the posterior probability of predicted
target s under given x, which can be treated as a probability
distribution of input x on different phonetic units. Further,
PðsjxÞ: is a prior knowledge irrelevant to target function t, and
it can be learned in advance to reduce the impact of itself.

3.2. Proposed Hybrid DNN Architecture. In this paper, we
propose a hybrid DNN for TI-SV, which is composed of a
CNN-based UBM and an MLP-based PFE, to introduce pho-
neme features as prior knowledge into acoustic features so the
acoustic-based and phoneme-aware deep speaker embedding
descriptors can be learned. Figure 1 shows the proposed
hybrid DNN architecture.

3.2.1. Universal Background Model. Our previously proposed
CNN architecture [39] is modified to be UBM for acoustic
feature extraction, and Figure 1 depicts the architecture. The
CNN architecture has a residual structure similar to that of
r-vector [16], but the benefits of its deeper depth and adaptive
weight pooling (AWP) are witnessed in the evaluation [39]. The
CNN architecture is modified from ResNet-50 to a full convolu-
tion mode and cuts down the number of channels in each con-
volution layer for reducing trainable parameters to 1.5million,
compared with 25million of the original ResNet-50.

In Table 1, ReLU and BatchNorm layers are omitted.
Input acoustic signals x with size R1×40×T are encoded into
a group of deep acoustic feature maps Mx with size
R512×5×ðT=8Þ for filtering out irrelevant information, making
the deep acoustic feature maps highly relevant for speaker
identity, where T denotes sample time length. Subsequently,
the deep acoustic feature maps are partitioned into three local
parts on the frequency axis for representing high, middle, and
low-frequency components, each with the size of R512×2×ðT=8Þ,
R512×1×ðT=8Þ, and R512×2×ðT=8Þ, i.e., Mli

x , where i= 1, 2, 3. We
employ global average pooling (GAP) to map Mx to global
acoustic embedding descriptor Fg

x , map Ml
x to local acoustic

embedding descriptor F l
x. After which Fl

x is weighted adap-
tively by AWP to highlight key local patterns and suppress
inessential ones for discriminative deep speaker acoustic
embedding descriptor. The AWP is defined as follows:

Fx¼ Fg
x ; F l

x ⨀W þ B
À ÁÂ Ã

; ð2Þ

where W and B are weight and bias vectors, which have the
same dimension with Fl

x, and ⨀ denotes the Hadamard
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product of a pair of vectors. Fx is the concatenation of global
and local acoustic embedding descriptors and serves as the
deep acoustic embedding descriptor.

3.2.2. PFE. Inspired by the MLP-based network [37], we
propose an MLP architecture with full FC layers as PFE,
and the input signals are constructed by 40-dim acoustic
features from a 0.1 s window, which can present one kind
of phoneme unit features in 0.1-s. Figure 1 illustrates the
architecture, which is pretrained so that extracted phoneme
features can be used as prior knowledge to train the proposed
hybrid DNN.

The MLP architecture is composed of 20 FC layers with
ReLU activation function, and each hidden FC layer in the
MLP has a dimensionality of 512, with the exception of the
final classification layer, which has a dimensionality of
the total number of phoneme classes. This last layer is con-
nected to a Softmax loss function that helps to enforce dis-
criminative learning of phonetic units. The phoneme

features for each signal fragment are extracted from the
penultimate FC layer of the proposed MLP. During the
MLP training, the input signals are divided into fragments
with phonetic unit labels based on alignment information
and serialized on the time axis for MLP training. After the
MLP training, the input signals with the size of R1×40×T are
sliced into a series of 0.1-s fragments, which are sent into the
MLP, as formulated:

x nþ1ð Þ
t ¼ f W nð Þx nð Þ

t þb nð Þ
� �

; ð3Þ

and

Fxt ¼ x 20ð Þ
t ; ð4Þ

where Fxt is the tth phoneme embedding descriptor in the
sequence, xðnÞt denotes the output of the frame xt at the nth
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FIGURE 1: The architecture of the proposed hybrid network. It consists of two subnets: universal background model (UBM) and phoneme
feature extraction (PFE). GAP refers to global average pooling.

TABLE 1: The universal background model based on CNN architecture.

Layer type Operation Data sizes

Input — 1× 40×T

Convolution conv2d, 7× 7, 16 16× 40×T

Residual block
conv; 1 × 1; 16; strideð1; 1Þ
conv; 3 × 3; 16; strideð1; 1Þ
conv; 1 × 1; 64; strideð1; 1Þ

2
4

3
5

: × 3 64× 40×T

Residual block
conv; 1 × 1; 32; strideð2; 2Þ
conv; 3 × 3; 32; strideð2; 2Þ
conv; 1 × 1; 128; strideð2; 2Þ

2
4

3
5

: × 4 128× 20× (T/2)

Residual block
conv; 1 × 1; 64; strideð2; 2Þ
conv; 3 × 3; 64; strideð2; 2Þ
conv; 1 × 1; 256; strideð2; 2Þ

2
4

3
5

: × 6 256× 10× (T/4)

Residual block
conv; 1 × 1; 64; strideð2; 2Þ
conv; 3 × 3; 64; strideð2; 2Þ
conv; 1 × 1; 256; strideð2; 2Þ

2
4

3
5

: × 3 512× 5× (T/8)

T represents sample time length.
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FC layer in which xð0Þt is equivalent to xt , f (·) denotes ReLU
function, and W(n) and b(n) are the trainable weight and bias
parameters of the nth FC layer in which 0≤ n≤ 19. As the
input signal fragments propagate in MLP, deep phoneme
embedding descriptors are extracted as a supplementary
condition for deep speaker embedding learning.

3.2.3. Phoneme Feature Introduction (PFI). To enable cooper-
ative learning, the extracted phoneme embedding descriptors
should be integratedwith acoustic embedding descriptors, allow-
ing for the introduction of phoneme features into the desired
discriminative deep speaker embedding.

As shown in Figure 1, fixed-size input signals are adopted
for acoustic feature learning; meanwhile, these signals are equiv-
alent to a series of 0.1-s fragments for phoneme embedding
descriptor sequence learning. In this paper, two PFI methods
are proposed to combine acoustic embedding descriptor and
phoneme embedding descriptor sequence. The first one
(PFI_1) is illustrated in Figure 1, concatenating all phoneme
embedding descriptors in the sequence and concatenating the
concatenated phoneme embedding descriptor with the acoustic
embedding descriptor, i.e., in Equation (5),

F¼ Fx; Fx1 ;…; Fxt ;…; FxT

À ÁÂ Ã
: ð5Þ

The second one (PFI_2) is to sum the phoneme embed-
ding descriptors in the sequence using vector addition and
concatenating the summed phoneme embedding descriptor
with the acoustic embedding descriptor, i.e., in Equation (6),

F¼ Fx; Fx1 þ…þ Fxt þ…þ FxT

À ÁÂ Ã
; ð6Þ

where Fxt is tth phoneme embedding descriptor in the
sequence, and F is the concatenation of acoustic and pho-
neme embedding descriptors, which is compressed into a
1,024-dim utterance-level embedding descriptor at the fol-
lowed embedding layer.

3.2.4. Loss Functions. Softmax loss is widely used in classifi-
cation functions, and it performs well when the classification
scale is not very large. It is employed for pre-training the
MLP-base PFE as a supplementary subnetwork. In addition,
the loss can also be explored to direct the entire hybrid DNN
for desired deep speaker embedding. Softmax loss is formu-
lated as follows:

LSoftmax ¼ −
1
N

∑
N

i¼1
log

eW
T
yi
xiþbyi

∑
n

j¼1
eW

T
j xiþbj

0
BB@

1
CCA; ð7Þ

where N is the batch size. xi denotes ith input, and yi denotes
its label. W and b are trainable parameters.

On this basis, a related study [40] has shown that Softmax
loss does not explicitly encourage intraclass compactness
when the classification scale is large, which means the hybrid
network trained by Softmax loss may not be generalization

enough. In order to force deep speaker embedding from the
same speaker to be centralized and the clusters of different
speakers to be separated, AAM Softmax loss is also explored
to direct the hybrid network for discriminative and robust
deep speaker embedding. It is a variant of Softmax loss, which
can impose a fixed margin between speakers. The AAM Soft-
max loss is given by the following:

LAAM-Softmax ¼ −
1
N

∑
N

i¼1
log

es cos θyi ;iþmð Þð Þ

es cos θyi ;iþmð Þð Þ þ ∑
n

j¼1;j≠i
es cos θj;ið Þ

0
BB@

1
CCA;

ð8Þ

where s denotes the scaling factor, andm denotes the angular
margin. The θj;i is the angle between ith input xi and jth
column vector W j of trainable W.

4. Experiments

4.1. Datasets. To evaluate the proposed approach, we con-
duct experiments on four public datasets, including TIMIT
[41], VoxCeleb1 [11], Aishell1 [12], and FMAudio_v1.
Experiments are based on the analysis of four situations
according to the properties of datasets.

TIMIT [41] is a small-scale open-source English corpus,
containing 6,300 utterances of 630 speakers. Every utterance
is labeled with phoneme unit tags in detail. In this paper,
3,420 utterances, longer than 2.5 s, are selected from its train
subset and employed to train the PFE subnet as a phoneme
unit recognition task.

VoxCeleb1 [11] is a large-scale open-source English cor-
pus, which contains 153,516 utterances of 1,251 speakers.
The corpus is recorded at 16-bit streams, 16 kHz sampling
rate, and single channel. It includes two subsets: dev and test.
The dev contains 1,211 speakers and their 148,642 utter-
ances; test contains 40 speakers and their 4,874 utterances.
This study uses dev to train the target networks and test to
evaluate them.

Aishell1 [12] is a large-scale open-source mandarin cor-
pus, containing 141,600 utterances of 400 speakers. The cor-
pus is recorded at 16-bit streams, single channel, and
downsampled to 16 kHz. Train and dev of it contains 380
speakers and their 134,424 utterances totally; test of it con-
tains 20 speakers and their 7,176 utterances. This study uses
train and dev to train the target networks and test to evalu-
ate them.

FMAudio_v1 is a small-scale self-collected Mandarin
corpus, which contains nearly 200 utterances of 20 speakers.
The corpus is collected from FM broadcasting and trans-
formed to 16-bit streams, 16 kHz sampling rate, and single
channel. It includes two subsets: dev and test. The dev con-
tains 15 speakers and their 117 utterances; test contains five
speakers and their 61 utterances. This study adopts dev to
fine-tune the target networks and test to evaluate them.

4.2. Signal Preprocessing. Typically, acoustic feature is prom-
inent in TI-SV. The feature is essentially a type of magnitude
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information, which can be produced by eliminating phase
using fast Fourier transform (FFT) and analytic signal anal-
ysis in the temporal frequency domain. The log mel-filter
bank coefficients (Fbanks) are a common acoustic feature
representation. We transform raw speech utterances to
Fbanks as input signals of the proposed hybrid DNN. First,
a 2-s fixed-length speech utterance is selected from each
speech file and processed by the first-order high-pass filter
for boosting higher frequencies. Second, the speech utterance
is segmented using a 25ms sliding window with a 10ms shift
between frames. Third, a hamming window is used to
frames, enforcing the signal smooth by tapering the two
ends of it. Finally, after computing a 512-point FFT and
Mel filter bank containing 40 filters, each speech utterance
is converted into corresponding Fbanks with the size
of R1×40×T .

4.3. Experimental Setup. In this study, all experiments are
conducted on a Linux server computer whose main config-
urations are as follows: an Intel CPU i9-9900K with 3.60
GHz, a RAM of 64GB, a NVIDIA GeForce RTX 2080Ti
GPU, an environment of Python 3.5 as well as CUDA 11.1
The proposed networks are all implemented on the PyTorch
1.4 toolkit. The processing of our proposed TI-SV approach
is divided into three stages, i.e., the development stage for
network building, the enrollment stage for speaker-specific
model construction, and the evaluation stage for SV.

In the development stage, a TI-SV network is trained to
define the speakers manifold, which is optimized from a large
collection of speech utterances. Our hybrid DNNs are
trained using the stochastic gradient descent optimizer on
the dev set of VoxCeleb1 and train and dev sets of Aishell1,
respectively. The learning rate is initially set to 1e–1 and
decreasing by 10 after the loss function value no longer drops
more than twice. According to Li et al. [39], when the AAM-
Softmax loss is used as the optimization criterion, the scaling
factor s and the margin m are set to 32 and 0.1, respectively.

PFE is pretrained with TIMIT, and the process is considered
a phoneme unit classification task due to the accurate labels
of the dataset. Fixed-size Fbanks with size R1×40×T prepro-
cessed from raw speech segments are formed by 200 input
frames with corresponding 40 frequency components, and
the Fbanks are randomly divided into several training
batches with a batch size of 64.

In the enrollment stage, a series of speaker-specific mod-
els are built for representing targeted speakers. Targeted
speakers are completed disjoint from speakers in develop-
ment. Part of speech segments in test set are sampled into
frames and fed to the trained TI-SV networks as enrollment
data. Then, the frame-level features are learned and aggre-
gated into utterance-level embedding descriptors, in which
the 1,024-dim utterance-level embedding descriptors can be
extracted at the embedding layer. Multiple fixed-length
utterances-level embedding descriptors of the same speaker
are calculated into an average vector and stored as a speaker-
specific model.

In the evaluation stage, every speech segment in test set
except enrollment data is fed into the trained network to
generate a 1,024-dim utterance-level embedding descriptor,
which is compared to all speaker-specific models in a one-
vs.-all way, and the final decision is made on the identity
claim and similarity score. In this paper, cosine distance is
utilized for calculating similarity scores between a pair of
deep speaker embedding descriptors, and equal error rate
(EER) is used as an evaluation indicator in the following
experiments. Note that the lower the indicator EER, the bet-
ter the TI-SV approach performance.

5. Results

5.1. Evaluation of the Hybrid DNNs with Different Loss
Functions and Structures. Figure 2 shows the results of the
hybrid networks with different loss functions and structures
on two datasets. We conduct a set of experiments: (i) to
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FIGURE 2: Results for the hybrid DNNs with different loss functions and structures.
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evaluate the hybrid network without PFE (ours_no_PFE) on the
direction of Softmax loss and AAM Softmax loss, respectively;
(ii) to evaluate the hybrid network, which adopts concatenating
method for phoneme introduction (ours_PFI_1) on the direc-
tion of Softmax loss and AAM Softmax loss, respectively; (iii) to
evaluate the hybrid network, which adopts summingmethod for
phoneme introduction (ours_PFI_2) on the direction of Softmax
loss and AAM Softmax loss, respectively.

In Figure 2, the cross-entropy loss Softmax, as well as the
margin-based AAM-Softmax, are introduced. AAM-
Softmax not only separates speaker classes but also maintains
a fixed margin between speaker classes. The networks with
AAM-Softmax loss surpass that with Softmax loss on two
datasets, especially ours_no_PFE achieves 26% EER reduc-
tion on Aishell1 and 18% EER reduction on Voxceleb1, prov-
ing that Softmax loss does not explicitly encourage interclass
separability and intraclass compactness, and AAM-Softmax
is a benefit to speaker classification for TI-SV [40]; and the
results also demonstrate that the margin of cross-entropy
loss is the key to obtain discriminative deep speaker embed-
ding descriptors. On two datasets, the performance of the
networks with phoneme introduction is superior to the net-
works without phoneme introduction, and this phenomenon is
more obvious on VoxCeleb1 than on Aishell1. This may be due
to the PFE trained by the English corpus is language-related for
accurately capturing pronunciation attributes of the target lan-
guage rather than a language outside the target. Furthermore,
ours_PFI_1 invariably outperforms ours_PFI_2, in which 2.35%
vs. 2.41%, 1.76% vs. 1.8% on Aishell1, and 4.55% vs. 4.68%,
3.72% vs. 3.84% on Voxceleb1.

To further analyze the results, we visualize the deep
speaker embedding descriptors obtained by ours_no_PFE
and ours_PFI_1 on test set of Voxceleb1, respectively. Every
speaker of test set is independent, so their speech sampling
should exhibit clustering characteristics in the visualization.

Figure 3 depicts the visualizations of the two types of deep
speaker embedding descriptors, in which the first 20 speakers
in test set with their speech segments are used for construct-
ing visualization figures with moderate data volume. Each
plot corresponds to the deep speaker embedding obtained over
the fixed size of the speech utterance, projected into a 2-dim space
by t-distributed stochastic neighbor embedding. Figure 3 shows
the low variance and more sparse distribution of speaker clusters
with phoneme feature integration embedding descriptors
(ours_PFI_1) when compared to stand-alone acoustic-based
embedding descriptors (ours_no_PFE). Therefore, the network
ours_PFI_1 outperforms the network ours_no_PFE, where
ours_PFI_1 encourages interclass separability and intraclass com-
pactness by integrating acoustic and phoneme features, and ours_-
no_PFE does not possess the encouragement because it extracts
deep speaker embedding descriptors from only acoustic features.

5.2. Comparison of the Hybrid DNN with Existing
Benchmarks. Table 2 compares the performance of the
hybrid DNNs using two PFIs to previous benchmarks. We
evaluate these models all on test set of Voxceleb1. Note that
no data augmentation is utilized in development. With intro-
ducing phoneme features to acoustic features, the hybrid
DNNs using the proposed AWP outperform all other
acoustic-based models by a significant margin. Particularly,
the hybrid DNN using concatenating as PFI (ours_PFI_1)
with AWP achieves a further performance boost with the
EER of 3.72%, and it suggests that PFI_1 can accurately
preserve the temporality of phoneme unit features in a
sequence, thereby significantly enhancing the performance
of the proposed approach for TI-SV. Consequently, the use
of phoneme features as prior knowledge, combined with
acoustic features to learn highly discriminative deep speaker
embedding descriptors, can lead to a substantial improve-
ment in the performance of TI-SV systems.
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FIGURE 3: Visualization of deep speaker embedding descriptors learned from two networks. The first 20 speakers (#10270–#10289) and some
of their speech utterances are used for visualization.
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5.3. Evaluation of the Hybrid DNNs Using FM Broadcasting
Data. In our hybrid network architecture, the embedding layer is
simply a dense layer, also known as a linear transformation layer
with weights and biases. We take the pretrained hybrid network
on the Aishell1 corpus as the initial network. Inspired by Zhu and
Mak [42], we retrain the embedding layerwhilefixing the remain-
ing structure for adapting the network to FMAudio_v1 corpus.
We increase the angular margin of the AAM-Softmax loss to 0.2,
which enables better differentiation between speakers and
decreases the learning rate exponentially from 1e−4 to 1e−6.
Table 3 presents the results of our proposed hybrid networks
for TI-SV on the small-scale, self-collected FM broadcasting cor-
pus FMAudio_v1. No voice activity detection or automatic silence
removal is applied in the experiment; due to the channel mis-
match [43] between the microphone and FM broadcasting
recordings, pretrained DNNs by Aishell1 result in suboptimal
performance when directly applied to FMAudio_v1. To address
this issue, we employ fine-tuning to adapt the pretrained DNNs
from Aishell1 to FMAudio_v1. Fine-tuning improves the overall
performance of our proposed hybrid networks significantly,
as evidenced by the 20.04% reduction in EER achieved by
ours_PFI_1 (7.14%) compared to ours_no_PFE (8.93%).Whether
fine-tuned or not, the performance of ours_PFI_1 is relatively
superior (10.71% vs. 14.29% and 7.14% vs. 8.93%), providing
strong evidence that our use of PEE and introduction is effective
in handling the inherent noise in FM broadcasting signals.

6. Conclusions

In this paper, we propose a deep speaker embedding learning
method for TI-SV, viz., a hybrid DNN-introduced phoneme
information. Our method involves the use of a hybrid DNN
that combines a UBM and a PFE to extract acoustic and pho-
neme features, respectively. The PFE has been trained as a
phoneme recognition model before it is connected to the
hybrid DNN as a supplementary subnet. Bymeans of inputting
phoneme as prior knowledge, the deep speaker embedding
learning is converted into a marginal probability calculation
from a posterior probability calculation. The hybrid DNN
not only serves the target of acoustic and phoneme feature
aggregation but also makes use of the temporality of phoneme
feature sequence to improve articulatory expressiveness. It is
demonstrated that the proposed PFE and introduction method
(PFI) are benefit to enforce the hybrid DNN to be discrimina-
tive for speaker identity, even in FM broadcasting. Experimen-
tal results verify the superiority of the hybrid DNN over
existing benchmarks. Our approach provides new insights
into the design of TI-SV systems and the potential benefits of
combining acoustic and phoneme features. In future work, we
plan to investigate a deep speaker embedding learning
approach for SI tasks. By introducing phoneme information
to reduce the impact of inherent noise in FM broadcasting
signals, specific announcers can be accurately identified from
numerous unknown speakers in real-time FM broadcasting.
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TABLE 3: TI-SV results of the hybrid DNNs in FM broadcasting.

Method Loss Optimization EER (%)

ours_no_PFE AAM-Softmax — 14.29
ours_PFI_1 AAM-Softmax — 10.71
ours_no_PFE AAM-Softmax Fine-tuning 8.93
ours_PFI_1 AAM-Softmax Fine-tuning 7.14

The use of “bold” is to emphasize the experimental result (7.14%).

TABLE 2: TI-SV results for the hybrid DNNs compared with existing benchmarks.

Feature Method Aggregation Loss EER (%)

AC

Nagrani et al. [11] — — 8.8
Nagrani et al. [11] TAP Softmax 10.2
Kim and Park [26] TAP AAM-Softmax 5.68
Han et al. [27] SAP Softmax 5.75
Han et al. [27] SAP AM-Softmax 4.15
Cai et al. [28] SAP A-Softmax 4.40
Cai et al. [28] LDE A-Softmax 4.48

Wang et al. [29] MHA CosAMS 4.46
Wang et al. [29] MRMHA CosAMS 4.10
Wang et al. [29] MRMHA CosAMS 3.98
Wang et al. [29] MRMHA CosAMS 3.96

AC&PH

ours_PFI_1 TAP AAM-Softmax 4.24
ours_PFI_2 TAP AAM-Softmax 4.46
ours_PFI_1 AWP AAM-Softmax 3.72
ours_PFI_2 AWP AAM-Softmax 3.84

AC, acoustic; PH, phoneme; TAP, temporal average pooling; SAP, self-attention pooling; LDE, learnable dictionary encoding; MHA, multihead attention;
MRMHA, multiresolution multihead attention; AWP, adaptive weight pooling. The use of “bold” is to emphasize the experimental result (3.72%).
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